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Introduction – TRACCC and Next Generation Triggers

• TRACCC is an ACTS subproject towards an...
• efficient
• massively parallel
• track reconstruction software package

• TRACCC is supported by the CERN NGT project
• Goal: “remarkably increase efficiency, sensitivity and
modelling of CERN experiments“

• Through the use of novel hardware, including
GPGPUs (general purpose GPUs)

• Five-year effort to radically advance many aspects of
LHC computing

• https://nextgentriggers.web.cern.ch/
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Introduction – Motivation
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Introduction – Motivation
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Introduction – GPGPU computing

• GPUs are incredible compute accelerators
• Over 10,000 cores!

• But GPUs are not magic
• They will never give asymptotic advantage
• And they can be difficult to program

• As are CPU SIMD lanes!
• Constant factors are very important

• But non-GEMM performance is sometimes exaggerated
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Introduction – GPGPU computing

For around 8,000 EUR in 2026:

AMD EPYC 9555P
64 cores
360W TDP

NVIDIA RTX PRO 6000 Blackwell
24,064 cores
300W TDP

Device Cores × Cycles/s × FLOP/cycle = FLOP/s
AMD EPYC 9555P 64 4.40B 64 18.0T
NVIDIA RTX 6000 BW. 24,064 2.29B 2 110.2T
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Introduction – Parallelism
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Challenges – GPGPU computing

• GPU threads run in lockstep
• One instruction stream is broadcast to
a group of threads (32–64)

• Branch divergence causes idle time
• As do unequal loop structures
• Behaviour much like SIMD lanes

✓ ✓ ✓ ✓int n = thread_id();
✓ ✓ ✓ ✓prologue();

if (0 < n < 3) {
✗ ✓ ✓ ✗branch1();

} else if (n == 0) {
✓ ✗ ✗ ✗branch2();

}
✓ ✓ ✓ ✓epilogue();

𝑡0 𝑡1 𝑡2 𝑡3𝑚0 𝑚1 𝑚2 𝑚3
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Track Reconstruction – Clustering
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Track Reconstruction – Combinatorial Kálmán Filter

• The Combinatorial Kálmán Filter extends seeds
• Branches frequently, contains nested, unbound loops
• One of the biggest bottlenecks and most
complicated algorithms

• Presents many challenges:
• How do we manage the combinatorics?
• How do we describe our detector in GPU memory?
• How do we keep magnetic field accesses fast?

track

Source: Paul Gessinger
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Track Reconstruction – Summary

• Around 8 subproblems with wildly different characteristics
• Map non-trivially to massively parallel hardware

• Imbalance, divergence, irregular access patterns, etc.

• Requires much more than a naive porting exercise!
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Implementation – TRACCC

• TRACCC is our open-source massively parallel
track reconstruction pipeline

• Designed from the ground up for GPGPUs
• Algorithms often completely rethought
• Aim: match physics performance of
homogeneous solutions

• See e.g. 10.5281/ZENODO.8119504 for more info
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Spin-Off Projects – DETRAY

• Detector descriptions are classically polymorphic,
which doesn’t fly in GPGPUs

• DETRAY is our heterogeneous detector geometry
• Crucial component of any non-trivial reconstruction

• Tremendous amount of work by the DETRAY devs
• See 10.1088/1742-6596/2438/1/012026 for more info
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Spin-Off Projects – COVFIE

• Reconstruction features highly frequent,
highly irregular structured grid access

• COVFIE is our library for handling arbitrary
vector fields incl. magnetic fields

• Cross-platform performance through
compile-time composition

• Allows e.g. use of texture memory
• See 10.1145/3578244.3583723 for more info
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Spin-Off Projects – COVFIE

Source: Microsoft
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Spin-Off Projects – Further Contributions

• The TRACCC effort also (indirectly) produced models and methods
• Novel derivations of Jacobian matrices: 10.1016/j.nima.2024.169734
• Models for thread divergence: 10.1109/MASCOTS56607.2022.00026
• Genetic algorithms for structured grid layouts: 10.1145/3629526.3645034
• Novel method for transparent SoA and AoS layouts
• Throughput models for heterogeneous task graphs
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The Detector – The ODD

• ATLAS is great, but an open-source detector
gives us some great benefits:

• No plot approvals
• Free code and data sharing
• Ease of use for non-ATLAS users
• Freedom from the grimy real world

• This is why we “built” the OpenDataDetector
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The Detector – The ODD

• The ODD served as the base for the wildly
successful TrackML Kaggle challenge

• Also serves as the main evaluation tool for
TRACCC

• Recently released ColliderML: the biggest
freely available high-luminosity dataset for
e.g. ML training

• See https://colliderml.com/
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The Good Parts – Success in Physics!

• TRACCC provides good physics
performance on the ODD

• And we are very nearly within limits for
the ATLAS ITk

• Given the from-scratch nature of
TRACCC, this is an impressive result!
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The Good Parts – Success in Compute!

April 2025 January 2026
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The Good Parts – Success in Compute!

• We managed to increase our performance 30× in
9 months

• Current performance makes us competitive with
CPU solutions

• Realistic cost savings with current solution
• But these are percentage savings (not orders of
magnitude)

• Perhaps the benefit will increase more?
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The Lessons Learned – Portability and Code Sharing

• TRACCC set out with ambitious ideas
• Share as much code between CPU and GPU as
possible

• In order to reduce maintenance
• Support as many programming models as
possible

• In order to support many devices
• NVIDIA CUDA, AMD HIP, SYCL, etc.

• Unfortunately, neither of these approaches really
worked out

• That’s R&D for you!
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The Lessons Learned – Code Sharing

• Sharing code between CPUs and GPUs is tricky
• Shareable code is generally limited, watch out for:

• Code with any dynamic memory allocation (incl. std::vector)
• Code with large amounts of stack usage
• Code with unbound loops (or large bound loops)
• Early returns, complex control flow

• Setting out to share too much leads to issues: start small and unify later

23



The Lessons Learned – Portability

• Our approach to portability has resulted
in high maintenance and little benefit

• “like wearing two raincoats on top of
each other”

• Cross-platform support forces meeting
at the smallest common denominator

• Recommendation, either:
• Focus on performance in one
programming model and port later; or

• Focus on a single portability solution
from the start

traccc

Toolchain

Hardware

Algorithms

Portability

Prog. model

Compiler

IR

Byte code

GPU

Seeding Finding Fitting

traccc

CUDAAlpakaSYCL

e.g. icpx e.g. nvcchipcc

SPIR-V PTXLLVMIR

AMDCGNIntel BC SASS

Intel GPU AMD GPU NV GPU
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The Lessons Learned – Performance Monitoring

• HEP has a strong culture of monitoring physics
performance

• For a project like TRACCC, compute performance is
also a first-class monitorable – at kernel level

• Only last year did we get continuous compute
monitoring

• Critical for informing accept–reject decisions
• Also track performance changes over time to
find regressions
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The Lessons Learned – Performance Monitoring
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The Lessons Learned – The Latency Myth

“My CPU solution runs in 10ms and my GPU solution runs in
4ms, so my GPU solution is 2.5 times faster”
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The Lessons Learned – The Latency Myth

8 looms, 10 h. / carpet = 0.8 carpets / h 2 looms, 4 h. / carpet = 0.5 carpets / h

“Factory A makes a carpet in 10 hours and factory B takes 4
hours, so factory B produces 2.5 times more carpets”
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The Lessons Learned – The Latency Myth

• For throughput-critical applications, latency is not enough!
• Compute throughput using latency: T = N

L
• Computation of N differs for CPUs and GPUs

• If you want a latency-like metric, use reciprocal throughput
• “How long does it take to produce a carpet on average?”
• “What is the average amount of time between carpets being finished?”

• Both measured in time, but semantically different!
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Open Challenges – Scheduling and Placement

• Scheduling and placement remain difficult questions for us
• Dynamic scheduling between CPU and GPU risks hard-to-debug runtime issues
• Static scheduling risks imbalance between CPU and GPU

• Can be alleviated with MPI/SaaS – but needs networking

• Requires integration of asynchronous execution in Gaudi
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Conclusion

• Thanks to the hard work of many, TRACCC is a functional, performant track
reconstruction pipeline in ACTS

• Track reconstruction is difficult to implement for GPGPUs due to irregularity
• Solutions to many hurdles researched and developed
• TRACCC currently provides competitive performance for ATLAS EF tracking
• To get involved: CERN Mattermost, ACTS (#traccc and friends), bi–weekly meeting
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Backup slides
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Backup – GPGPU computing
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