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LHCb Upgrade Dataflow (Run 3)
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HLT1 challenge: reduce 4 TB/s to 100 GB/s in
real-time with high physics efficiency




LHCb Upgrade Trigger and DAQ (Run 3)
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Allen: Key Design Principles

Minimal Host Intervention Maximized GPU Uetilization

® GPUs share CPUs with Event ® Every algorithm hand-optimized in
Builder servers CUDA

® Host only coordinates, doesn't ® Tuned specifically for NVIDIA
process data A5000 GPUs

® Raw data transferred on GPU ® Throughput (events/s) as primary

® Decisions sent back with minimal metric
overhead ® Focus on GPU occupancy and

® Transient data stay on GPU thread efficiency

Primary Constraint

Everything must run on GPU - Host steering kept to absolute minimum
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Multi-Event Processing Architecture

Stream-Based Parallelism
® Each GPU divided into streams

® Each stream processes a batch of

events

® Streams operate independently and

concurrently

® Maximizes GPU resource utilization

Static Scheduling

Reconstruction sequence configured

in Python

Algorithms topologically sorted at

configuration time

Data dependencies determine

execution order

No runtime scheduling overhead




Memory Management Strategy

Custom Allocator Design Host-Managed Allocation

® GPU memory is a scarce resource ® All allocations managed on host
(24 GB per A5000) side

® Preallocated memory blob per ® Separarate allocators for host and
stream (500-1000 MB) device memory

® Only Transient Event Data, ® Buffer lifetimes computed statically
geometry / monitoring is shared at configuration time, based on
between streams and managed data dependencies
separately.
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Cross-Platform Portability

The "Allen Way” of Writing Code CPU Fallback for

® Algorithms written in backend-agnostic Simulation

C++ that looks like CUDA ® Must run anywhere for

® Lightweight header files define CUDA simulation workflows

keywords for other backends ® Speed not critical for

® Block-stride loops in every kernel (on CPU, simulation use cases

blockDim hardcoded to 1) ® Enables validation and

® Same source code runs on GPU and CPU testing without GPUs

Code Example

// Block-stride loop pattern
for (unsigned i=threadldx.x; i<total_items; i+=blockDim.x) {
// Process item i

}




Allen Threads

Allen Main Loop
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Real-Time Monitoring System

Critical for Trigger Understanding

® Only 1/30 of data saved - monitoring plots are essential to understand system

performances

® Provides real-time system performance assessment: enables immediate detection

of issues

® Shared histograms and counters: DEVICE (GPU)

|

HOST (CPU) THzw ‘

Aggregation across all streams on

device with atomics

® Double buffering and

Low-frequency copying to host for
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Production Integration

Online Control System
® Steered by LHCb Online Control
System

® Monitored and controlled like any

detector system

® Handles run transitions, error

recovery, configuration

Performance in Production

® Processes full 30 MHz input rate,
with some margin
® 100+ algorithms in reconstruction

sequence




Algorithm Building Blocks:

Use cases

® Variable-sized allocations (convert counts
to offsets)

® Used everywhere in reconstruction:

* 0(10%) events per slice
* 0O(10%) tracks per slice
* 0(109) hits per slice
Implementation
® Blelloch’s scan algorithm
® Optimized for GPU memory hierarchy
® Avoids bank conflicts

Up to 8% throughput gain compared to

naive CPU prefix sum

Prefix Sum
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Prefix Sum: Performance Optimization

Why GPU Beats CPU ? T T

— cuda2_4_ept
101 { — cuda3_single_block_lept
—— cudad_single_warp_lept
—— cudas_single_warp_dept

® Common belief: prefix sum
inherently sequential so is faster on
CPU

time(ms)

Reality: GPU faster for large arrays,

and even small arrays if the data is

10 102 10° 104 108 106 107

already on device size
Throughput comparison of different
prefix sum algorithms

Different algorithms for different Implementation Choice

sizes

® Avoids PCle transfers

® Small arrays (< 512): Single block

® Large arrays: Hierarchical approach




Algorithm Building Blocks: Segmented Sort

The Challenge Optimized Solution
® Sort many small segments ® Group segments by size
independently ® Specialized kernels per size bucket
® Old approach: O(N?) per segment ® Register sort for sizes < 512
® Wasteful: threads idle for small ® Global memory fallback for larger
segments sizes
® Multiple custom implementations ® Unified API for all use cases

W)

\ “\_\_\)Segmented sort
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output
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Segmented Sort: Implementation Details
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User-Friendly Building Blocks

Prefix Sum API

#include <PrefixSum.cuh>

// In-place prefix sum
PrefixSum::prefix_sum<dev_offsets_t>(
*this, arguments, context);

// With host total

PrefixSum::prefix_sum<
dev_offsets_t, host_total_t>(
*this, arguments, context);

Impact on Development

Segmented Sort API

#include <SegSort.h>

SegSort::segsort<int64_t>(
*this, arguments, context,
data<dev_keys_t >(arguments),
data<dev_offsets_t>(arguments),
size<dev_offsets_t>(arguments)-1,
data<dev_permutations_t>(arguments));

® Hide complexity: Developers focus on physics

® Consistent APIs: Easy to learn and use

® Performance by default: Optimized implementations

® Maintainable: Single implementation to optimize




Lessons Learned from past Allen Development

Technical Insights Development Practices

® Memory access patterns critical ® Writing performant algorithms need

® Specialized kernels usually deep GPU architecture

outperform general ones understanding

® Register usage requires careful Profiling tools are essential
coding and compiler understanding ® Continuous integration critical

® Monitoring can't be an ® Framework design affects your
afterthought algorithms

® Hard to have one-size-fits-all
Key Takeaway solutions

Writing real-time 30 MHz analysis software requires both GPU expertise and

careful attention to every detail of system design and implementation.




Allen Throughput Today
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Ongoing developments

Framework

® AllenCore: split the non-LHCb specific part of Allen to its own repository for use
in other experiments (See Gonzalo's talk next)
® Non-NVIDIA GPU backends: add support for AMD, SYCL, ...

Rework memory manager: allow hierarchical data structures as algorithm

parameters (eg. structs), implicit data dependencies
Physics
® Port of RICH reconstruction to GPU
® Evaluation of HLT1-HLT2 differences (eg. PV finding)

Forward tracking / hybrid seeding tuning studies

Parametrized Kalman filter improvements

Can we get to HLT2 efficiency levels 7

LHCb: Allen




Conclusion

Allen: Real-Time GPU Processing for LHCb HLT1
® Successfully deployed: Processing 30 MHz in production
® Innovative architecture: Multi-event GPU framework
Performance driven: Every optimization matters at scale

® Proven reliability: Mission critical component of LHCb data acquisition

Looking Ahead

® Framework convergence with Gaudi (HLT1 / HLT2)
® Multi-vendor GPU support (AMD, SYCL, ...)
® Enhanced physics performance

® Preparation for upgrade |l

Thank You
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