# Neutrino physics overview

Cloé Girard-Carillo

enigmass+ Workshop 13th October 2025





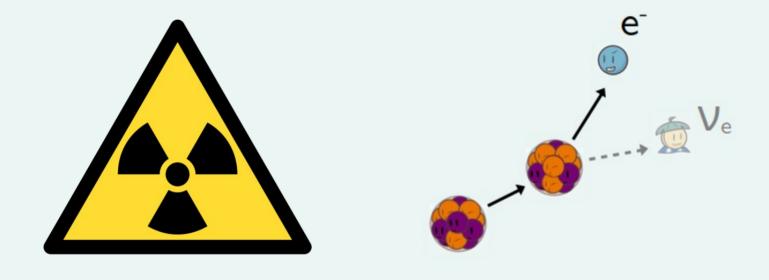
# An extremely biased

# Neutrino physics <del>overview</del> Mountain talk

French cuisine
Physicists' drawing skills

Cloé Girard-Carillo

enigmass+ Workshop 13th October 2025





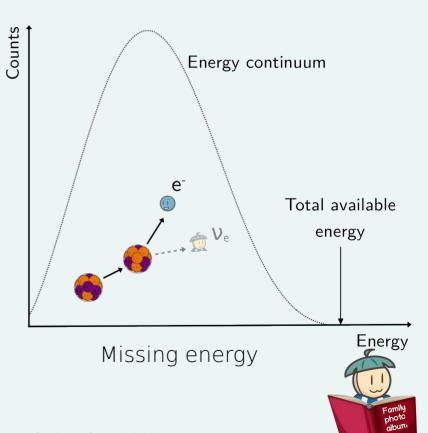



What was the first hint for the existence of neutrinos?

#### What was the first hint of existence of neutrinos?



#### A bit of history


The discovery of neutrino



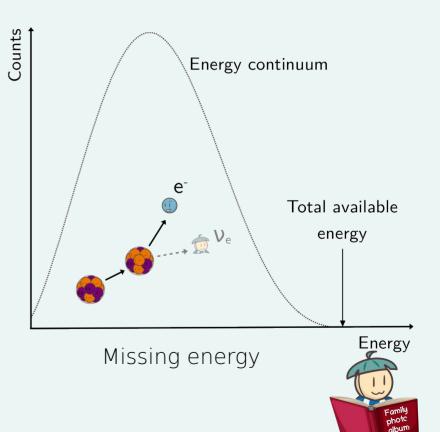
H.Becquerel (1896): Discovery of radioactivity 1900: **β decay** 



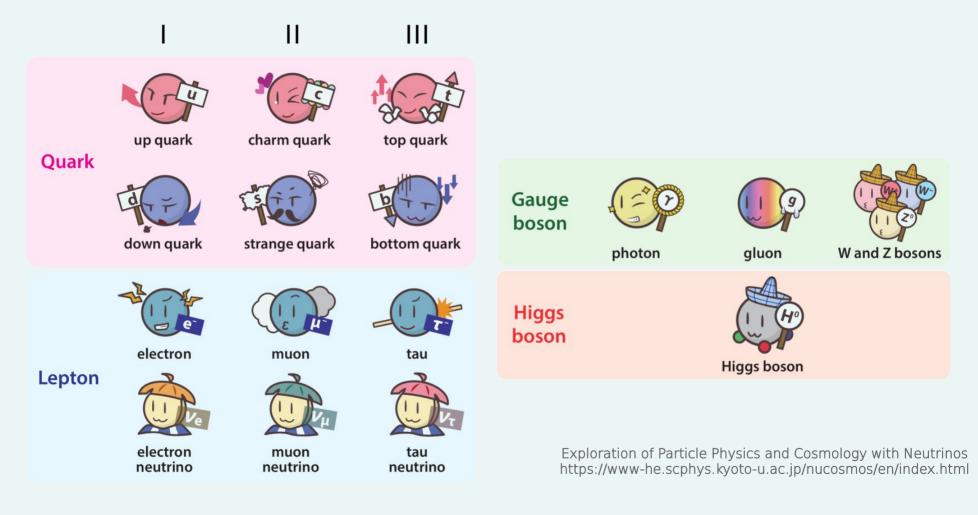
Lise Meitner (1911):
Beta energy spectrum
Only electron observed
Non conservation of total energy



#### A bit of history


The discovery of neutrino

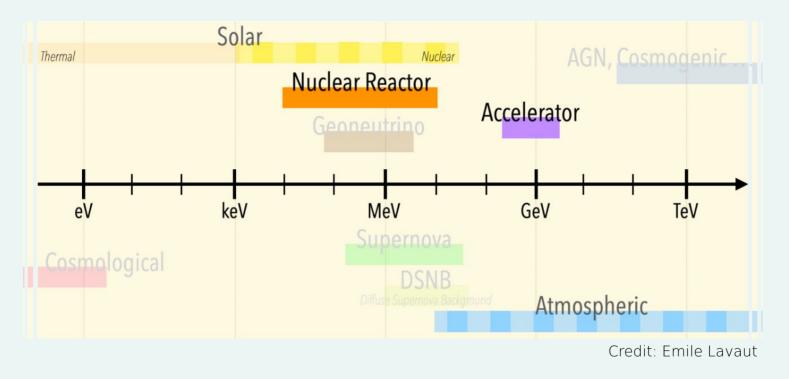



W.Pauli (1930): Solution to conserve total energy "Neutrino": small interaction probability, neutral, spin 1/2, small or null mass



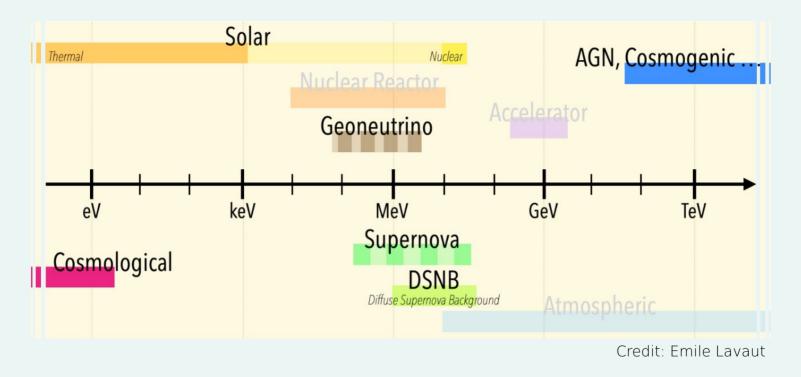
E.Fermi (1934): Effective theory Foundation stone of weak interaction




#### The Standard Model of Particle Physics






Where can we find those neutrinos?

#### Neutrino sources - mastered sources



- Solar  $\rightarrow$  high fluxes  $\sim 10^{10}$  cm<sup>-2</sup>s<sup>-1</sup>
- Atmospheric neutrinos → wide range of energy
- Reactor and accelerator → on/off, choose distance to detector & energy of neutrinos

#### Neutrino sources – as messengers



From un-seen (or rarely seen) sources or processes:

- Cosmological (Big-Bang, neutrino nature, leptogenesis...) or Cosmogenic (Black-Holes, Galactic Center...)
- Supernova (SN), Diffuse Supernova Background (SN distribution...) or Sun (hep, thermal...)

#### Open questions in neutrino physics

#### Most likely will be answered within next 10–15 year by oscillation experiments

- ongoing (T2K, NOνA, IceCube, KM3NeT)
- planned (JUNO, DUNE, Hyper-K)

#### Might be answered in the foreseeable future

- Absolute neutrino mass scale can be directly probed by measuring the end point of the  $\beta$ -decay spectrum (tritium  $\beta$ -decay, **KATRIN** bound mv  $\leq$  0.45 eV 90% CL. Project-8 aim to reach 0.04 eV)
- Cosmological observables set an indirect upper limit on sum of neutrino masses < 0.12 eV (Planck) and < 0.072 eV (DESI), already disfavor the inverted mass ordering.

Much harder to answer definitively

- 1. What is neutrino mass ordering (NMO)? Normal or inverted?
- 2. In which octant is the atmospheric mixing angle?
- 3. Is there a leptonic CP violation?
- 4. What is the absolute neutrino mass scale?
- 5. Are there other species of (sterile) neutrinos?
- 6. How do neutrinos get mass? Is it Dirac or Majorana?
- 7. Why neutrino mixing is so different from quark mixing?
- 8. Do neutrinos decay? What is their lifetime?
- 9. Do neutrinos have non-standard interactions?
- 10. Are neutrinos responsible for the observed baryon asymmetry?
- 11.Do neutrinos have anything to do with Dark Matter?

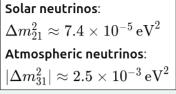
From 2503.21212, P. S. Bhupal Dev

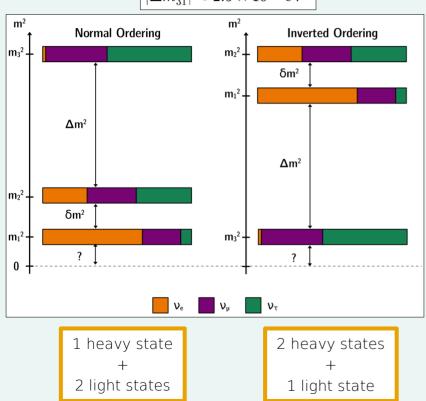
#### Open questions in neutrino physics

Most likely will be answered within next 10–15 year by oscillation experiments

- ongoing (T2K, NOvA, IceCube, KM3NeT)
- planned (JUNO, DUNE, Hyper-K)

#### Might be answered in the foreseeable future


- Absolute neutrino mass scale can be directly probed by measuring the end point of the β-decay spectrum (tritium β-decay, **KATRIN** bound mv ≤ 0.45 eV 90% CL. Project-8 aim to reach 0.04 eV)
- Cosmological observables set an indirect upper limit on sum of neutrino masses < 0.12 eV (Planck) and < 0.072 eV (DESI), already disfavor the inverted mass ordering.


Much harder to answer definitively

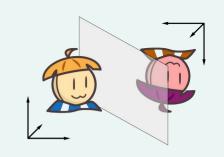
- 1. What is neutrino mass ordering (NMO)? Normal or inverted?
- 2. In which octant is the atmospheric mixing angle?
- 3. Is there a leptonic CP violation?
- 4. What is the absolute neutrino mass scale?
- 5. Are there other species of (sterile) neutrinos?
- 6. How do neutrinos get mass? Is it Dirac or Majorana?
- 7. Why neutrino mixing is so different from quark mixing?
- 8. Do neutrinos decay? What is their lifetime?
- 9. Do neutrinos have non-standard interactions?
- 10. Are neutrinos responsible for the observed baryon asymmetry?
- 11.Do neutrinos have anything to do with Dark Matter?

From 2503.21212, P. S. Bhupal Dev

#### What is neutrino mass ordering (NMO)? Normal or inverted?






How we try to determine the ordering?

- Long-baseline accelerator experiments (T2K, NOvA, DUNE)
   → Measuring how neutrinos and antineutrinos oscillate differently while travelling through Earth
   → matter effects enhances or suppresses certain transitions depending on the ordering
- Reactor experiments (JUNO in China, just started taking data)
   → aims to detect subtle interference patterns in the electron antineutrino spectrum depending on MO
- Atmospheric neutrinos (IceCube (Upgrade), ORCA, PINGU)
   → observing neutrinos passing through the Earth at different angles and energies
- Cosmology
  - → CMB and large-scale structure data constrain the sum of the neutrino masses (smaller total mass favors normal ordering)

#### C and $P \rightarrow 2$ fundamental symmetries

- P (Parity): mirror transformation: inverts spatial coordinates

If a process is CP-symmetric, it should look the same when we replace all particles with their antiparticles and view the system in a mirror

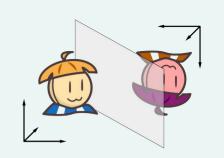


C and  $P \rightarrow 2$  fundamental symmetries

#### Why it matters

- one of the necessary conditions (Sakharov conditions) to explain why Universe made mostly of matter (rather than antimatter)
- If CP symmetry were exact, equal amounts of matter and antimatter produced during Big Bang which would have annihilated completely

C and  $P \rightarrow 2$  fundamental symmetries


Why it matters

#### Where do we observe it?

- Neutral kaons (K⁰-anti-K⁰ system): discovered in 1964 (Cronin & Fitch)
   → The decay rates of kaons and antikaons differ slightly.
- B mesons (B⁰-anti-B⁰ system): observed at BaBar and Belle in 2001.
   → CP violation shows up as an asymmetry in certain decay channels.
- D mesons: evidence found more recently (LHCb)

What's measured so far in SM isn't enough (complexe phase) → neutrinos, EDM

Neutrinos: possible CP violation is being investigated (T2K, NOvA, DUNE).



#### How do neutrinos get mass? Is it Dirac or Majorana?

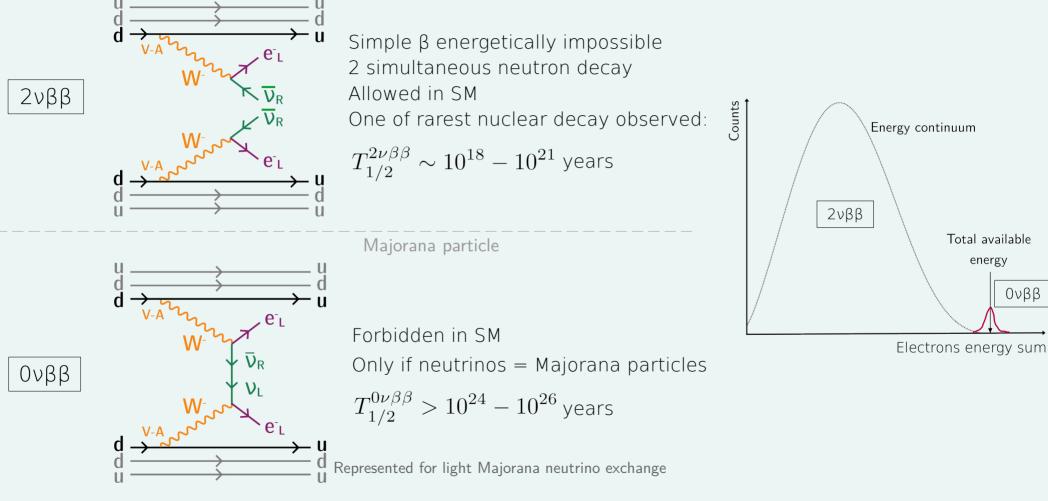
#### Dirac

Neutrino & antineutrino **distinct** particles As other fermions: mass → **Higgs** mechanism:

$$\mathcal{L}_{\nu}^{\mathrm{Dirac}} = -\frac{v}{\sqrt{2}} \overline{\nu}_L Y^{\nu} \nu_R + \mathrm{h.c.}$$

$$ightarrow$$
 Need to **extend** the SM with  $u_R$ 

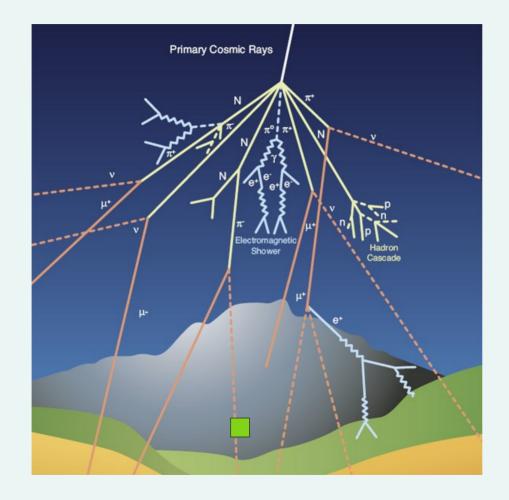
## <u>Majorana</u>

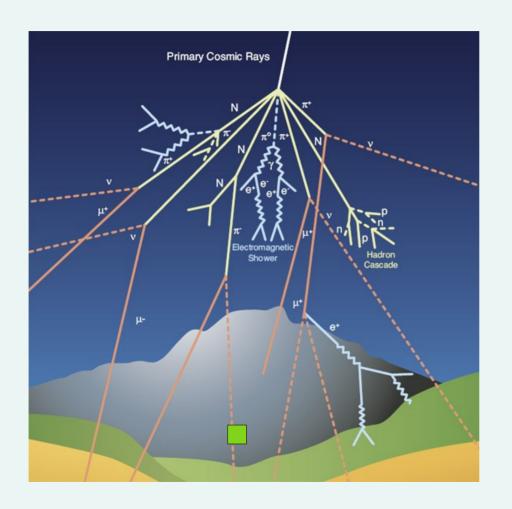

The neutrino is its **own antiparticle** Majorana mass term in the Lagrangian

$$\mathcal{L}_{\nu}^{\text{Majorana}} = \frac{1}{2} m_{\nu} \overline{\nu}_{L}^{c} \nu_{L} + \text{h.c.}$$

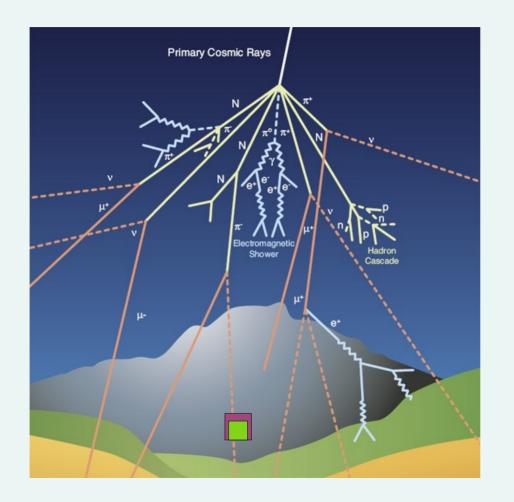
- Lepton Number Violation (LNV)  $\Delta L=2$
- Seesaw mechanisms: smallness of neutrino masses

Probe: Neutrinoless double beta decay (0νββ)

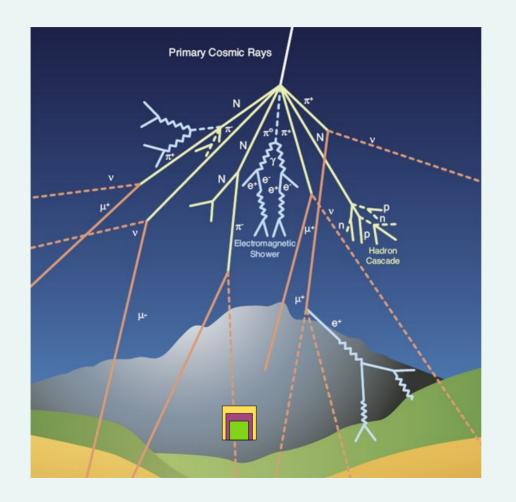

## How do neutrinos get mass? Is it Dirac or Majorana?



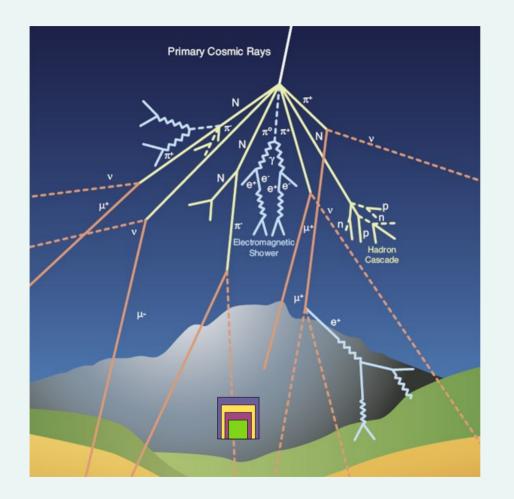








Is this sufficient?







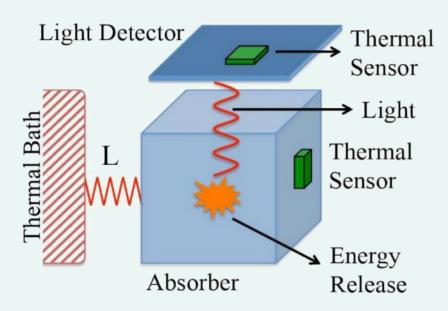













this sufficient?



#### The CUPID experiment

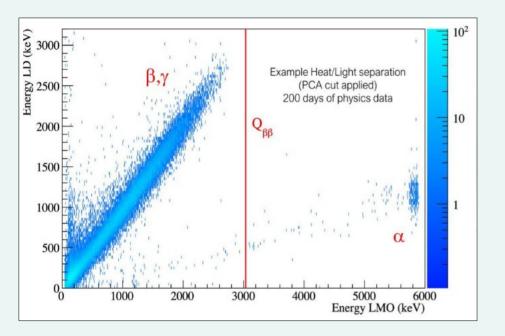
CUPID <sup>100</sup>Mo heat + light (scintillating bolometer)



CUPID-Mo: best limit on 100Mo at the time  $T_{1/2} > 1.8 \times 10^{24} \text{ y}$ 

Bolometer = calorimeter measuring tiny temperature rises from particle interactions

Each CUPID detector is a crystal cooled to ~10 mK in dilution refrigerator.


When  $\beta\beta$  decay occurs inside crystal:

- The 2 emitted electrons deposit their full energy
- Crystal temperature rises by only a few microkelvin
   + light emission
  - thermistor (NTD germanium sensor) convert temperature change into voltage pulse
  - Light detectors detect scintillation light

Gives energy measurement with **extremely high precision** + **PID** 

Phys.Rev.Lett. 126(2021)181802 - Eur.Phys.J. C 82,1033(2022)

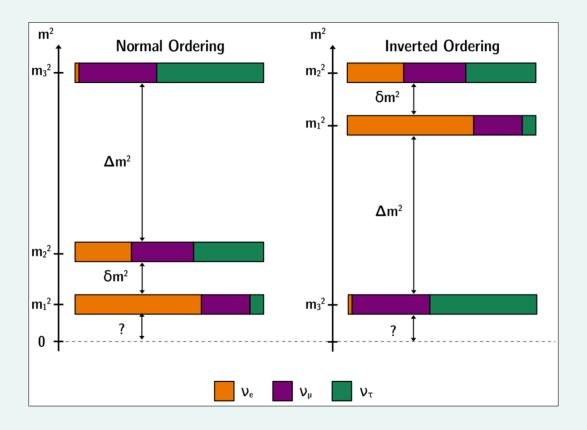
#### The CUPID experiment



CUPID-Mo: best limit on 100Mo at the time  $T_{1/2} > 1.8 \times 10^{24} \text{ y}$ 

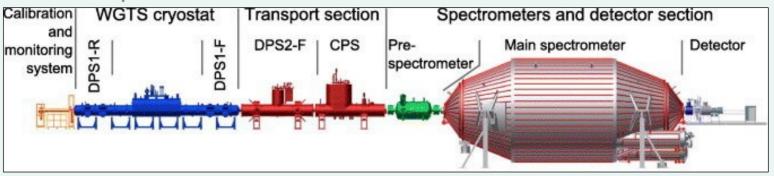
Phys.Rev.Lett. 126(2021)181802 - Eur.Phys.J. C 82,1033(2022)

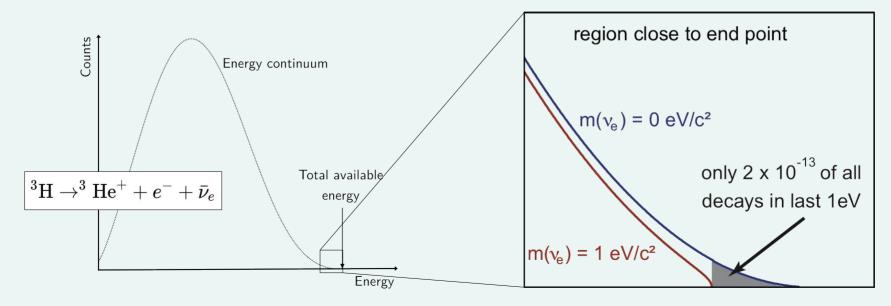
Bolometer = calorimeter measuring tiny temperature rises from particle interactions


Each CUPID detector is a crystal cooled to ~10 mK in dilution refrigerator.

When  $\beta\beta$  decay occurs inside crystal:

- The 2 emitted electrons deposit their full energy
- Crystal temperature rises by only a few microkelvin
   + light emission
  - thermistor (NTD germanium sensor) convert temperature change into voltage pulse
  - Light detectors detect scintillation light


Gives energy measurement with **extremely high precision** + **PID** 


#### What is the absolute neutrino mass scale?

















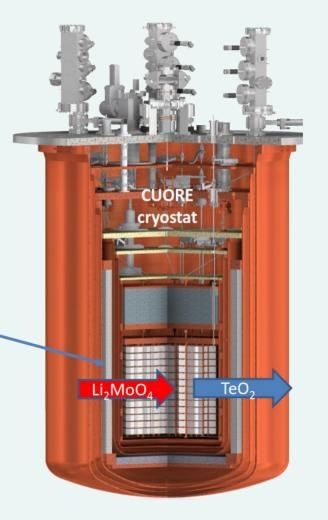
Some last important words about neutrino physics...



That's all

#### **CUPID** structure

- CUPID pre-CDR *arXiv:1907.09376*
- Upgraded structure Eur. Phys. J. C 82, 810 (2022), Eur. Phys. J. C 85, 737 (2025)
- TDR under finalization
- Crystal:  $Li_2^{100}MoO_4 45 \times 45 \times 45 mm \sim 280 g enrichment \ge 95\%$
- Thermal sensor: neutron transmutation doped (NTD) Ge thermistor
- **Si heater** to stabilize the detector response
- 57 towers of 14 floors with 2 crystals each 1596 crystals
- ~ 240 kg of ¹⁰⁰Mo
- ~1.6×10<sup>27</sup> 100 Mo atoms


#### Baseline design

Gravity stacked structure

#### **Light detectors**

- Ge wafers with NTD sensor and SiO antireflective coating
- Each crystal has top and bottom LD
- No reflective foil

Muon veto for muon induced background suppression

