Search for neutrinoless double-beta decays ■ lundi 6 oct. 2025, 09:00 → 18:00 Europe/Paris

Auditorium Marie Curie, CNRS, rue Michel-Ange, Paris

CUORE Upgrade with Particle IDentification

Andrea Giuliani, Benjamin Schmidt, Claudia Nones
On behalf of CUPID-France

 $0v2\beta$ is an inclusive test for the « creation of leptons »:

$$2n \rightarrow 2p + 2e^- \Rightarrow LNV$$

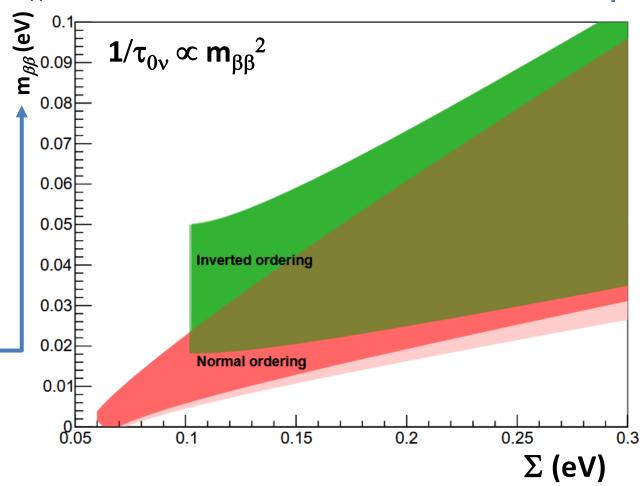
$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te

Signal: **a peak** in the sum-energy spectrum of $2e^{-}$ **at Q**_{2 β}

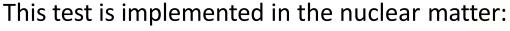
0ν2β (ε Β

Standard mechanism: neutrino physics


 $0\nu2\beta$ is mediated by

light massive Majorana neutrinos

(exactly those which oscillate)


BSM non-standard mechanismsNot necessarily neutrino physics

$$\mathbf{m}_{\beta\beta} = ||U_{e1}||^2 m_1 + e^{i\alpha 1} ||U_{e2}||^2 m_2 + e^{i\alpha 2} ||U_{e3}||^2 m_3 || \longrightarrow 0 \text{V2}\beta$$

 $0v2\beta$ is an inclusive test for the « creation of leptons »:

$$2n \rightarrow 2p + 2e^- \Rightarrow LNV$$

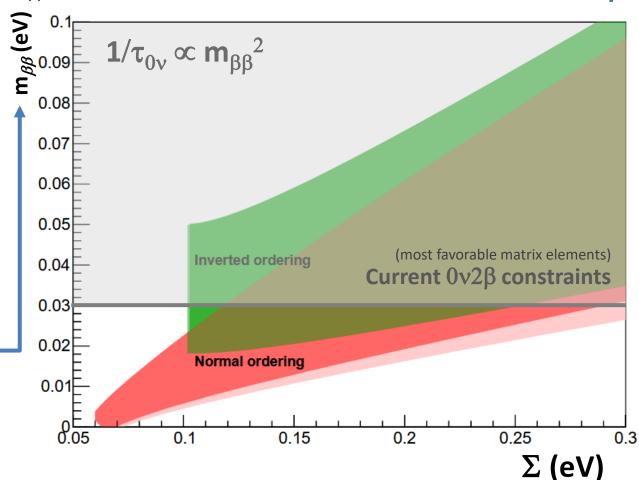
$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te

Signal: **a peak** in the sum-energy spectrum of $2e^{-}$ **at Q**_{2 β}

 $0v2\beta$ $0v2\beta$ is
light material (exactly)
BSM not

Standard mechanism: neutrino physics


 $0\nu2\beta$ is mediated by

light massive Majorana neutrinos

(exactly those which oscillate)

BSM non-standard mechanismsNot necessarily neutrino physics

$$\mathbf{m}_{\beta\beta} = ||U_{e1}||^2 m_1 + e^{i\alpha 1} ||U_{e2}||^2 m_2 + e^{i\alpha 2} ||U_{e3}||^2 m_3 || \longrightarrow 0 \text{V2}\beta$$

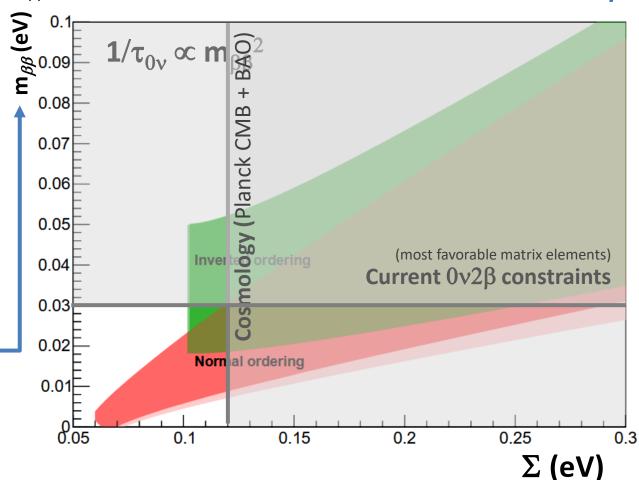
 $0v2\beta$ is an inclusive test for the « creation of leptons »:

$$2n \rightarrow 2p + 2e^- \Rightarrow LNV$$

This test is implemented in the nuclear matter:

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te


Signal: **a peak** in the sum-energy spectrum of $2e^{-}$ **at Q**_{2 β}

Not necessarily neutrino physics

Standard mechanism: neutrino physics $0v2\beta$ is mediated by light massive Majorana neutrinos (exactly those which oscillate)

BSM non-standard mechanisms

$$\mathbf{m}_{\beta\beta} = ||U_{e1}||^2 m_1 + e^{i\alpha 1} ||U_{e2}||^2 m_2 + e^{i\alpha 2} ||U_{e3}||^2 m_3 || \longrightarrow 0 \text{V2}\beta$$

 $0v2\beta$ is an inclusive test for the « creation of leptons »:

$$2n \rightarrow 2p + 2e^- \Rightarrow LNV$$

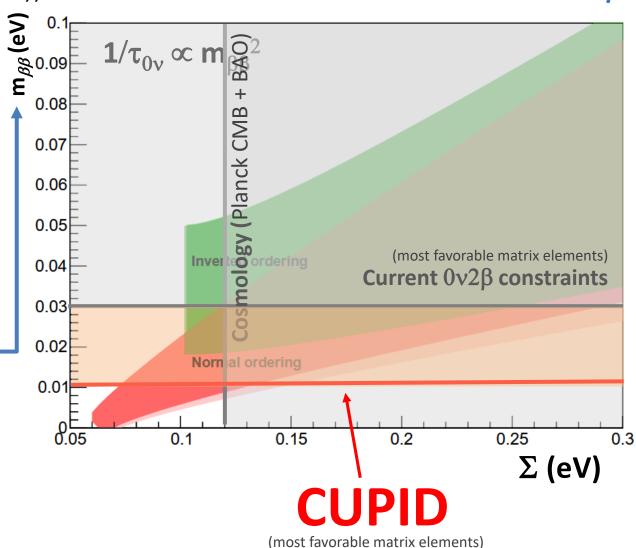
This test is implemented in the nuclear matter:

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

Very rare (> 10²⁶ yr) - Energetically possible for 35 nuclei Experimentally relevant: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe Enrichment is mandatory, with the exception of ¹³⁰Te

Signal: **a peak** in the sum-energy spectrum of $2e^{-}$ **at Q**_{2 β}

Standard mechanism: neutrino physics
0ν2β is mediated by

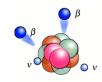

light massive Majorana neutrinos

(exactly those which oscillate)

BSM non-standard mechanisms

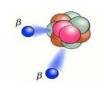
Not necessarily neutrino physics

$$\mathbf{m}_{\beta\beta} = ||U_{e1}||^2 m_1 + e^{i\alpha 1} ||U_{e2}||^2 m_2 + e^{i\alpha 2} ||U_{e3}||^2 m_3 || \longrightarrow 0 \vee 2 \beta$$

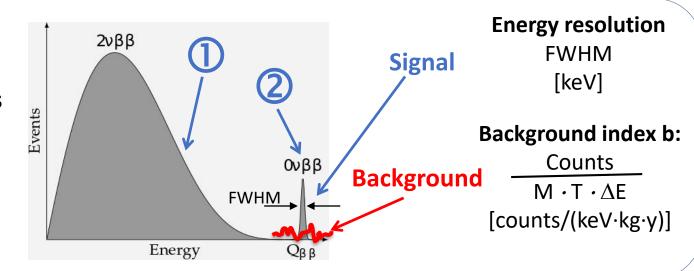

Searching for $0v2\beta$

Standard and new-physics channels:

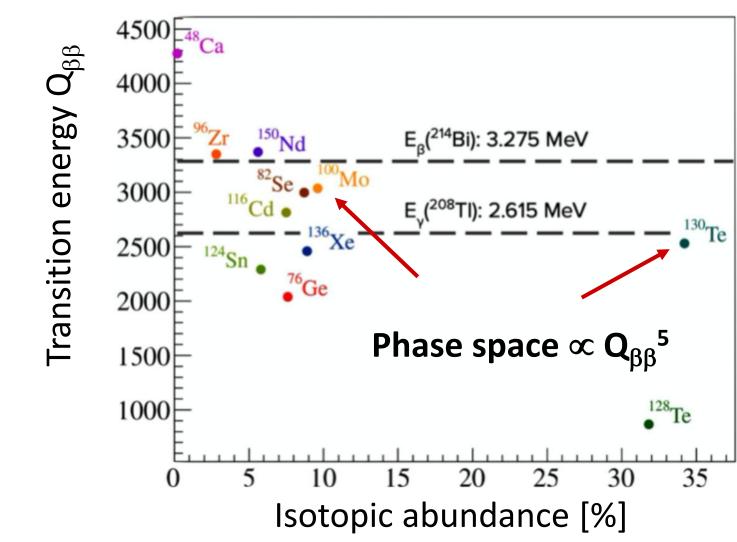
①
$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2v_{e}$$


2v Double Beta Decay $(2v2\beta)$ allowed by the Standard Model already observed – $\tau \sim 10^{19}$ – 10^{24} y

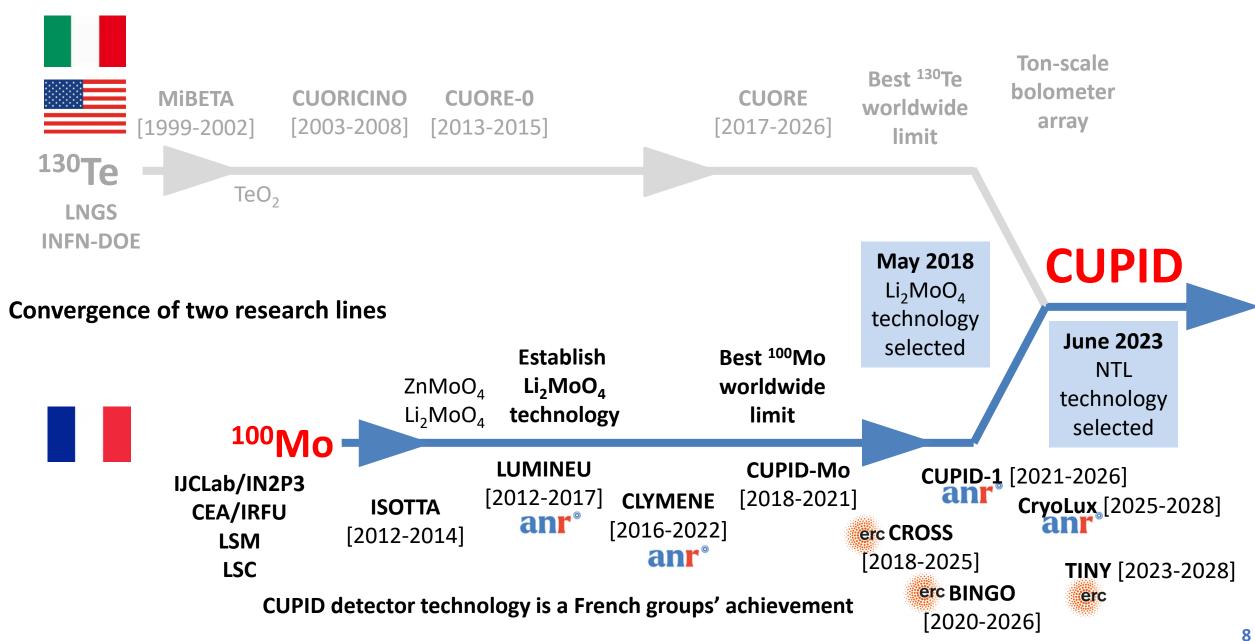
② $(A,Z) \to (A,Z+2) + 2e^{-}$


Neutrinoless
Double Beta Decay $(0v2\beta)$ never observed $\tau > 10^{26}$ y

Experimental signatures based on the


Sum-energy spectrum of the two electrons

 $Q_{\beta\beta} \sim 2-3$ MeV for the most promising candidates

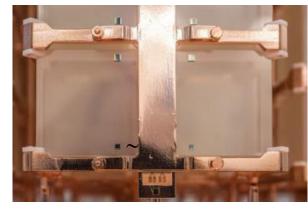


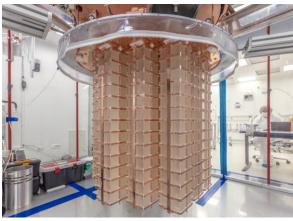
Searching for $0v2\beta$

35 candidates \rightarrow Only \sim 10 experimentally relevant \leftarrow Importance of $Q_{\beta\beta}$

CUPID's history and origin

CUORE in a nutshell


CUORE is an array of **TeO₂ bolometers** searching for $0v2\beta$ decay of the **isotope** ¹³⁰**Te** and taking data in LNGS (Italy) at ~ **12-15 mK**


3 people in CUPID-France are members of CUORE

The largest bolometric experiment ever

- 988 crystals 5x5x5 cm, closely packed arranged in 19 towers of 13 floors each
- 742 kg (**206 kg** of ¹³⁰Te)
- Start data taking: 2017Stable data taking: from 2019
- Background at $Q_{\beta\beta}$ (2527 keV) 1.42×10⁻² counts/(keV·kg·y)
- Energy resolution at Q_{ββ}
 7.3 keV FHWM

Nature 604 (2022) 53-58

One of the most sensitive $0\nu2\beta$ experiments of the current generation

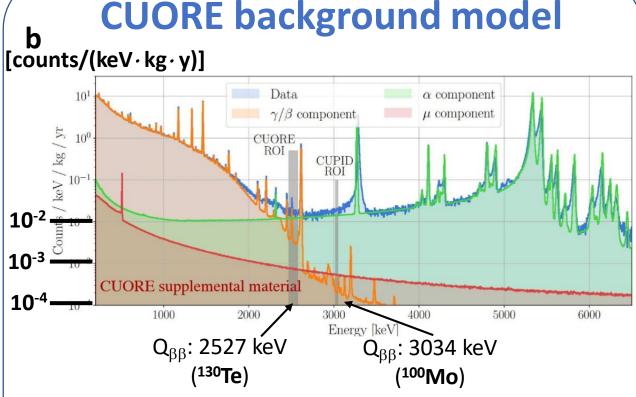
- Exposure for the current limit: 2039 kg·y (> 2.8 tonne·y collected)
- Current limit (130 Te $T_{1/2}^{0v2\beta}$) : > 3.5 \times 10²⁵ y $m_{\beta\beta}$ < 70 250 meV $_{preliminary}$
- Continue data taking until final goal:
 3 tonne·yr TeO₂ exposure
 - \rightarrow mid 2026

A. Campani, TAUP 2025

CUORE is not background free

 \rightarrow ~ 70 counts/y in a ROI size FWHM energy resolution, dominated by surface α background

CUORE → **CUPID**

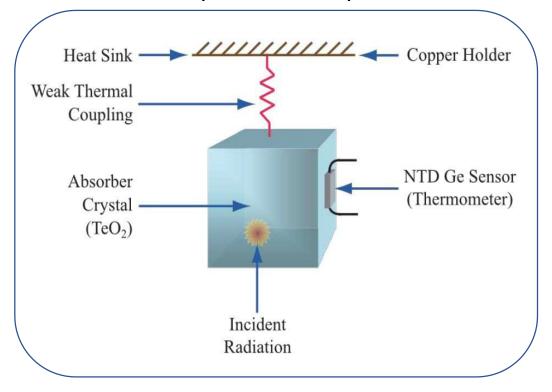

Three important messages from CUORE

- **1. A tonne-scale bolometric detector** is technically feasable
- 2. Analysis of ~1000 individual bolometers is handable
- 3. An infrastructure to host a bolometric next-generation $0v2\beta$ experiment exists and will be available at the end of the CUORE physics program (30/6/2026)

CUPID (CUORE Upgrade with Particle ID) is a future $0\nu2\beta$ bolometric experiment exploiting the CUORE infrastructure and with a background 100 times lower at the ROI

CUPID background goal:

 $b \sim 1 \times 10^{-4} \text{ counts/(keV·kg·y)}$

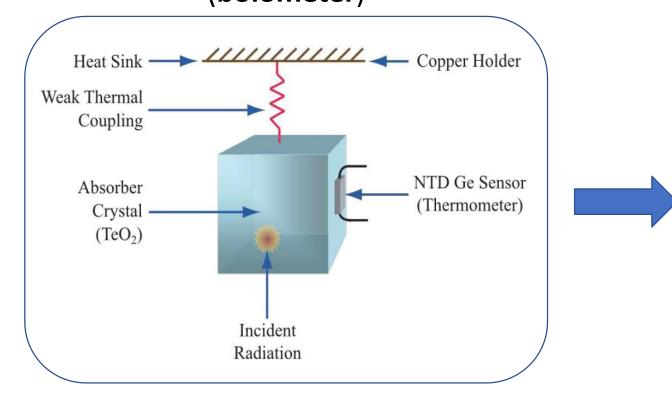

- Reject α background with scintillating bolometers
- Mitigate γ background by moving to ¹⁰⁰Mo

• $Q_{\beta\beta}$: 2527 keV (¹³⁰Te) \to 3034 keV (¹⁰⁰Mo)

 Increase isotope mass by enrichment (natural isotopic abundance: 9.7%)

CUORE 130Te

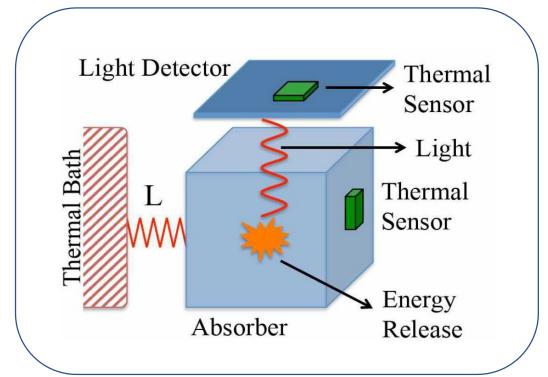
pure thermal detector (bolometer)



No PID

 $Q_{2\beta}$ = 2527 keV < **2615** keV

CUORE ¹³⁰Te

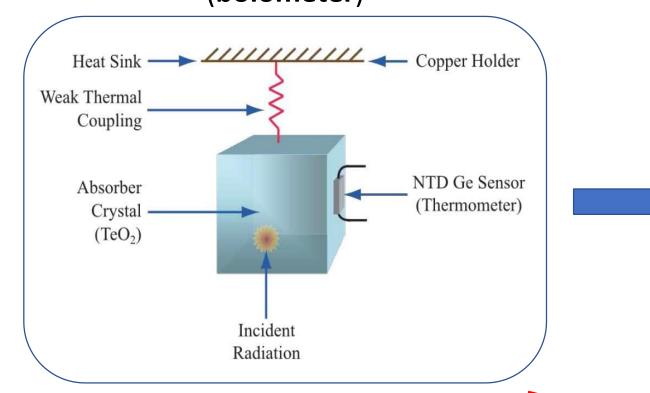

pure thermal detector (bolometer)

CUPID 100 Mo

heat + light

(scintillating bolometer)

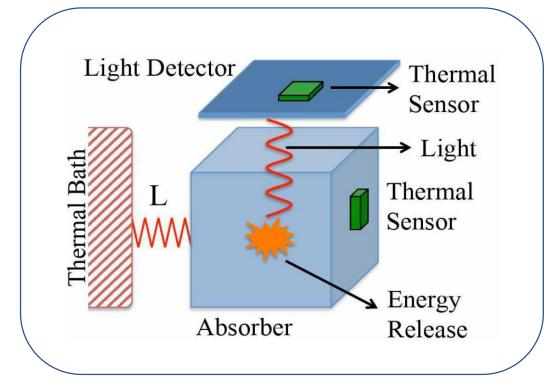
No PID


 $Q_{2\beta}$ = 2527 keV < **2615** keV

 α background

 γ background

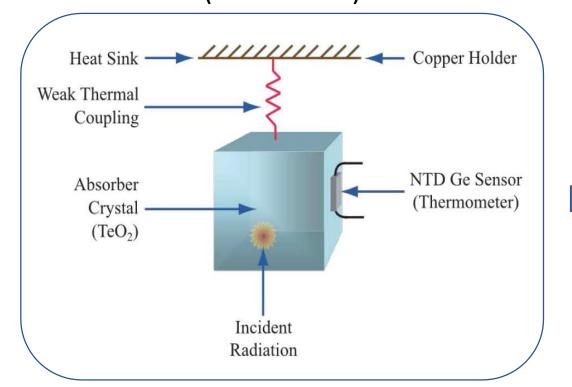
CUORE ¹³⁰Te


pure thermal detector (bolometer)

CUPID 100 Mo

heat + light

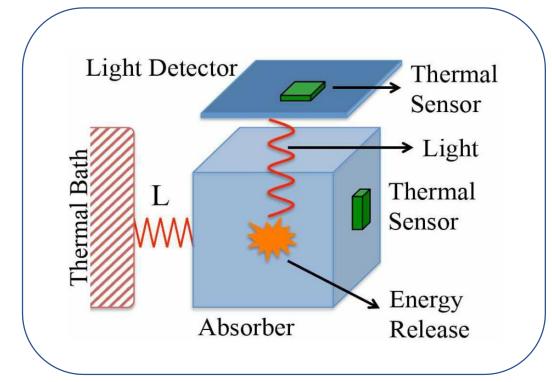
(scintillating bolometer)


No PID

 $Q_{2\beta}$ = 2527 keV < **2615** keV

 α background \leftarrow PID γ background

CUORE ¹³⁰Te


pure thermal detector (bolometer)

CUPID 100 Mo

heat + light

(scintillating bolometer)

No PID

 $Q_{2\beta}$ = 2527 keV < **2615** keV

 α background \longleftarrow

γ background

· PID

— $Q_{2\beta}$ = 3034 keV > 2615 keV

Choice of the isotope and compound

Successful R&D in France on Li₂MoO₄ scintillating bolometers (LUMINEU, ISOTTA projects)

Culmination in the CUPID-Mo experiment
Conceived and built at IJCLab (CSNSM) / IRFU
20 crystals (enriched in ¹⁰⁰Mo) – 2.34 kg ¹⁰⁰Mo
Energy resolution: ~5-7 keV FWHM
Installed in the EDELWEISS cryostat in LSM
Physics data taking: April 2019 – June 2020

Best limit on 100 Mo at the time $T^{0v}_{1/2} > 1.8 \times 10^{24} \text{ y}$ $b = 2.7 \times 10^{-3} \text{ counts/(keV·kg·yr)}$ No counts in ROI with 1.47 kg·yr exposure

Full α rejection Radiopure crystals: U/Th \leq 0.5 μ Bq/kg

Essential CUPID requirements met

Phys.Rev.Lett. 126(2021)181802 - Eur.Phys.J. C 82,1033(2022)

Choice of the isotope and compound

Successful R&D in France on Li₂MoO₄ scintillating bolometers (LUMINEU, ISOTTA projects)

Culmination in the CUPID-Mo experiment

Conceived and built at IJCLab (CSNSM) / IRFU

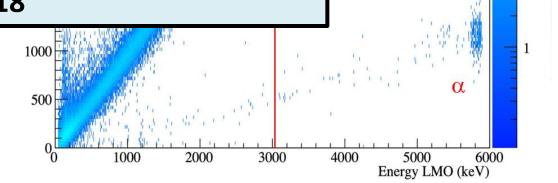
20 crystals (enriched in 100 Mo) – **2.34 kg** 100 Mo

Energy resolution: ~5-7 keV FWHM

Installed in the EDFLWFISS cryostat in LSM

Physics data tak Li₂¹⁰⁰MoO₄ is selected for CUPID over ¹³⁰TeO₂ or Zn⁸²Se May 2018

Best limit on 100


 $T^{0\nu}_{1/2} > 1.8 \times 10^{24} \text{ y}$

 $b = 2.7 \times 10^{-3} \text{ counts/(keV·kg·yr)}$

No counts in ROI with 1.47 kg·yr exposure

Full α rejection

Radiopure crystals: U/Th \leq 0.5 µBq/kg

Example Heat/Light separation

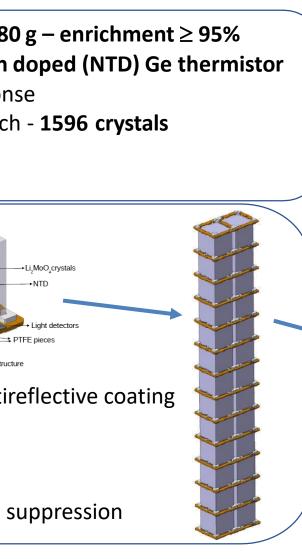
(PCA cut applied) 200 days of physics data

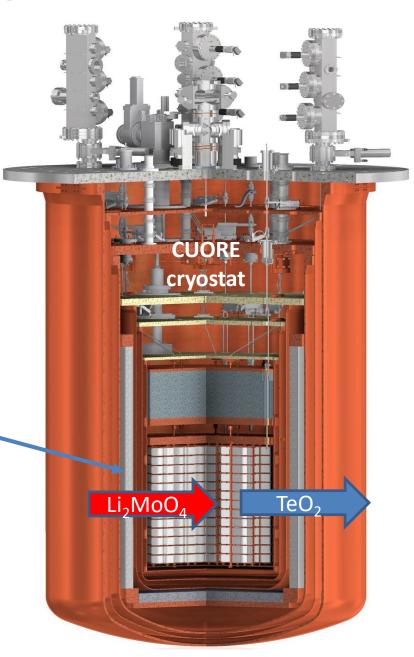
Essential CUPID requirements met

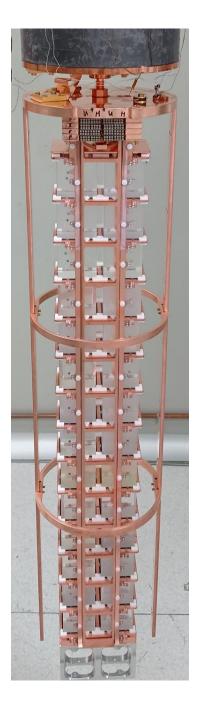
Phys.Rev.Lett. 126(2021)181802 - Eur.Phys.J. C 82,1033(2022)

CUPID structure

- CUPID pre-CDR arXiv:1907.09376
- Upgraded structure *Eur. Phys. J. C 82, 810 (2022), Eur. Phys. J. C* 85, 737 (2025)
- TDR under finalization
- Crystal: $\text{Li}_2^{100}\text{MoO}_4$ **45×45x45 mm** ~ **280 g enrichment** \geq **95%**
- Thermal sensor: neutron transmutation doped (NTD) Ge thermistor
- **Si heater** to stabilize the detector response
- 57 towers of 14 floors with 2 crystals each **1596 crystals**
- ~240 kg of ¹⁰⁰Mo
- ~1.6×10²⁷ 100 Mo atoms


Baseline design


Gravity stacked structure


Light detectors

- Ge wafers with NTD sensor and SiO antireflective coating
- Each crystal has top and bottom LD
- No reflective foil

Muon veto for muon induced background suppression

Test of prototype towers at LNGS

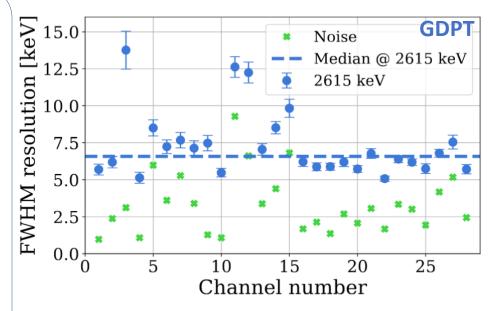
GDPT

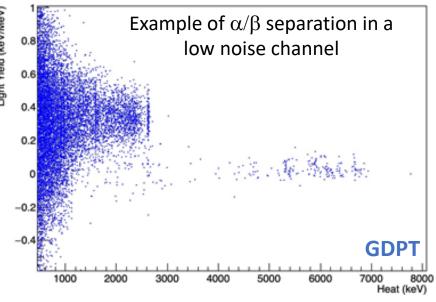
Eur. Phys. J. C 85, 935 (2025)

(Gravity Detector Prototype Tower)

- 28 Li₂MoO₄ crystals
- 30 Ge light detectors
- Tested at LNGS, Italy
- French contributions: gluing at IJCLab, participation in on site assembly

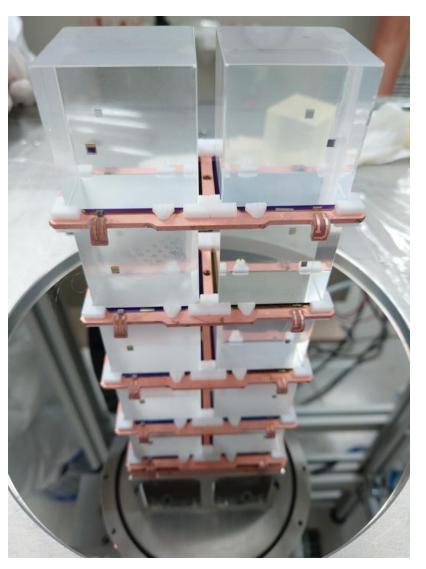
Results:


- Detectors successfully reached baseline temperature ~15 mK
- Baseline stable over the time
- LMO performance: median FWHM_{2615 keV} = 6.2 keV
- Median light yield: 0.36 keV/MeV
- Some excess noise on the LD -> changes to the LD assembly structure for the next test


Current test: VSTT (Vertical Slice Test Tower)

Under operation in LNGS now

What's new?


- Enhanced light detectors (NTL amplification)
- Changes to the LD holding system to mitigate the noise
- Full test of the assembly line

GDPT assembly

Enriched crystal production

FWHM $\sim~5-7~keV$ - LY $\sim~0.3~keV/MeV$ - internal radioactivity (U, Th) $\leq~0.5~\mu Bq/kg$

- Outstanding performance and radiopurity obtained with Russian crystals: Enrichment (Rosatom) + Crystallization (NIIC, Novosibirsk) → CUPID-Mo, CROSS
- Because of the invasion of Ukraine the procurement of enriched crystals from Russia is now impossible

Chinese baseline: IPCE (subsidiary of CNNC) for **enrichment** + **SICCAS** (Shanghai) for **crystals**

IPCE: it has already produced several kg of ¹⁰⁰Mo in 2024 for CUPID/CROSS Active in medical production

SICCAS: extremely reliable company with excellent tracking record in large scale experiments:

- ~1000 TeO₂ crystals in CUORE
- ~4000 PbWO₄ crystals for CMS,
 Jlab Hybrid EmCal, PANDA EMCal,
 NPS project

French alternative:

- Crystallization technique from ANR CLYMENE at SIMaP/INP Grenoble
 - Companies LUXIUM (Gières, Grenoble) for crystals and ORANO (Tricastin) for ¹⁰⁰Mo enrichment

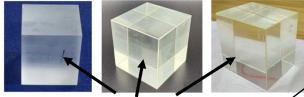
Enriched crystal production

IPCE + SICCAS: production and experimental tests

- Pre-production French + Italian contracts
- Seven enriched crystals produced so far (Bridgman method)

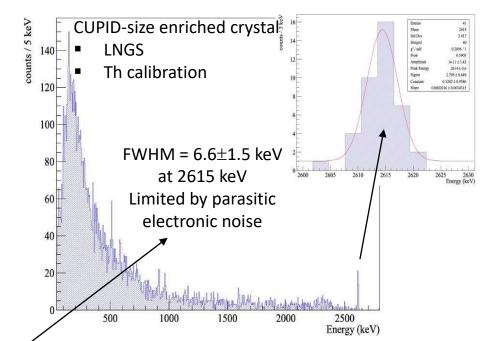
45×45×21 mm3

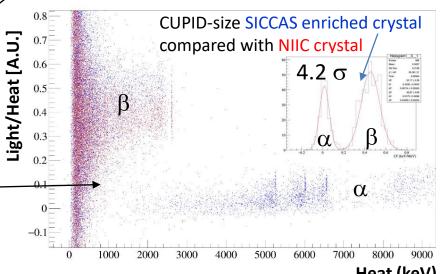
45×45×19 mm³



45×45×45 mm³

Nominal CUPID size

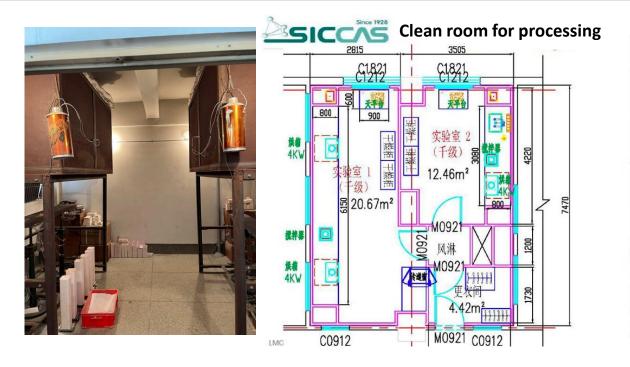

LMO-G8384 45×45×38 mm³


- Four crystals have been tested in IJCLab, LNGS and CEA/IRFU
- Three additional CUPID-size crystals will be tested at LNGS soon

Nominal CUPID size

- Results obtained with the tested crystals show that:
 - Sensitivity complies with CUPID goal energy resolution
 - LY is similar or even higher than for Russian crystals (0.24 0.45 keV/MeV depending on geometrical configuration)
 - α/β discrimination power is well within CUPID goals
 - Pulse shape is compatible with that obtained with Russian crystals

Enriched crystal production

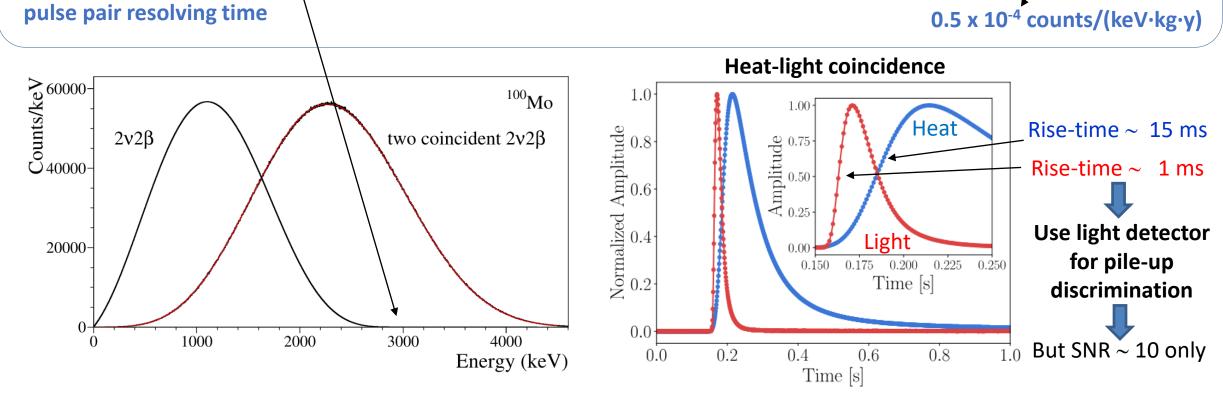

Radiopurity was not a priority so far \rightarrow Optimization of crystallization process and test of bolometric performance

Now the radiopurity phase has started

- IPCE and SICCAS are working together to produce ultra-pure Li₂MoO₄ powder ready to be placed in crucible
- Big furnaces for mass production will be fabricated with low radioactivity materials
- Reduction of dust in the furnace area
- Develop a dedicated clean room for crystal processing (cutting, grinding, polishing and packaging)
- Selection of grinding and polishing material

Objective

Purchase contract in **mid 2026** for **CUPID-Stage-I**



Random coincidences of $2v2\beta$ events

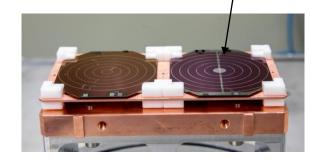
- Fast $2\nu2\beta$ transition in ¹⁰⁰Mo: $T_{1/2}^{2\nu} = 7\times10^{18} \text{ y} \rightarrow 2\nu2\beta$ activity in a CUPID crystal: ~2.6 mBq
- Significant pile-up probability due to a random coincidence of $2\nu 2\beta$ events \rightarrow background in the region of interest

■ $\mathbf{b}_{2\nu2\beta}$ = (δ T / 1 ms) · 3.3 x 10⁻⁴ counts/(keV·kg·y) \rightarrow δ T ~ 0.17 ms is required to meet the CUPID $2\nu2\beta$ background goal

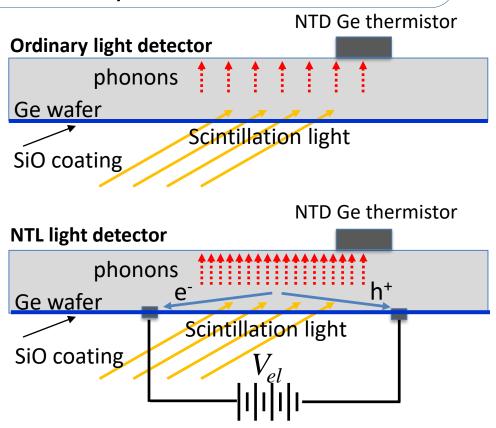
Light detectors and NTL effect

Light detectors are essential to **reject surface** α **background** \rightarrow **rejection at 99.9%** with ordinary light detectors

In June 2023, the collaboration decided to enhance light detector performance exploiting the Neganov-Trofimov-Luke effect (NTL) according to a technology fully conceived and developed in France



- Improve pile-up rejection thanks to increase of SNR: $\sim 10 \rightarrow \sim 100$
- Mitigation of background induced by random coincidences of ordinary $2\nu 2\beta$ events


NTL effect applied to light detectors NIMA 940, 320 (2019)

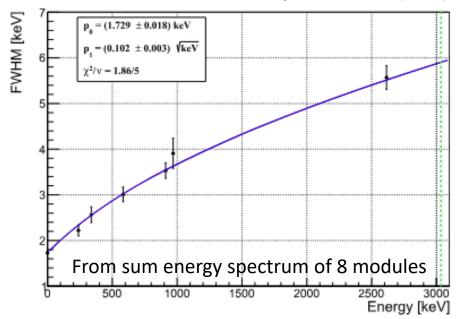
- **Electric field** in the light detector wafer via a set of Al electrodes,
- Electron-hole pairs created by scintillation light absorption drift in the field and produce additional heat
- An **amplification of the thermal signal** by a factor 10-20 is technically possible
- SNR is increased by a factor ~ 10

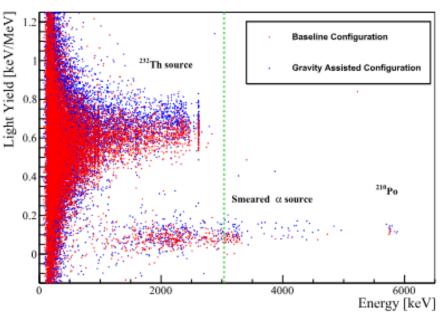
Voltage at the Amplified heat Initial heat electrodes

Limitation: leakage currents at $V_{el} \sim 100 \text{ V}$

CUPID maturity

Eur. Phys. J. C 82, 810 (2022)

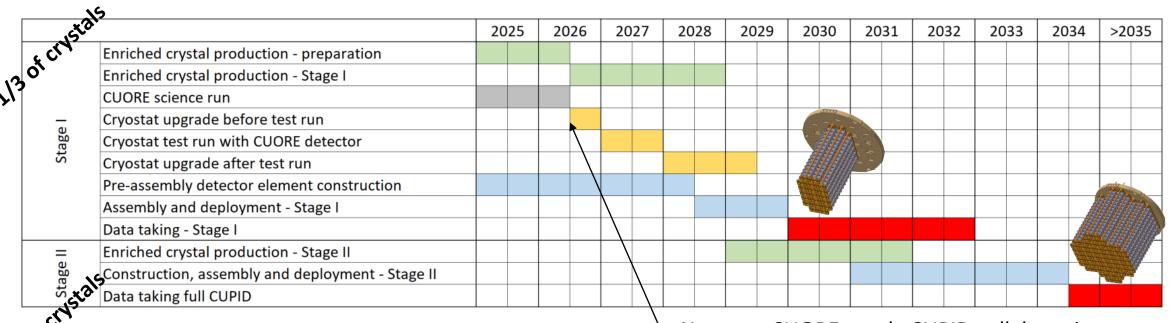

CUPID is a mature experiment, ready for construction


- High energy resolution (5-7 keV FWHM)
- Excellent α/β separation (> 99.9% α rejection)
- High radiopurity achievable ($\leq 0.5 \mu Bq/kg$ in U/Th)

demonstrated in tens of large mass scintillating bolometers based on enriched Li₂MoO₄ crystals

CUPID-Mo, GDPT, CUPID and CROSS prototypes

- Enhanced-sensitivity light detectors bring the $2v2\beta$ -induced background down to the desired level
- An enrichment-purification-crystallization line is under advanced development in China, replacing the original Russian option



CUPID timeline

The collaboration decided to move to a staged deployment for CUPID implementation

Three key advantages

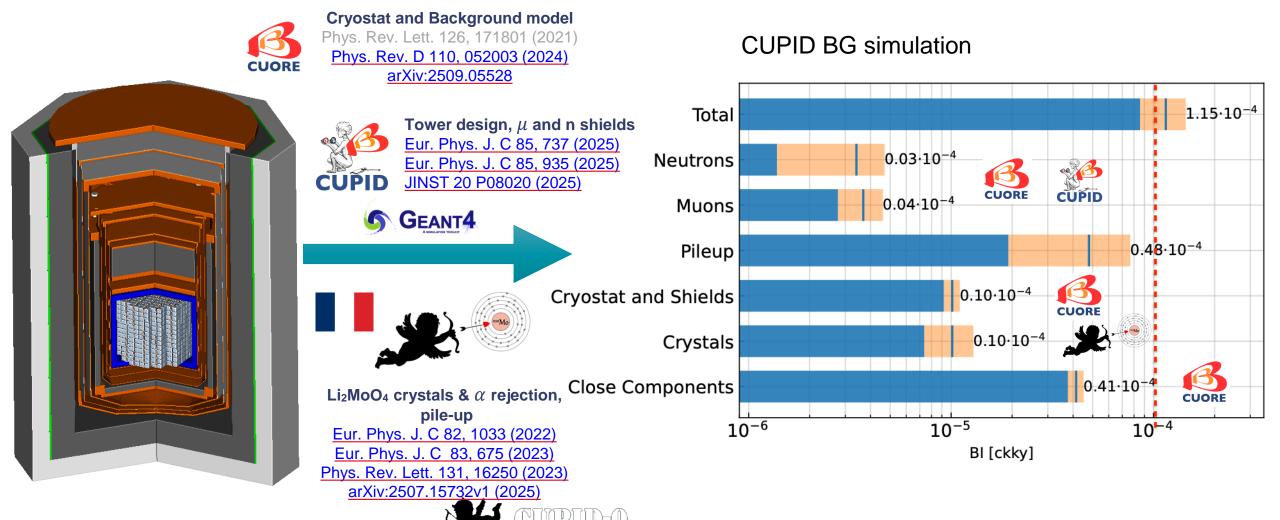
- 1. Data taking starting in 2030 while the remaining crystals are still being produced \rightarrow early leading role in $0v2\beta$ search
- 2. Preservation of critical expertise in running detectors and cryogenics during the CUORE-to-CUPID transition
- 3. Room for optimization, improvement, and risk mitigation.

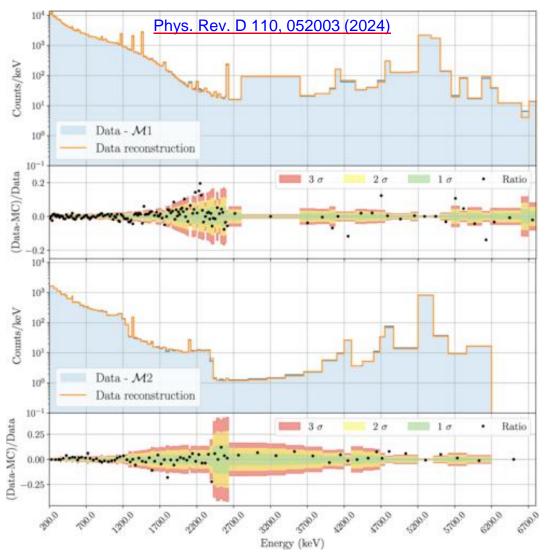
No more CUORE – only CUPID collaboration Running costs and shifts

Part II - Background and Sensitivity of CUPID Benjamin Schmidt - Senior physics board coordinator

CUPID Physics Board - 2025

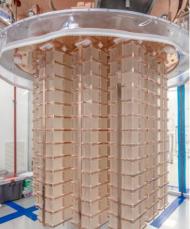
Senior Coordinator - Ben Schmidt
Analysis Coordinator - Alberto Ressa
Science Coordinator - Pranava Teja Surukuchi
Software Coordinator - Brad Welliver
Simulations Coordinator - Mattia Beretta
Background Model Coordinator - Pia Loaiza
Detector Performance Coordinator - Irene Nutini
Public Data Coordinator - Penny Slocum


Publication Coordinator - Denys Poda


Leading contributions from IJCLab and CEA/IRFU members

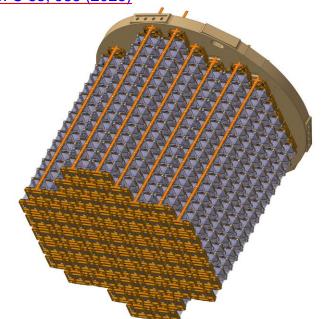
Outreach Board - Dounia Helis

CUPID BG projection



CUORE BG model - input for CUPID

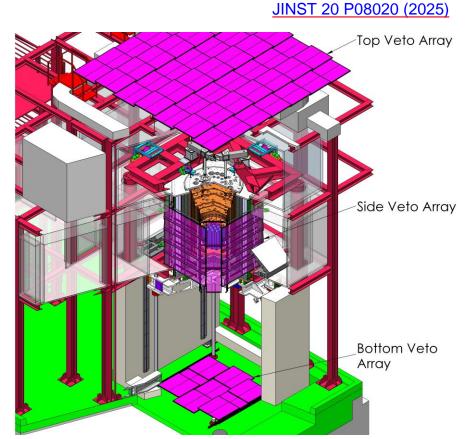
CUORE Background model


- In-situ background assessment of the infrastructure for CUPID!
- 7 source locations,
 46 bulk sources (partial decay chains, location)
 47 surface sources (partial decay chains, depth, location)
- Uses pre-screening geometric information, time information, event topology (M1, M2, priors where reliably available)
- Overall very good agreement with data

Surface α contaminations dominant!

From CUORE to the CUPID Bg model

Eur. Phys. J. C 85, 737 (2025) Eur. Phys. J. C 85, 935 (2025)

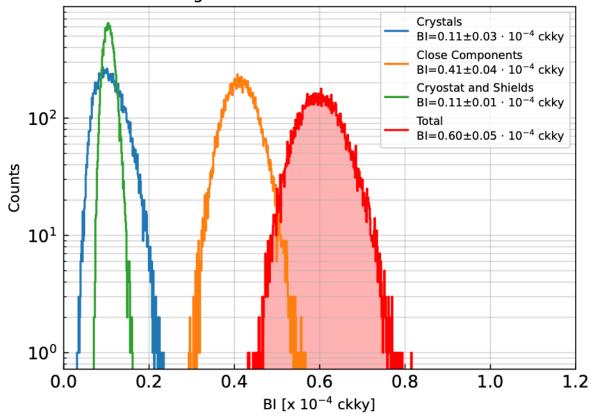


CUPID Background model

- **CUORE** infrastructure
- + New detector array: Scintillating detectors Full detector response model
- Muon veto system
- Extra neutron shielding

Geant 4 for radiogenic and muons

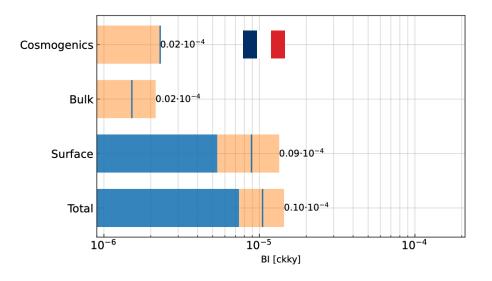
MCNP for neutrons (n, γ) +Prompt gammas in Geant 4

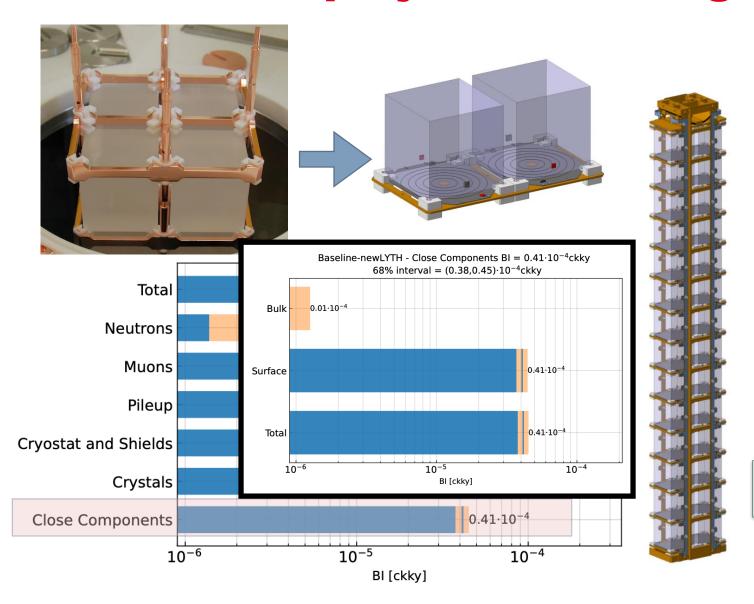

with full custom detector response

Robust data-driven background predictions Software/Techniques validated in situ on CUORE data

arXiv:2509.05528

CUPID BG projection - Radiogenics


CUPID Background Index - Radioactive Contaminants


For CUPID: After surface α removal: Surface β contaminations remain very important!

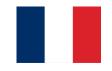
Cosmogenic activation

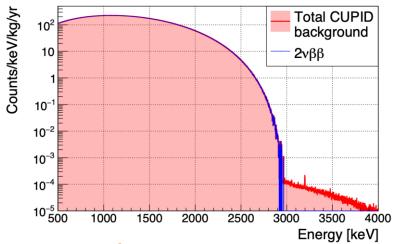
- 3 month at sea level, 1 yr underground before data taking
 - No transport by airplane
 - Crystals will be delivered in batches and stored underground at LNGS significantly increasing the storage ("cool down") time for most crystals
- Negligible Background from underground activation

CUPID BG projection - Design improvements

Improvements to be evaluated:

- New simplified mechanical tower design: less machining & handling
 - Lamination + contact-less production with laser cutting
 - No shadowing during etching/cleaning
- Improved radiopurity protocols during construction & storage

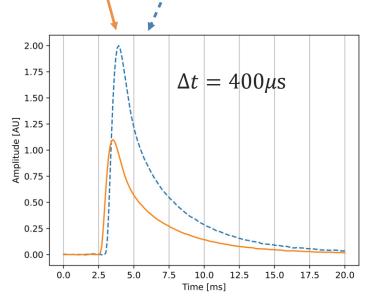

New screening campaigns to qualify surface backgrounds of machined pieces of CuPEN/PTFE/Copper ongoing

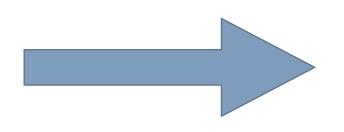

Target:

1/2 contamination compared to CUORE

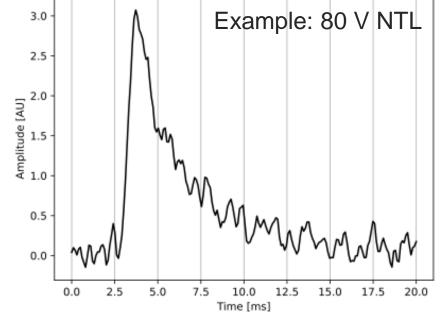
CUPID: Pile-up background challenge

Phys. Rev. Lett. 131, 16250 (2023) $T_{1/2} = 7.1 \cdot 10^{18} \text{yr}$



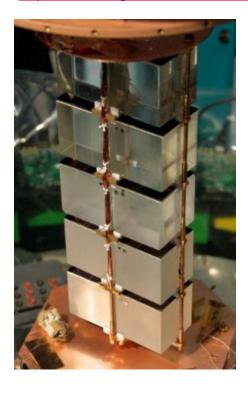

Simulations in addition to experimental testing:

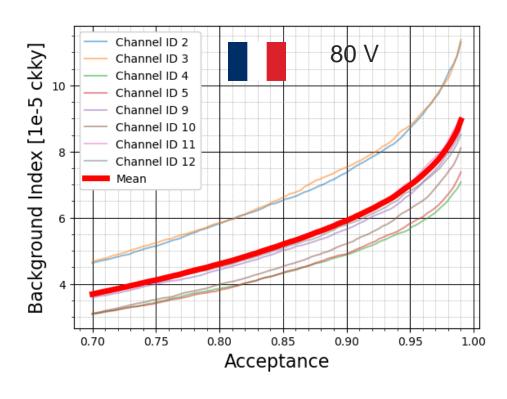
Background prediction for pile-up


Randomly sample coincidences from

the CUPID background model

Vary time separation & add measured noise

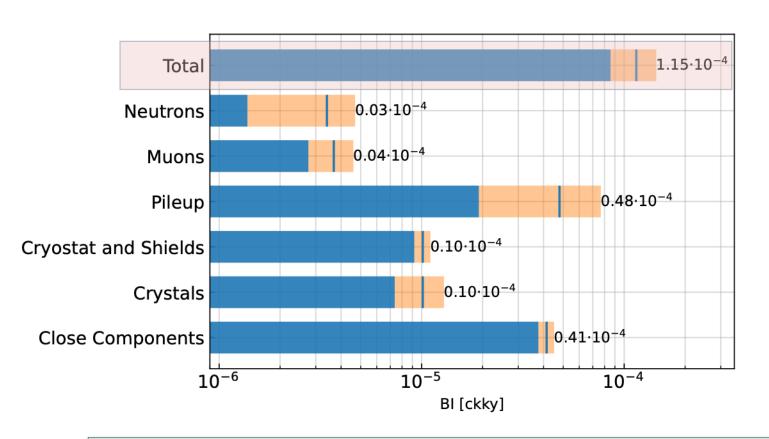

CUPID - Improvements: NTL light detectors


EPJ-C 74,2913 (2014) EPJ-C 77, 3 (2017)

NIM A 940, 320 (2019)

EPJC 83, 373 (2023)

https://arxiv.org/abs/2507.15732v1 (2025)



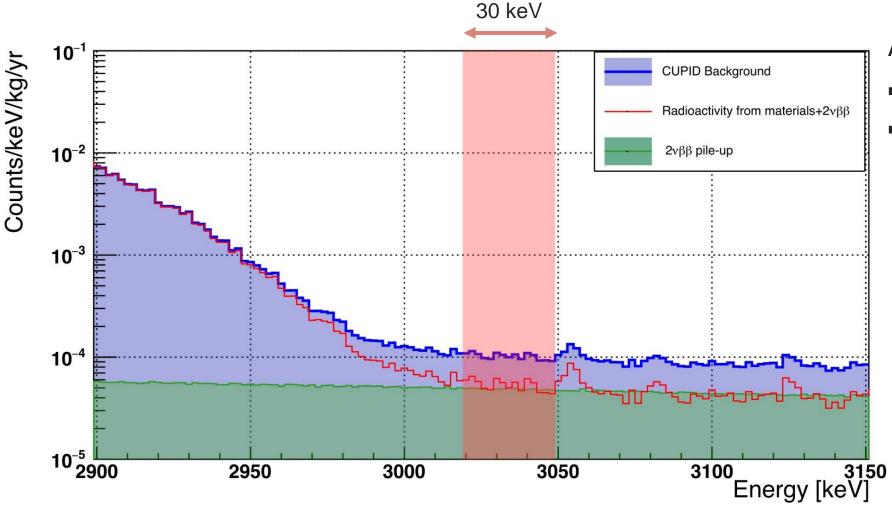
- Over 10 yrs of pile-up background characterisation and NTL detector development in France (Subset of publications on the left)
- Transfer of NTL technology to US for risk mitigation and production schedule
- Recent progress (2025)
 - Detailed control and optimisation of ANPS is very important
 - Analysis techniques:
 - Gained 28% improvement on BI with respect to OF (16% with respect to arXiv:2507.15732)
- Full electrode coverage to improve gain by ~25% in reach
- Full pre-testing to use higher NTL voltage
- New results (CROSS & VSTT) imminent

NTL light detectors ->Pile-up can be reduced to less than 5 x 10⁻⁵ counts/keV/kg/yr

CUPID BG projection - Summary

Conservative prediction

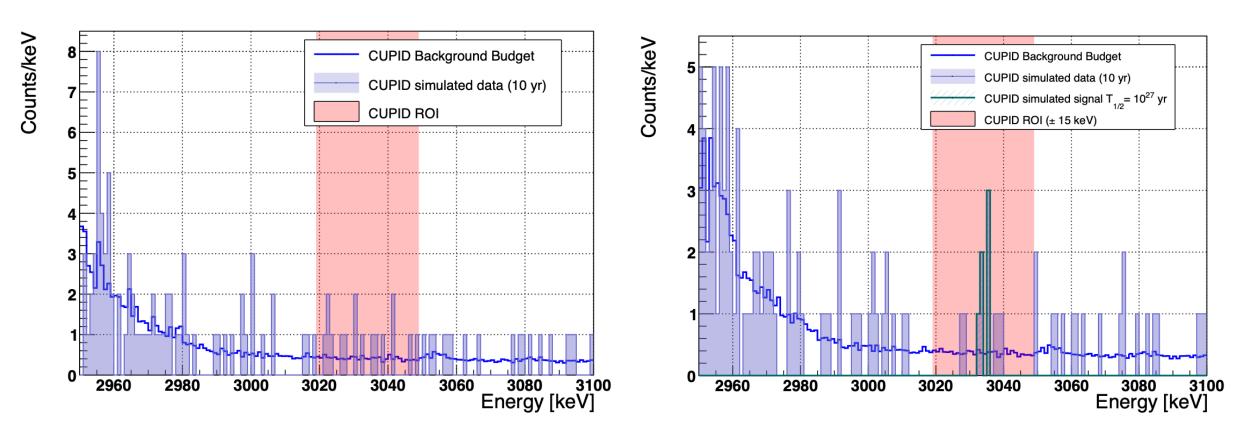
1 σ range: [0.86, 1.44] 10⁻⁴ counts/keV/kg/yr


Improvements expected by experiment construction

- Pile-up (Analysis ML / LD design)
- Surface contamination levels for close components
- Delayed coincidence tags Extension to NR tagging

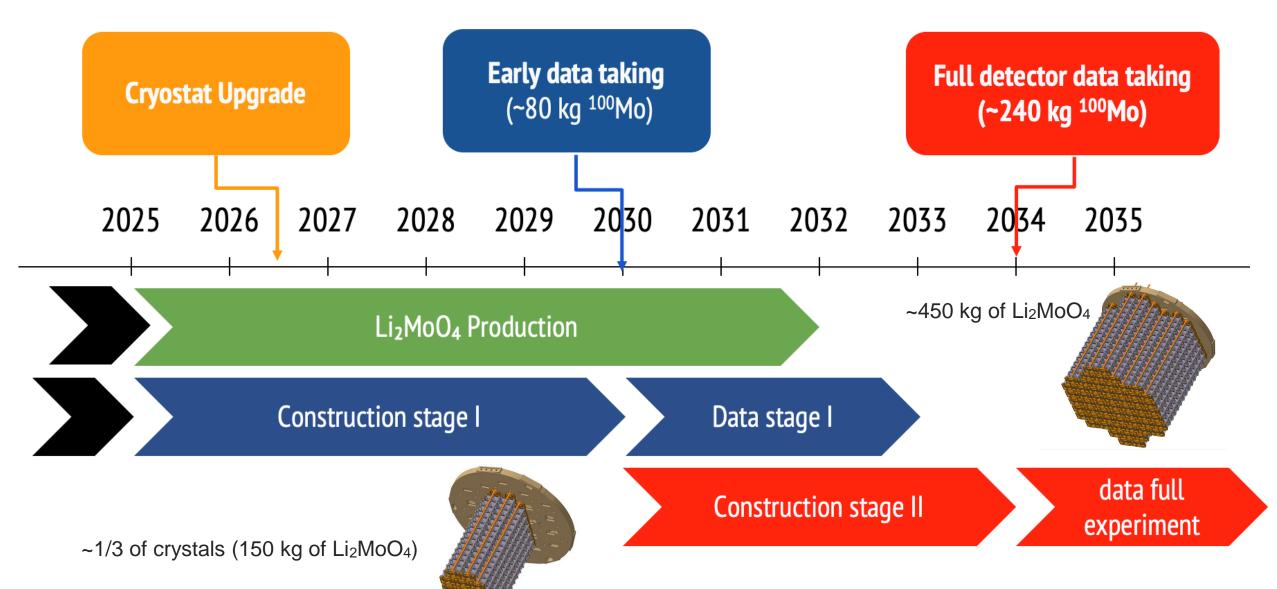
CUPID's background projections are robust using in-situ characterisation and conservative assumptions

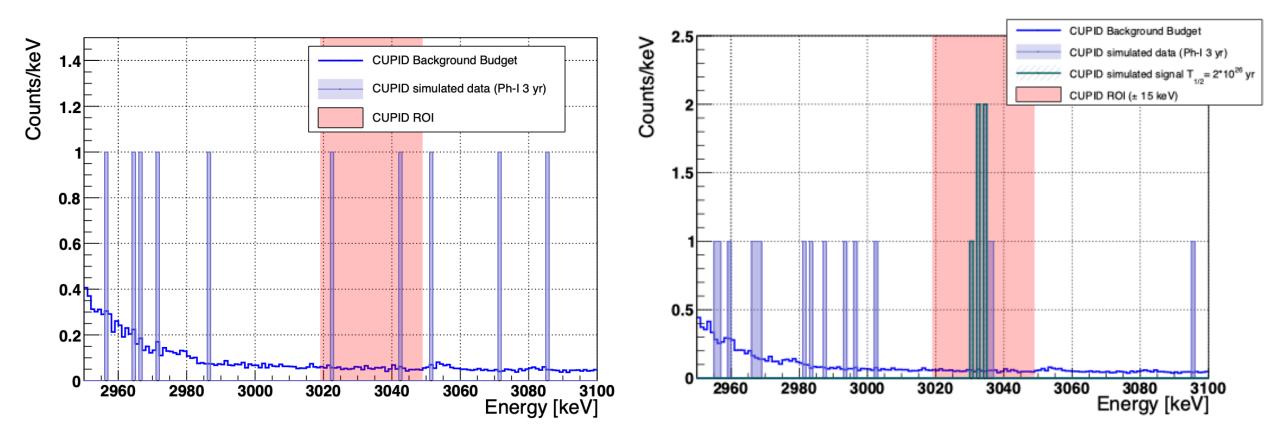
10⁻⁴ counts/keV/kg/yr as project target or better are in reach


CUPID ROI - Background shape

Analysis

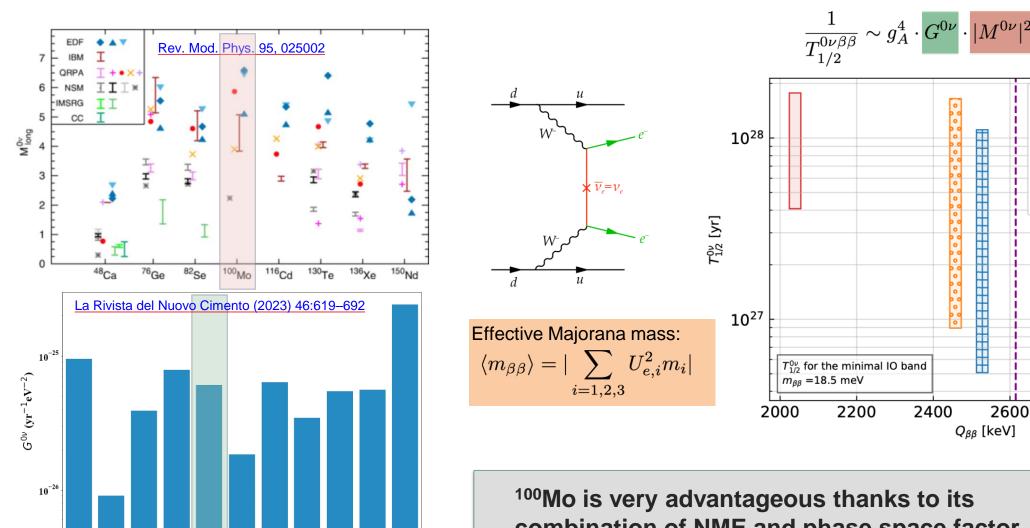
- 100 Mo: $Q_{\beta\beta} = 3034$ keV
- Excellent energy resolution
 - Target: 5 keV FWHM
 - We expect no influence from the $2\nu\beta\beta$ endpoint
 - Both $2\nu\beta\beta$ pile-up and radiogenic contributions show a flat spectrum in the ROI
 - Expect a very clean analysis!


CUPID ROI - Background and Signal after 10 yr


CUPID is a discovery experiment with a clear peak signature over a flat background Median 3 σ discovery sensitivity of 10²⁷yr

Bonus: $2\nu\beta\beta$ dataset with O(10¹⁰) events: Excellent potential for nuclear physics and precision studies

CUPID Timeline


CUPID ROI - Stage I after 3 yr

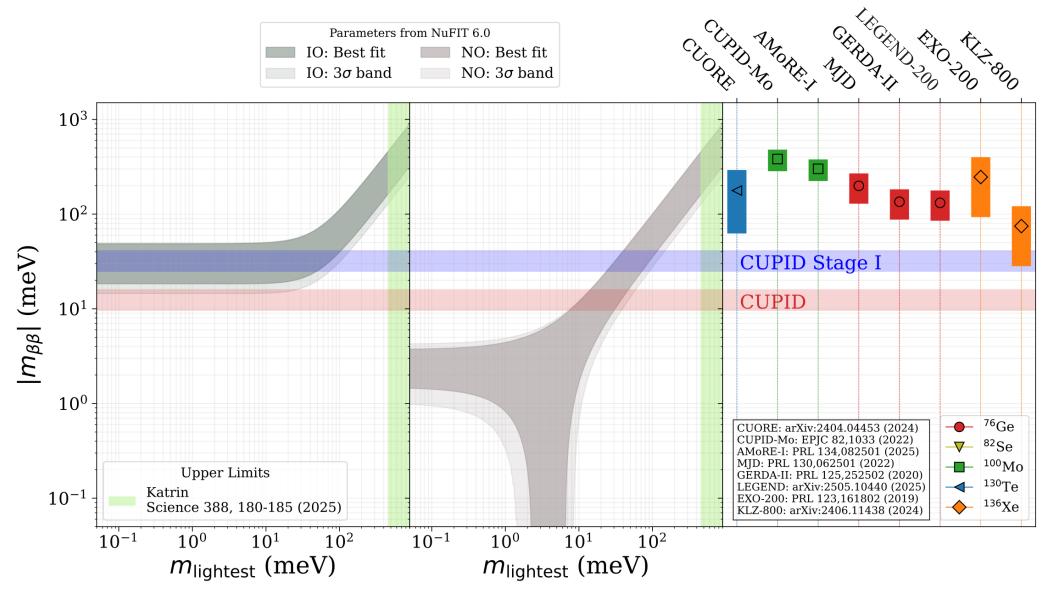
CUPID Phase-I is quasi background free BI = $\sim 1.5 \times 10^{-4}$ counts/keV/kg/yr:

- With 5 keV FWHM expect less than 1 background event in $\pm 3\sigma$ range around $Q_{\beta\beta}$
- Median 3 σ discovery sensitivity (3 yr) of 2 x 10²⁶ yr

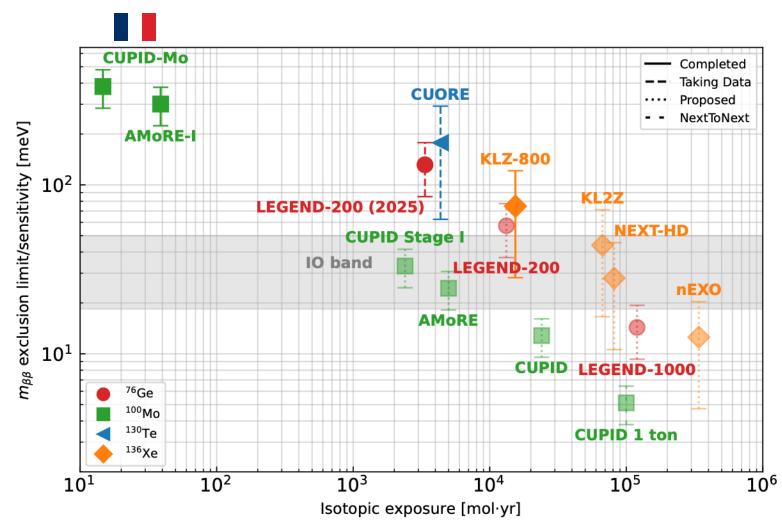
From half-life to effective Majorana mass (Light Majorana neutrino exchange)

combination of NME and phase space factor

⁴⁸Ca ⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo ¹¹⁰Pd ¹¹⁶Cd ¹²⁴Sn ¹³⁰Te ¹³⁶Xe ¹⁵⁰Nd


 76 Ge - $Q_{\beta\beta} = 2039.1 \text{ keV}$ 82 Se - $Q_{\beta\beta} = 2997.9 \text{ keV}$ 100 Mo - $Q_{BB} = 3034.4 \text{ keV}$

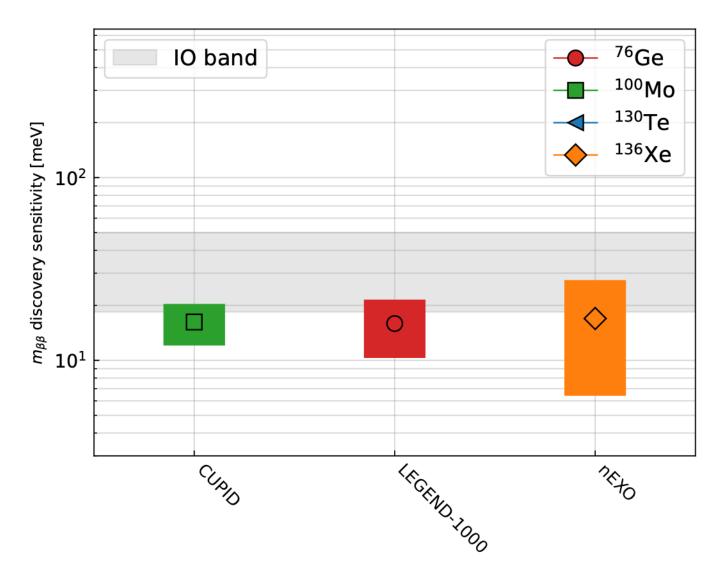
 \square ¹³⁰Te - $Q_{\beta\beta}$ = 2527.5 keV 136 Xe - $Q_{BB} = 2457.8 \text{ keV}$ End point of ²³²Th y Radioactivity


2800

3000

CUPID and current exclusion results

Exclusion sensitivity in the field


CUPID Stage I (3 yr) <u>arXiv:2504.14369</u>

Is on a similar sensitivity/timeline/trajectory as LEGEND-200 (5 yr), arxiv:2107.11462
KL2Z (10 yr), Rev. Mod. Phys., Vol. 95, No. 025002
NEXT-HD (10 yr), arxiv:2005.06467
AMORE-II (5.2 yrs) 2nd phase, EPJC 85.9

CUPID's and CUPID "France" strength

- Cost-effective
- More sensitive than LEGEND-200 (5 yr)
- More advanced/mature compared to AMoRE -Existing infrastructure, background model, operational & analysis experience
- A discovery type experiment with a clear peak signature
- French leadership in the technology development for CUPID and crucial role in simulation and sensitivity estimates

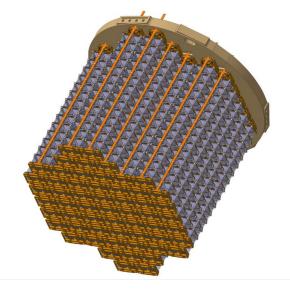
Discovery sensitivity - Stage II

CUPID Stage II (10 yr) Eur. Phys. J. C 85, 737 (2025)

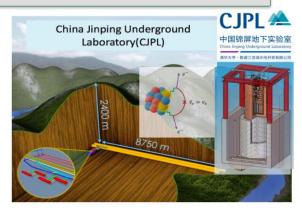

Is on a similar sensitivity/timeline as LEGEND-1000 (10 yr), arxiv:2107.11462 nEXO (10 yr), J. Phys. G: Nucl. Part. Phys. 49 015104

CUPID's and CUPID "France" strength

- Cost-effective
- Mature: Existing infrastructure & experience, Robust predictions for background improvements of x 30 compared to CUPID-Mo
- Significant remaining potential for technological improvement
- Discovery type experiment based on technology developed in France


AMoRE | CUPID | CUPID-China (The ¹⁰⁰Mo landscape)

Long term community goal: International, collaborative effort at the tonne-scale, with CUPID-style experiments distributed at multiple sites around the world


AMoRE-II (100 kg ¹⁰⁰Mo)
Different technology (MMC) faster

Needs to demonstrate a background reduction by a factor ~250 from AMoRE-I 2.5 x 10⁻² ckky to 10⁻⁴ ckky

CUPID (240 kg ¹⁰⁰Mo): Mature & low risk

Builds on CUORE legacy and proven technology and experience

CUPID-China: Partially part of CUPID in particular implicated in crystal production for CUPID

Goals: Short to Mid-term Demonstrator type experiment at CJPL (O 10 kg) Crystal production coordinated with CUPID

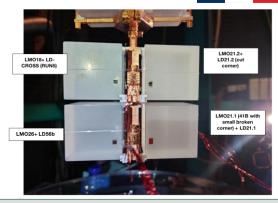
Long-term ambition to contribute a CJPL-based experimental site for tonne-scale ¹⁰⁰Mo experiment

Long term perspectives - R&D status

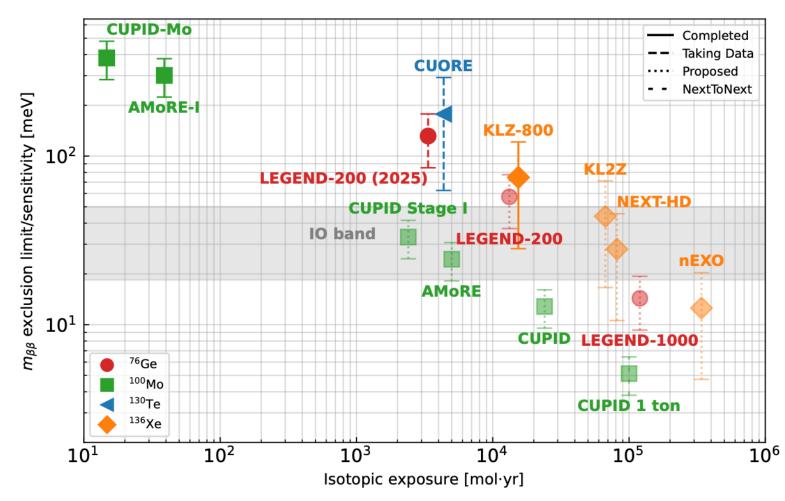
Goal: Distributed international tonne-scale or multi tonne-scale experiment with ¹⁰⁰Mo or ¹³⁰Te:

Economically possible

Requires background reduction by O(10) for ¹⁰⁰Mo, by O(1000) for ¹³⁰Te


R&D well on its way!

Many ideas and strong visibility in France:


Significant further suppression of radiogenic bg possible

Bolometers with surface sensitivity <u>JHEP 2020, 18 (2020)</u> Novel assembly & active veto <u>NIM A 1069, 169936 (2024)</u> New isotopes (TINY ERC)

and elsewhere:

- LD with fast sensors (MMC, TES, KID)
 - MMC: AMoRE <u>EPJ-C 85, 172 (2025)</u>
 - TES: Phys. Rev. Applied 20, 064017 (2023)
 - KID: EPJ-C 79, 724 (2019)
- Next up: Neganov-Trofimov-Luke assisted Light Detectors + fast sensors (MMC, TES)
- Faster sensors on LMO (MMC, TES, KID)
 - Potential for extra position/topology information (Opossum ERC)
 - TES: <u>EPJ-C 85,118 (2025)</u> French involvement
 - MMC: AMoRE (<u>EPJ-C 85, 172 (2025)</u>)
- Multiplexing: <u>arXiv2509.07223</u>
- New active holder materials EPJ-P 138, 384 (2023)

Conclusion on Sensitivity

CUPID is competitive for Stage I

It will be (among) the leading experiments until full next generation experiments come online LEGEND-1000, nEXO

CUPID Phase II competes with nEXO and LEGEND-1000 at a fraction of the cost

R&D and community building for a (multi-) tonne future of cryogenic ¹⁰⁰Mo experiments is advancing rapidly

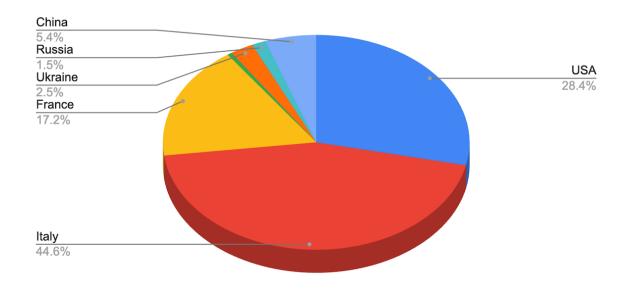
The French CUPID groups had and have leading roles in the technology development, projections and future R&D efforts

Last but not least

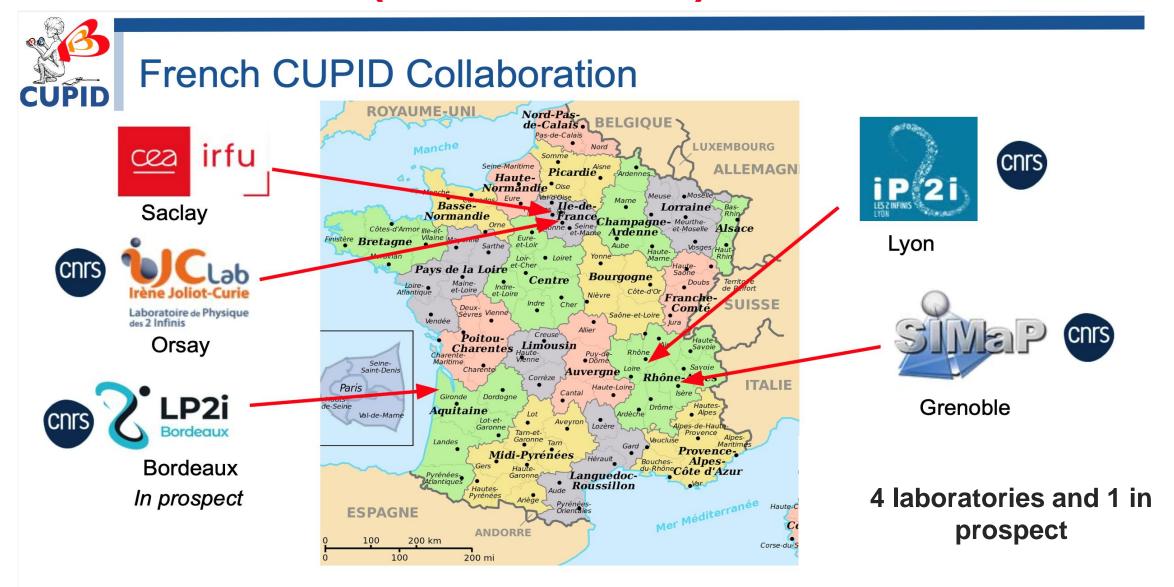
Part III – CUPID collaboration structure, IRFU and IN2P3 responsibilities, resources and means

Claudia Nones- FR EB member

The CUPID collaboration


36 institutions

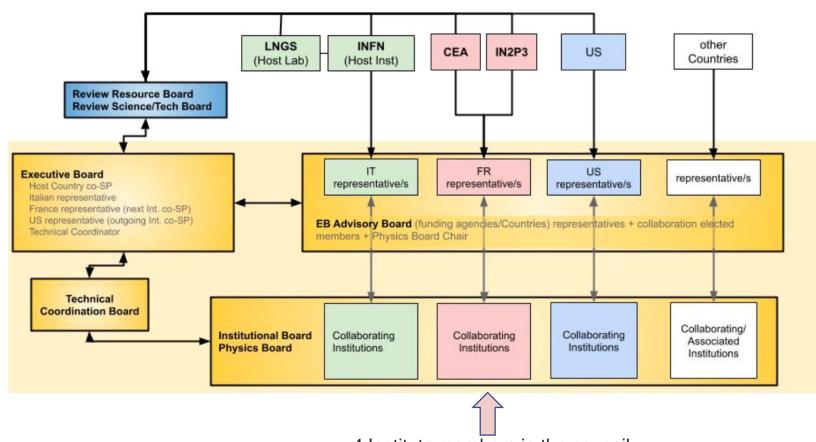
Main countries: Italy, France, US, China


192 authors – last published paper

- ➤ 18% France
- > 49% INFN
- ➤ 33% DOE

CUPID Primary Authorship Breakdown By Country

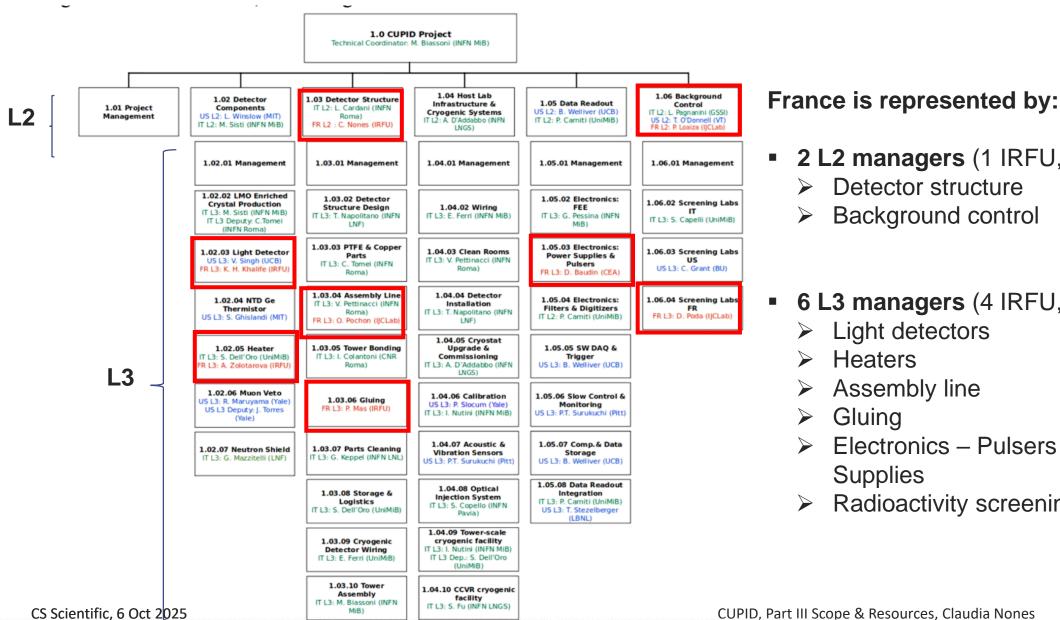
CUPID-France (october 2025)



CUPID gouvernance

Maura Pavan Host Country Co-SP

Karsten Heeger International Co-SP (outgoing, US)


Andrea Giuliani International Co-SP (incoming, France)

3 main countries IT, FR, US

- A Review Resource Board (waiting for MoUs)
- An Exective Advisory Board
- An Institutional Board
- A Technical Board

Work Breakdown Structure

- 2 L2 managers (1 IRFU, 1 IJCLAB)
 - Background control
- 6 L3 managers (4 IRFU, 2 IJCLAB)

- Electronics Pulsers and Power
- Radioactivity screening

The CUPID boards

CUPID Physics Board - 2025

Senior Coordinator - Ben Schmidt (IRFU)

Analysis Coordinator - Alberto Ressa

Science Coordinator - Pranava Teja Surukuchi

Software Coordinator - Brad Welliver

Simulations Coordinator - Mattia Beretta

Background Model Coordinator - Pia Loaiza

(IJCLAB)

Detector Performance Coordinator - Irene Nutini

Public Data Coordinator - Penny Slocum

Publication Coordinator - Denys Poda (IJCLAB)

Outreach Board - Dounia Helis

Vetting Board

Public Data Coordinator - Penny Slocum

S. Quitadamo

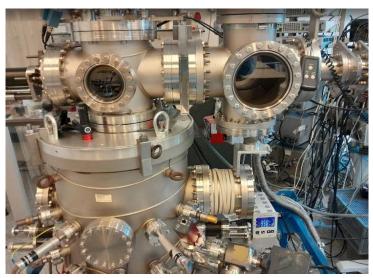
H. Khalife (IRFU)

Speakers Board

Stefano Dell'Oro

Chris Grant

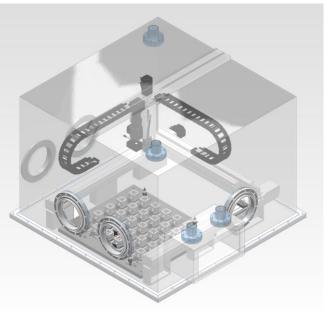
Pia Loaiza (IJCLAB) --> A. Armatol (IP2I)


Role and visibility of French institutions

- France has been central to CUPID baseline technologies:
 - Purification, growth and selection of Li₂MoO₄ crystals
 - ➤ Li₂MoO₄ scintillating bomometers
 - Development of NTL light detectors
 - Design of gluing systems and electronics
- Leading institutions: IJCLab, CEA/IRFU, IP2I, SIMaP, LP2i in future
- French researchers hold key leadership roles (co-Spokesperson, board chairs, WP leaders)
- Future success depends on strong and timely support from IN2P3 & CEA/IRFU
 - > Funding for crystal production and detector components
 - Reinforcement of human resources (researchers, engineers, PhDs, postdocs)
- Risks if support is delayed/insufficient:
 - Loss of France's technological leadership to other partners
 - Reduced international visibility and prestige
 - Missed opportunity to secure France's place at the forefront of next-generation neutrino physics

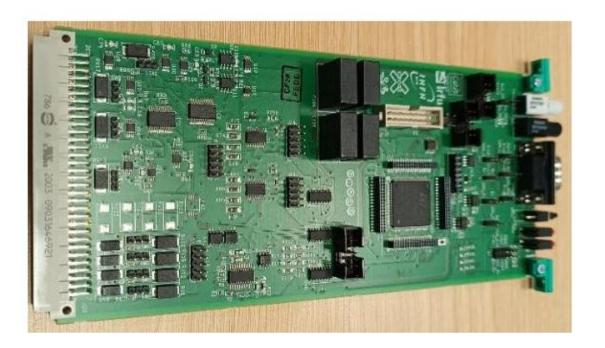
Production and characterization of light detectors

- CUPID light detectors: ultrapure Ge wafers with Al electrodes for NTL amplification
- Study of Si wafers as risk mitigation
- Up to now, fabrication developed at IJCLab using existing electron-beam evaporators
- Scaling up with CRYOVAP (2026) → from 8 detectors/week to tens per week
- Yield: ~80% meet NTL amplification; individual testing remains mandatory
- Characterization: new 4 K cryostat (semi-automatic, 50 detectors/run)
- Produce and characterize ~900 light detectors in 2027-2028, keep 600



Detector assembly: sensor gluing station

- CEA/IRFU gluing station: attaches NTDs and heaters to crystals & wafers
- Fully robotic with XYZ motion system, metrology camera, glove box
- Specs: <10% glue variation, >99.9% success, 100 sensors/week
- Validated in CUPID tower prototype and CROSS demonstrator
- Cryogenic tests ongoing; glove box integration expected in 2026



Pulser board

- CEA/IRFU + Milano-Bicocca: development of calibration board
- Injects stable, programmable pulses (square, sinusoidal, pseudo-Gaussian)
- Drives up to 100 heaters in parallel with 16-bit precision
- Prototype built, testing ongoing; 65 units planned (one per tower)

Storage and transport system

CNTS Interestation | Clab

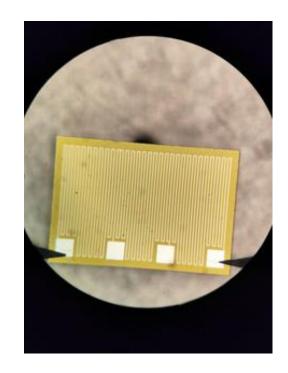
- Developed at IJCLab to protect detector towers before installation.
- Storage modules: reduced-radon environment with continuous N₂ flushing.
- Transport modules: damping system to reduce mechanical stress; deliver towers underground at LNGS.
- Initial order: 20 storage modules (2025) for CUPID Stage-I.

Characterization and validation activities, assembly

NTD Ge thermistors and Radioactivity

- NTD thermistors: fabricated in US
- Characterization shared across US and France (IJCLab, CEA/IRFU, IP2I)
- Radiopurity: France & Italy lead Background Control WG
- Materials: 450 kg Li₂MoO₄, 102 kg Cu, 10 kg Ge, 9 kg PTFE, etc
- Screening via HPGe γ-spectroscopy, NAA, ICP-MS, α-spectroscopy, and bolometric tests
- LSM (France) hosts ultra-low-radioactivity HPGe detectors

Activities at LNGS


- CCVRs: systematic cryogenic testing of enriched crystals → verify bolometric performance, radiopurity, scintillation.
- Focus: energy resolution, contamination, light yield.
- Runs at LNGS (main) and possibly LSC (CROSS facility).
- French teams provide manpower for detector preparation, cryostat operation, data analysis
- Shifts: CUORE cryostat upgrade, prototype tower tests, CUPID data taking (shared by FR, IT, US)
- CUPID-Stage-I assembly

Alternative heater production

- Baseline heaters: Si chips with ion-implanted meanders (CUORE)
- French alternative: metal-film meanders (CEA/IRFU)
 - Pros: no pre-characterization at low T, reproducible, robust
 - Large scale demonstration to be done
 - Goal: ensure stable detector response against cryogenic fluctuations
- France will be involved in heater characterization, regardless of the technique ultimately chosen by the collaboration

Indicative proposal for budget split

TOTAL needed for CUPID Stage1: 14 M€

- ~ **5 M€** construction costs:
- IT
- FR
- US
- ~ **9 M€** for enriched crystal production

French contribution: the pre-CUPID phase [2012-2018]

Investment in the period 2012-2018: ~ 1.4 M€

- Finalization of the scintillating bolometer
 Li₂MoO₄ technology
- CUPID-Mo experiment
- Crucial for the selection of the CUPID technology

This has been possible thanks to:

- IRFU & CSNSM own funds
- ISOTTA (2012-2015)
- ANR LUMINEU (2012-2017)
- ANR CLYMENE (2016-2021)

French contribution: the pre-CUPID phase [2012-2018]

Investment in the period 2012-2018: ~ 1.4 M€

- Finalization of the scintillating bolometer
 Li₂MoO₄ technology
- CUPID-Mo experiment
- Crucial for the selection of the CUPID technology

This has been possible thanks to:

- IRFU & CSNSM own funds
- ISOTTA (2012-2015)
- ANR LUMINEU (2012-2017)
- ANR CLYMENE (2016-2021)

French contribution: CUPID [2019-now]

Investment in the period 2019-now: ~ 3.2 M€

Several crucial contributions to CUPID construction

- CRYOVAP (series production of light detectors)
- 4K facility for leakage current test
- Gluing station (initial investment)
- Enriched crystals
- Electronic prototypes
- Part of the tower storage / transportation system

This has been possible thanks to:

- IRFU & IN2P3 own funds
- ANR CUPID-1 (2021-2026)
- ANR CRYOLUX (2025-2028)
- ANR P2IO Labex Flagship BSM-nu
- SESAME Ile de France
- ERC AdG CROSS
- ERC CoG BINGO

Financial requests (CUPID-Stage-I)

Total request (construction) over two agencies and four years [2027-2030]: ~ 1.1 M€ Contribution to enrichment-crystallization CUPID-Stage-1: 10%-20% of 9 M€ (total cost)

This investment will allow us to fulfill our engagements in:

- Light detector production & testing
- Gluing station
- Pulser and power supplies for electronics
- NTD and heater characterization
- Radiopurity measurements
- Shifts for crystal validation runs
- Shifts for tower test runs at LNGS
- Participation to the assembly of CUPID stage1
- Common funds based on the number of authors

Investment for the development of the technology	2012-2018	~1.4 M€
Investment for R&D finalization and development of facilities for the construction	2019-2025	~3.2 M€
Requested funding to fulfil France's construction commitments	2026-2030	~1.1 M€
Possible French contribution to enrichment and crystallization (10% – 20%)	2026-2029	~1 - 2 M€

Human resources – october 2025

Permanent staff

IJCLab-Orsay	IP2I-Lyon	LP2i-Bordeaux	CEA/IRFU-Saclay		
Researchers	Researchers	Researchers	Researchers and		
			Engineers		
Andrea Giuliani	Jules Gascon	Christine Marquet	Claudia Nones		
Pierre de Marcillac	Antoine Armatol	Emmanuel Chauveau	Benjamin Schmidt		
Stefanos Marnieros	Corinne Augier		Anastasiia Zolotarova		
Jean-Antoine Scarpaci	Antoine Cazes		Federico Ferri		
			David Baudin		
			Philippe Mas		
			Philippe Gras		
IR (Ingénieurs	IR (Ingénieurs				
Recherche)	Recherche)				
Ion Cojocari	Alexandre Juillard				
Pia Loaiza					
Emiliano Olivieri					
Denys Poda					
Philippe Rosier					
IE (Ingénieur d'Etudes)					
Laurent Bergé					
AI (Assistant Ingénieur)					
Olivier Pochon					
Total permanent researchers and engineers: 24					
Total FTE: 7.4					

Total FTE with temporary staff: ~ 13

(LP2I not yet included)

Temporary Staff

Typically
2 PhD student
1 Post-doc
both at IJCLab and IRFU

Corresponding to **6 FTE**

Current situation:

IJCLab

PhD students Mariia Buchynska Roberto Serino

CEA/IRFU

PhD students
Mathieu Pageot
Sara Vesce (Dec25)
Post-doc
David Cintas
Hawraa Khalife

PhD theses

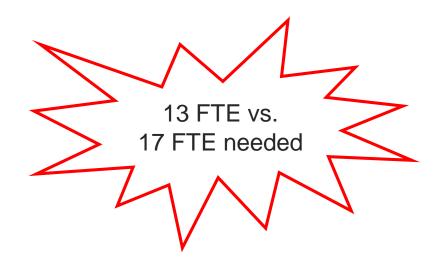
Pre-CUPID phase and the current finalization phase → highly productive in terms of PhD theses (11 achieved theses)

CSNSM/IJCLab				
Student	Defense year	Title		
Margherita Tenconi	2015	Development of luminescent bolometers and light detectors for neutrinoless double beta decay search		
Dmytro Cherniak	2015	Development of cryogenic low background detector based on enriched zinc molybdate crystal scintillators to search for neutrinoless double beta decay of ¹⁰⁰ Mo		
Michele Mancuso	2016	Development and optimization of scintillating bolometers and innovative light detectors for a pilot underground experiment on neutrinoless double beta decay		
Valentina Novati	2018	Sensitivity enhancement of the CUORE experiment via the development of Cherenkov hybrid TeO ₂ bolometers		
Hawraa Khalife	2021	CROSS and CUPID-Mo: future strategies and new results in bolometric search for $0\nu\beta\beta$		
Léonard Imbert	2023	Étude du bruit de fond des expériences CUPID-Mo, CUPID, et CROSS de double désintégration bêta sans émission de neutrinos		
CEA/IRFU				
Anastasiia Zolotarova	2018	Study and selection of scintillating crystals for the bolometric search for neutrinoless double beta decay		
Dounia Helis	2021	Searching for neutrinoless double-beta decay with scintillating bolometers		
Antoine Armatol	2023	Innovative methods for background rejection in next-generation neutrinoless double beta decay bolometric experiments		
Vladyslav Berest	2025	Towards BINGO: Development of Advanced Background Reduction Technologies for Neutrinoless Double-Beta Decay Bolometric Experiments		
SIMaP				
Abdelmounaim Ahmine	2021	Croissance Czochralski, comportement et propriétés mécaniques de cristaux massifs de Li ₂ MoO ₄ pour bolomètres scintillants		

Three former students hold permanent positions in French research institutions

Chargée de Recherche
CNRS/IN2P3-LPSC Grenoble

Researcher
CEA/IRFU
ERC grantee (2022)

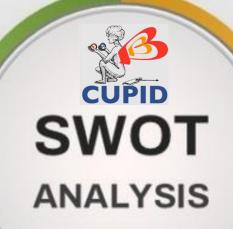

Chargé de Recherche CNRS/IN2P3-IP2I Lyon

Excellence of the training provided within the French CUPID research groups

Human resource requests

Additional team support to meet French commitments is essential

- One CR position (chargé de recherche) at IJCLab to support data analysis, simulations, and provide onsite manpower. We note that the researcher group at IJCLab has a critical age profile: of its four members, the youngest is 54 years old and the others are all over 60, with no new recruitment since 2011.
- One IR position (ingénieur de recherche) at LP2i (if participation is approved by LP2i) to assist the Bordeaux group during its transition to CUPID activities.
- One engineer position at CEA/IRFU to handle the group numerous technical responsibilities.
- One temporary Al position (assistant ingénieur) (2027-2028) at IJCLab to support large-scale light-detector production.
- Contribute with PhD and Post-doc fellowships at IJCLab, CEA/IRFU and LP2i



STRENGTH

- Solid foundations: CUORE
- French technological contributions
- Proven track record: LUMINEU, CUPID-Mo, CROSS, etc.
- International recognition
- Leadership positions for French researchers

- Funding uncertainty
- International competition
- Supply chain risks
- Staff turnover: retirement/loss of key experts
- Coordination risks

THREAT

WEAKNESS

- Human resources: aging permanent staff at IJCLab
- Staffing gaps: need for reinforcements
- High dependence on enrichment
- Complex coordination

- Scientific breakthrough
- French visibility
- Synergies
- Technology transfer
- Ton-scale expansion
- Valorisation of Modane (LSM)

OPPORTUNITY

Conclusions

- CUPID technology is mature, and infrastructure already exists in LNGS
- Detector technology was conceived, developed and demonstrated by French laboratories
- CUPID construction can start next year INFN prepared to fund most of isotope cost
- Support from French agencies for construction and isotope is essential
- CUPID-Stage-I has the potential to lead the field at the beginning of the next decade
- Full CUPID will be a leading experiment with significant discovery potential
- CUPID is cost effective and expandable: CUPID-1T can explore deeply the normal ordering
- CUPID-1T is a long-term strong opportunity for science at Modane
- The CUPID program will place France at the forefront of neutrino physics

We would like to thank IN2P3, CEA/IRFU and three European underground laboratories (Modane, Gran Sasso, Canfranc) for their continuous and valuable support

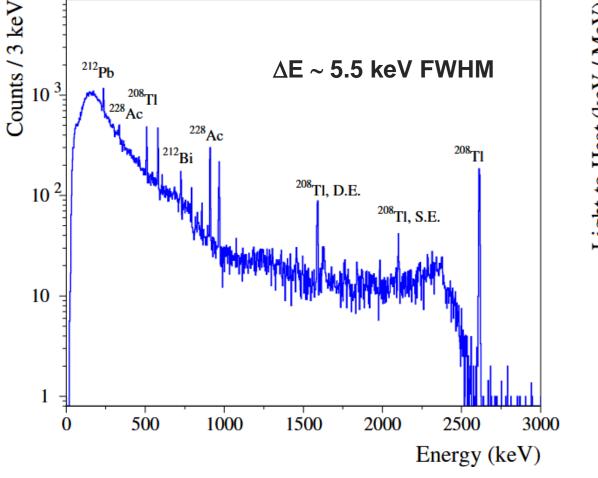
Strengths

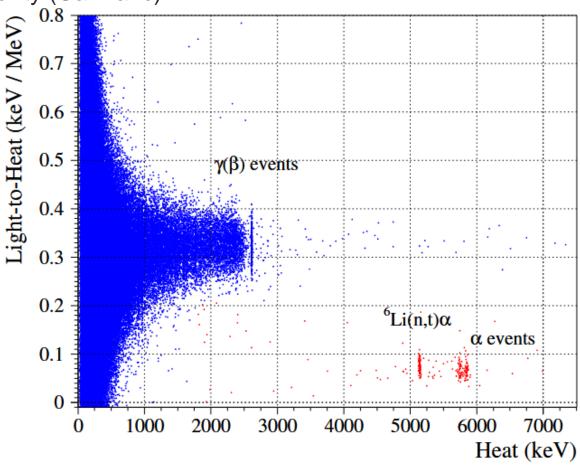
- Solid foundations: CUPID builds directly on the success of CUORE, with established infrastructure at LNGS and expertise in large bolometric arrays
- French technological contributions: France pioneered purification and growth of Li₂MoO₄ crystals, developed Neganov-Trofimov-Luke (NTL) light detectors, and designed key assembly/gluing systems
- Proven track record: Demonstrator experiments (LUMINEU, CUPID-Mo, CROSS, etc.)
 validated background rejection, energy resolution, and material purity
- International recognition: CUPID is consistently listed alongside LEGEND and nEXO as a top next-generation neutrinoless double beta decay experiment
- Leadership positions: French researchers hold prominent collaboration roles in CUPID (co-Spokesperson, Physics Board chair, Executive Board membership, WP leads)

Weaknesses

- Human resources: Aging permanent staff at IJCLab (no hires since 2011, all >54 years old in the CUPID researchers' group in this laboratory) create a sustainability risk
- Staffing gaps: Need for reinforcements (CR at IJCLab, IR at LP2i, engineer at CEA/IRFU, temporary AI for detector production at IJCLab), as the current FTE count is insufficient for the construction of CUPID Stage-I.
- High dependence on enrichment: The largest cost (~9 M€ for Stage-I) is dominated by isotope enrichment, with limited alternatives
- Complex coordination: Large, international collaboration requires strong project management and synchronized commitments from INFN, IN2P3, CEA/IRFU, DOE, etc.

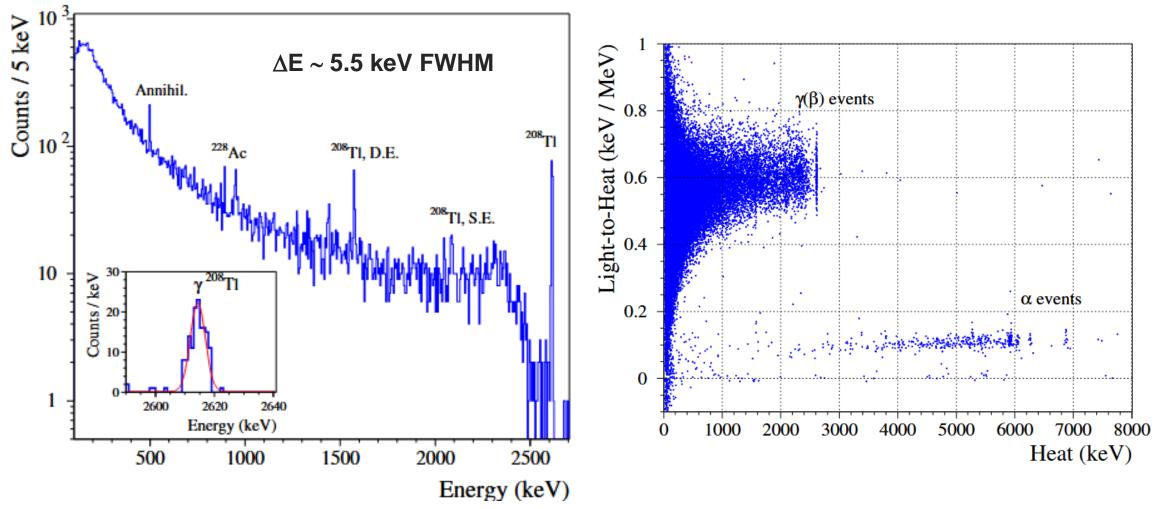
Opportunities


- Scientific breakthrough: CUPID could be the first experiment in the 2030s to explore the inverted hierarchy region fully, with high discovery potential for 0ν2β, and even CUPID Stage-I, starting in 2030 with one third of the final mass, will already surpass all current experiments and achieve world-leading sensitivity
- French visibility: Continued investment secures France's role as a global leader in bolometric technology and neutrino physics
- Synergies: Links to other communities (detector R&D, material science at SIMaP Grenoble, quantum sensors, cryogenics) may foster cross-disciplinary advances
- **Technology transfer**: Light detector know-how already transferred to U.S. groups, opening opportunities for shared responsibilities and cost reduction
- Ton-scale expansion: CUPID can be regarded as a crucial step toward a future ton-scale experiment (CUPID-1T), developed in convergence with other collaborations (e.g. AMoRE) and designed to deeply probe the normal hierarchy region of neutrino masses
- Valorisation of Modane (LSM): Since LNGS is not deep enough for CUPID-1T or a similar experiment, hosting it at LSM within 10 - 15 years would represent a major opportunity for the laboratory


Threats

- Funding uncertainty: Without immediate funding (notably for enrichment and personnel), CUPID-Stage-I risks delays, losing its timing advantage over LEGEND and nEXO
- International competition: LEGEND-1000 (⁷⁶Ge) and nEXO (¹³⁶Xe) are strong competitors with alternative technologies
- Supply chain risks: Initial reliance on a Russian partner for enrichment and crystallization slowed progress on the experiment, and shifting to a Chinese partner could likewise introduce geopolitical and logistical vulnerabilities
- Staff turnover: Retirement of key experts without timely recruitment may erode technical capacity
- Coordination risks: A delay by one partner (e.g. France in light detector construction, U.S. in NTD production) could impact the whole project schedule

NIIC crystal – Th calibration – Energy spectrum and Light/Heat vs. Heat plot



SIMaP crystal – Th calibration – Energy spectrum and Light/Heat vs. Heat plot

CROSS facility (Canfranc)

