
Workshop on High Throughput Heterogeneous Computing

TRACCC: the ACTS Massively Parallel Tracking Demonstrator

Stephen Nicholas Swatman1 on behalf of the ACTS developers
Thursday, January 29, 2026
1CERN

1



Introduction – TRACCC and Next Generation Triggers

• TRACCC is an ACTS subproject towards an...
• efficient
• massively parallel
• track reconstruction software package

• TRACCC is supported by the CERN NGT project
• Goal: “remarkably increase efficiency, sensitivity and
modelling of CERN experiments“

• Through the use of novel hardware, including
GPGPUs (general purpose GPUs)

• Five-year effort to radically advance many aspects of
LHC computing

• https://nextgentriggers.web.cern.ch/

2

https://nextgentriggers.web.cern.ch/


Introduction – Motivation

2022 2024 2026 2028 2030 2032 2034 2036
Year

10

20

30

40

50

C
PU

tim
e
co
ns

um
pt
io
n
[a
.u
.]

Run 3
〈�〉 = 55

Run 4
88 ≤ 〈�〉 ≤ 140

Run 5
165 ≤ 〈�〉 ≤ 200

Sustained budget model
Aggressive R&D
Conservative R&D

Image adapted from ATLAS
3



Introduction – Motivation

1970 1980 1990 2000 2010 2020
Year

100

102

104

106

108
Number of transistors [× 1000]
Number of logical cores
Single-core perf. [SPECint × 1000]
Typical power draw [W]
Clock frequency [MHz]

Image adapted from Karl Rupp 4



Introduction – GPGPU computing

• GPUs are incredible compute accelerators
• Over 10,000 cores!

• But GPUs are not magic
• They will never give asymptotic advantage
• And they can be difficult to program

• As are CPU SIMD lanes!
• Constant factors are very important

• But non-GEMM performance is sometimes exaggerated

5



Introduction – GPGPU computing

For around 8,000 EUR in 2026:

AMD EPYC 9555P
64 cores
360W TDP

NVIDIA RTX PRO 6000 Blackwell
24,064 cores
300W TDP

Device Cores × Cycles/s × FLOP/cycle = FLOP/s
AMD EPYC 9555P 64 4.40B 64 18.0T
NVIDIA RTX 6000 BW. 24,064 2.29B 2 110.2T

6



Introduction – Parallelism

Invitingly
parallel

Embarrassingly
parallel

Humblingly
parallel

Terminology due to Raph Levien

7



Introduction – Parallelism

Invitingly
parallel

Embarrassingly
parallel

Humblingly
parallel

Axpy
Bitcoin mining

Shaders

Terminology due to Raph Levien

7



Introduction – Parallelism

Invitingly
parallel

Embarrassingly
parallel

Humblingly
parallel

Axpy
Bitcoin mining

Shaders

gemm
Histogramming

FFT

Terminology due to Raph Levien

7



Introduction – Parallelism

Invitingly
parallel

Embarrassingly
parallel

Humblingly
parallel

Axpy
Bitcoin mining

Shaders

gemm
Histogramming

FFT

SpMV
(De-)compression

Sorting

Terminology due to Raph Levien

7



Introduction – Parallelism

Invitingly
parallel

Embarrassingly
parallel

Humblingly
parallel

Axpy
Bitcoin mining

Shaders

Track reconstruction

gemm
Histogramming

FFT

SpMV
(De-)compression

Sorting

Terminology due to Raph Levien

7



Introduction – Parallelism

Invitingly
parallel

Embarrassingly
parallel

Humblingly
parallel

Axpy
Bitcoin mining

Shaders

Track reconstruction

gemm
Histogramming

FFT

SpMV
(De-)compression

Sorting

Track reconstructionOn GPGPUs

Terminology due to Raph Levien

7



Challenges – GPGPU computing

• GPU threads run in lockstep
• One instruction stream is broadcast to
a group of threads (32–64)

• Branch divergence causes idle time
• As do unequal loop structures
• Behaviour much like SIMD lanes

✓ ✓ ✓ ✓int n = thread_id();
✓ ✓ ✓ ✓prologue();

if (0 < n < 3) {
✗ ✓ ✓ ✗branch1();

} else if (n == 0) {
✓ ✗ ✗ ✗branch2();

}
✓ ✓ ✓ ✓epilogue();

𝑡0 𝑡1 𝑡2 𝑡3𝑚0 𝑚1 𝑚2 𝑚3

8



Track Reconstruction – Clustering

0 10 20 30 40 50 60 70
Cluster size

100

101

102

103

104

C
ou

nt

9



Track Reconstruction – Combinatorial Kálmán Filter

• The Combinatorial Kálmán Filter extends seeds
• Branches frequently, contains nested, unbound loops
• One of the biggest bottlenecks and most
complicated algorithms

• Presents many challenges:
• How do we manage the combinatorics?
• How do we describe our detector in GPU memory?
• How do we keep magnetic field accesses fast?

track

Source: Paul Gessinger

10



Track Reconstruction – Summary

• Around 8 subproblems with wildly different characteristics
• Map non-trivially to massively parallel hardware

• Imbalance, divergence, irregular access patterns, etc.

• Requires much more than a naive porting exercise!

11



Implementation – TRACCC

• TRACCC is our open-source massively parallel
track reconstruction pipeline

• Designed from the ground up for GPGPUs
• Algorithms often completely rethought
• Aim: match physics performance of
homogeneous solutions

• See e.g. 10.5281/ZENODO.8119504 for more info

12

https://doi.org/10.5281/ZENODO.8119504


Spin-Off Projects – DETRAY

• Detector descriptions are classically polymorphic,
which doesn’t fly in GPGPUs

• DETRAY is our heterogeneous detector geometry
• Crucial component of any non-trivial reconstruction

• Tremendous amount of work by the DETRAY devs
• See 10.1088/1742-6596/2438/1/012026 for more info

13

https://doi.org/10.1088/1742-6596/2438/1/012026


Spin-Off Projects – COVFIE

• Reconstruction features highly frequent,
highly irregular structured grid access

• COVFIE is our library for handling arbitrary
vector fields incl. magnetic fields

• Cross-platform performance through
compile-time composition

• Allows e.g. use of texture memory
• See 10.1145/3578244.3583723 for more info

14

https://doi.org/10.1145/3578244.3583723


Spin-Off Projects – COVFIE

Source: Microsoft

15



Spin-Off Projects – Further Contributions

• The TRACCC effort also (indirectly) produced models and methods
• Novel derivations of Jacobian matrices: 10.1016/j.nima.2024.169734
• Models for thread divergence: 10.1109/MASCOTS56607.2022.00026
• Genetic algorithms for structured grid layouts: 10.1145/3629526.3645034
• Novel method for transparent SoA and AoS layouts
• Throughput models for heterogeneous task graphs

16

https://doi.org/10.1016/j.nima.2024.169734
https://doi.org/10.1109/MASCOTS56607.2022.00026
https://doi.org/10.1145/3629526.3645034


The Detector – The ODD

• ATLAS is great, but an open-source detector
gives us some great benefits:

• No plot approvals
• Free code and data sharing
• Ease of use for non-ATLAS users
• Freedom from the grimy real world

• This is why we “built” the OpenDataDetector

17



The Detector – The ODD

• The ODD served as the base for the wildly
successful TrackML Kaggle challenge

• Also serves as the main evaluation tool for
TRACCC

• Recently released ColliderML: the biggest
freely available high-luminosity dataset for
e.g. ML training

• See https://colliderml.com/

18

https://colliderml.com/


The Good Parts – Success in Physics!

• TRACCC provides good physics
performance on the ODD

• And we are very nearly within limits for
the ATLAS ITk

• Given the from-scratch nature of
TRACCC, this is an impressive result!

3 2 1 0 1 2 3
0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ef
fic

ie
nc

y

traccc

19



The Good Parts – Success in Compute!

April 2025 January 2026

20



The Good Parts – Success in Compute!

• We managed to increase our performance 30× in
9 months

• Current performance makes us competitive with
CPU solutions

• Realistic cost savings with current solution
• But these are percentage savings (not orders of
magnitude)

• Perhaps the benefit will increase more?

21



The Lessons Learned – Portability and Code Sharing

• TRACCC set out with ambitious ideas
• Share as much code between CPU and GPU as
possible

• In order to reduce maintenance
• Support as many programming models as
possible

• In order to support many devices
• NVIDIA CUDA, AMD HIP, SYCL, etc.

• Unfortunately, neither of these approaches really
worked out

• That’s R&D for you!

22



The Lessons Learned – Code Sharing

• Sharing code between CPUs and GPUs is tricky
• Shareable code is generally limited, watch out for:

• Code with any dynamic memory allocation (incl. std::vector)
• Code with large amounts of stack usage
• Code with unbound loops (or large bound loops)
• Early returns, complex control flow

• Setting out to share too much leads to issues: start small and unify later

23



The Lessons Learned – Portability

• Our approach to portability has resulted
in high maintenance and little benefit

• “like wearing two raincoats on top of
each other”

• Cross-platform support forces meeting
at the smallest common denominator

• Recommendation, either:
• Focus on performance in one
programming model and port later; or

• Focus on a single portability solution
from the start

traccc

Toolchain

Hardware

Algorithms

Portability

Prog. model

Compiler

IR

Byte code

GPU

Seeding Finding Fitting

traccc

CUDAAlpakaSYCL

e.g. icpx e.g. nvcchipcc

SPIR-V PTXLLVMIR

AMDCGNIntel BC SASS

Intel GPU AMD GPU NV GPU

24



The Lessons Learned – Performance Monitoring

• HEP has a strong culture of monitoring physics
performance

• For a project like TRACCC, compute performance is
also a first-class monitorable – at kernel level

• Only last year did we get continuous compute
monitoring

• Critical for informing accept–reject decisions
• Also track performance changes over time to
find regressions

25



The Lessons Learned – Performance Monitoring

29
2e
47
f1

27
01
4d
e8

d1
12
ab
97

44
81
a0
18

aa
71
75
8b

45
05
04
45

04
70
bb
99

d7
6d
02
28

4c
b9
3e
f3

ca
21
9d
4d

30
e1
f0
27

34
20
f4
e3

78
91
1b
b9

7f
49
48
ae

99
3f
e6
ca

ea
17
1d
30

5f
70
0f
f6

91
80
e4
4b

2f
2c
78
3b

79
4e
17
e1

f5
0b
1a
56

f1
a5
e5
76

bd
57
79
4f

c7
94
e3
44

b2
8b
2e
ee

8b
a0
a4
99

9c
3c
10
5a

2d
5a
8d
9b

e4
fe
67
b4

de
b2
67
ad

77
98
53
a4

93
a8
f6
09

91
9a
08
21

21
b8
21
6c

8c
39
65
93

32
95
0a
5e

d3
b2
48
5a

64
18
a9
65

e5
7a
5d
6f

9d
ff
67
5f

c4
82
61
48

67
3d
40
82

74
8f
e5
00

54
45
58
0d

fb
9f
ff
d3

4b
c6
1e
0c

93
55
f5
73

fa
2e
21
6e

81
9d
db
0d

36
54
a6
4d

04
44
ba
3a

f5
94
31
e2

36
da
c6
f9

Commit hash

0

200

400

600

800

Re
cip

ro
ca

l t
hr

ou
gh

pu
t [

m
s]

count_doublets
count_triplets
find_doublets
find_tracks
find_triplets
fit
fit_backward
fit_forward
fit_prelude
propagate_to_next_surface

26



The Lessons Learned – The Latency Myth

“My CPU solution runs in 10ms and my GPU solution runs in
4ms, so my GPU solution is 2.5 times faster”

27



The Lessons Learned – The Latency Myth

8 looms, 10 h. / carpet = 0.8 carpets / h 2 looms, 4 h. / carpet = 0.5 carpets / h

“Factory A makes a carpet in 10 hours and factory B takes 4
hours, so factory B produces 2.5 times more carpets”

28



The Lessons Learned – The Latency Myth

8 looms, 10 h. / carpet = 0.8 carpets / h 2 looms, 4 h. / carpet = 0.5 carpets / h

“Factory A makes a carpet in 10 hours and factory B takes 4
hours, so factory B produces 2.5 times more carpets”

28



The Lessons Learned – The Latency Myth

• For throughput-critical applications, latency is not enough!
• Compute throughput using latency: T = N

L
• Computation of N differs for CPUs and GPUs

• If you want a latency-like metric, use reciprocal throughput
• “How long does it take to produce a carpet on average?”
• “What is the average amount of time between carpets being finished?”

• Both measured in time, but semantically different!

29



Open Challenges – Scheduling and Placement

• Scheduling and placement remain difficult questions for us
• Dynamic scheduling between CPU and GPU risks hard-to-debug runtime issues
• Static scheduling risks imbalance between CPU and GPU

• Can be alleviated with MPI/SaaS – but needs networking

• Requires integration of asynchronous execution in Gaudi

30



Conclusion

• Thanks to the hard work of many, TRACCC is a functional, performant track
reconstruction pipeline in ACTS

• Track reconstruction is difficult to implement for GPGPUs due to irregularity
• Solutions to many hurdles researched and developed
• TRACCC currently provides competitive performance for ATLAS EF tracking
• To get involved: CERN Mattermost, ACTS (#traccc and friends), bi–weekly meeting

31

https://indico.cern.ch/category/7968/


Backup slides

31



Backup – GPGPU computing

CPU architecture
Core

L1 cache Co
nt
ro
l Core

L1 cache Co
nt
ro
l

Core

L1 cache Co
nt
ro
l Core

L1 cache Co
nt
ro
l

L2 cache L2 cache

L3 cache

DRAM

GPU architecture
Control
L1 cache Co

re

Control
L1 cache Co

re

Control
L1 cache Co

re

Control
L1 cache Co

re

Control
L1 cache Co

re

L2 cache

DRAM
32


