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LHCb Upgrade Dataflow (Run 3)

HLT1 challenge: reduce 4 TB/s to 100 GB/s in
real-time with high physics efficiency
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LHCb Upgrade Trigger and DAQ (Run 3)
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Allen: Key Design Principles

Minimal Host Intervention
• GPUs share CPUs with Event

Builder servers

• Host only coordinates, doesn’t

process data

• Raw data transferred on GPU

• Decisions sent back with minimal

overhead

• Transient data stay on GPU

Maximized GPU Utilization
• Every algorithm hand-optimized in

CUDA

• Tuned specifically for NVIDIA

A5000 GPUs

• Throughput (events/s) as primary

metric

• Focus on GPU occupancy and

thread efficiency

Primary Constraint

Everything must run on GPU - Host steering kept to absolute minimum
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Multi-Event Processing Architecture

Stream-Based Parallelism
• Each GPU divided into streams

• Each stream processes a batch of

events

• Streams operate independently and

concurrently

• Maximizes GPU resource utilization

Static Scheduling

• Reconstruction sequence configured

in Python

• Algorithms topologically sorted at

configuration time

• Data dependencies determine

execution order

• No runtime scheduling overhead
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Memory Management Strategy

Custom Allocator Design

• GPU memory is a scarce resource

(24 GB per A5000)

• Preallocated memory blob per

stream (500-1000 MB)

• Only Transient Event Data,

geometry / monitoring is shared

between streams and managed

separately.

Host-Managed Allocation

• All allocations managed on host

side

• Separarate allocators for host and

device memory

• Buffer lifetimes computed statically

at configuration time, based on

data dependencies
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Cross-Platform Portability

The ”Allen Way” of Writing Code

• Algorithms written in backend-agnostic

C++ that looks like CUDA

• Lightweight header files define CUDA

keywords for other backends

• Block-stride loops in every kernel (on CPU,

blockDim hardcoded to 1)

• Same source code runs on GPU and CPU

CPU Fallback for
Simulation

• Must run anywhere for

simulation workflows

• Speed not critical for

simulation use cases

• Enables validation and

testing without GPUs

Code Example

// Block -stride loop pattern

for (unsigned i=threadIdx.x; i<total_items; i+= blockDim.x) {

// Process item i

}
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Allen Threads

January 28th, 2026 LHCb: Allen 8



Real-Time Monitoring System

Critical for Trigger Understanding

• Only 1/30 of data saved - monitoring plots are essential to understand system

performances

• Provides real-time system performance assessment: enables immediate detection

of issues

• Shared histograms and counters:

Aggregation across all streams on

device with atomics

• Double buffering and

Low-frequency copying to host for

no throughput impact

DEVICE (GPU)

HOST (CPU)

MONET live view
for shifters

permanent storage
for future analysis

thread

stream stream

thread aggregator

shared device
buffer

1Hz
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Production Integration

Online Control System

• Steered by LHCb Online Control

System

• Monitored and controlled like any

detector system

• Handles run transitions, error

recovery, configuration

Performance in Production
• Processes full 30 MHz input rate,

with some margin

• 100+ algorithms in reconstruction

sequence
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Algorithm Building Blocks: Prefix Sum

Use cases
• Variable-sized allocations (convert counts

to offsets)
• Used everywhere in reconstruction:

• O(103) events per slice
• O(105) tracks per slice
• O(106) hits per slice

Implementation

• Blelloch’s scan algorithm

• Optimized for GPU memory hierarchy

• Avoids bank conflicts

• Up to 8% throughput gain compared to

naive CPU prefix sum
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Prefix Sum: Performance Optimization

Why GPU Beats CPU ?

• Common belief: prefix sum

inherently sequential so is faster on

CPU

• Reality: GPU faster for large arrays,

and even small arrays if the data is

already on device

• Avoids PCIe transfers

• Different algorithms for different

sizes

Throughput comparison of different
prefix sum algorithms

Implementation Choice
• Small arrays (< 512): Single block

• Large arrays: Hierarchical approach
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Algorithm Building Blocks: Segmented Sort

The Challenge

• Sort many small segments

independently

• Old approach: O(N2) per segment

• Wasteful: threads idle for small

segments

• Multiple custom implementations

Optimized Solution

• Group segments by size

• Specialized kernels per size bucket

• Register sort for sizes < 512

• Global memory fallback for larger

sizes

• Unified API for all use cases
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Segmented Sort: Implementation Details

Key Optimizations

• Register sorts: Data stays on-chip,

uses warp shuffles

• Size bins: Power-of-2 buckets up to

512

• Code generation: Generate optimal

sort for each size bin

• No Dynamic parallelism: Bins are

dispatched manually with load

balancing techniques, within a

single mega-kernel (non-nvidia

backends compatibility)

Register sort using sorting networks

Segment size distribution (log scale)
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User-Friendly Building Blocks

Prefix Sum API
#include <PrefixSum.cuh >

// In -place prefix sum

PrefixSum ::prefix_sum <dev_offsets_t >(

*this , arguments , context );

// With host total

PrefixSum ::prefix_sum <

dev_offsets_t , host_total_t >(

*this , arguments , context );

Segmented Sort API
#include <SegSort.h>

SegSort ::segsort <int64_t >(

*this , arguments , context ,

data <dev_keys_t >( arguments),

data <dev_offsets_t >( arguments),

size <dev_offsets_t >( arguments)-1,

data <dev_permutations_t >( arguments ));

Impact on Development

• Hide complexity: Developers focus on physics

• Consistent APIs: Easy to learn and use

• Performance by default: Optimized implementations

• Maintainable: Single implementation to optimize
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Lessons Learned from past Allen Development

Technical Insights

• Memory access patterns critical

• Specialized kernels usually

outperform general ones

• Register usage requires careful

coding and compiler understanding

• Monitoring can’t be an

afterthought

Development Practices

• Writing performant algorithms need

deep GPU architecture

understanding

• Profiling tools are essential

• Continuous integration critical

• Framework design affects your

algorithms

• Hard to have one-size-fits-all

solutionsKey Takeaway

Writing real-time 30 MHz analysis software requires both GPU expertise and

careful attention to every detail of system design and implementation.
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Allen Throughput Today

O(500) RTX A5000 GPUs enabling 30MHz HLT1
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Ongoing developments
Framework

• AllenCore: split the non-LHCb specific part of Allen to its own repository for use

in other experiments (See Gonzalo’s talk next)

• Non-NVIDIA GPU backends: add support for AMD, SYCL, ...

• Rework memory manager: allow hierarchical data structures as algorithm

parameters (eg. structs), implicit data dependencies

Physics

• Port of RICH reconstruction to GPU

• Evaluation of HLT1-HLT2 differences (eg. PV finding)

• Forward tracking / hybrid seeding tuning studies

• Parametrized Kalman filter improvements

Can we get to HLT2 efficiency levels ?

January 28th, 2026 LHCb: Allen 18



Conclusion
Allen: Real-Time GPU Processing for LHCb HLT1

• Successfully deployed: Processing 30 MHz in production

• Innovative architecture: Multi-event GPU framework

• Performance driven: Every optimization matters at scale

• Proven reliability: Mission critical component of LHCb data acquisition

Looking Ahead

• Framework convergence with Gaudi (HLT1 / HLT2)

• Multi-vendor GPU support (AMD, SYCL, ...)

• Enhanced physics performance

• Preparation for upgrade II

Thank You
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