Triple Higgs production at hadron colliders

Gilberto Tetlalmatzi-Xolocotzi

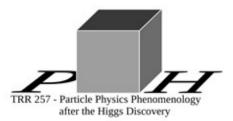
A. Papaefstathiou, M. Zaro ,GTX: Eur.Phys.J.C 79 (2019) 11, 947 (1909.09166)

A. Papaefstathiou, T. Robens, GTX: JHEP 05 (2021) 193 (2101.00037)

A. Papaefstathiou, GTX: JHEP 06 (2024) 124 (2312.13562)

O. Karkout, A. Papaefstathiou, M. Postma, GTX, J. van de Vis, T du Pree: JHEP 11 (2024) 077 (2404.12425)

A. Papaefstathiou, GTX: (2501.14866)


B. Fuks, A. Papaefstathiou, GTX: (2509.16364)

CPPS, Theoretische Physik 1, Universität Siegen

IRN Terascale

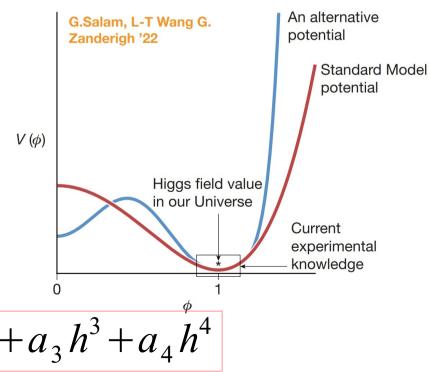
Montpellier 24-26 November 2025

Higgs Self-Interactions in the SM

$$V(\Phi^{\dagger}\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda_{SM} (\Phi^{\dagger} \Phi)^2$$

$$\Phi = (0, v_0 + h)^T / \sqrt{2}$$

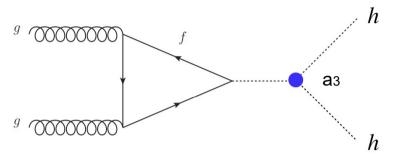
$$V(\Phi^{\dagger}\Phi) \supset \frac{1}{2} m_h^2 h^2 + \lambda_{SM} v_0 h^3 + \frac{\lambda_{SM}}{4} h^4$$

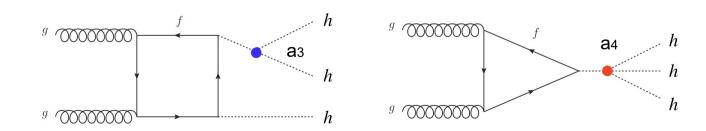

In the SM
$$m_h^2 = \lambda_{SM} v_0^2 / 2$$
 $v_0^2 = -\mu^2 / \lambda_{SM}$

Why study triple Higgs production?

The triple Higgs self coupling is sensitive to New Particles.

 It also gives the opportunity to test the Higgs quartic self couplings.


We do not know much about the shape of the Higgs potential.


$$V(\Phi^{\dagger}\Phi) \supset \frac{1}{2} m_h^2 h^2 + a_3 h^3 + a_4 h^4$$

Why study triple Higgs production?

Double Higgs production is the lowest multiplicity to probe for a_3 .

Triple Higgs production is the lowest multiplicity to probe for a_4 .

Possible Final states

$$hhh \longrightarrow X$$

X (Final State)	Br(%)
$(b\overline{b})(b\overline{b})(b\overline{b})$	19.21
$(b\overline{b})(b\overline{b})(WW_{1l})$	7.20
$(b \bar{b})(b \bar{b})(\tau \bar{ au})$	6.31
$(b\bar{b})(\tau\bar{\tau})(WW_{1l})$	1.58
$(b\overline{b})(b\overline{b})(WW_{2l})$	0.98
$(b\overline{b})(WW_{1l})(WW_{1l})$	0.90
$(bar{b})(auar{ au})(auar{ au})$	0.69
$(b\overline{b})(b\overline{b})(\gamma\gamma)$	0.23

Papaefstathiou, GTX, Zaro: 1909.09166 A. Papaefstathiou, GTX: (2501.14866) Fuks, Papaefstathiou, GTX: 2509.16364

Fuks, Kim, Lee: 1510.07697 1704.04298

Killian et al.: 1702.03554

Papaefstathiou, Sakurai.: 1508.06524

Chen et al.:1510.04013 Fuks, Kim, Lee: 1510.07697

6-b final state has the largest Branching Fraction

This is the channel we are focusing on in this talk

Backgrounds vs Signal

In the FCC (pp @ 100 TeV)

Signal and Irreducible backgrounds

Process

 $\sigma_{\text{GEN}} \times k_{\text{fac}} \times \text{BR} \times \mathcal{P}(6b)$ [fb]

hhh (SM)	4.29×10^{-1}
$\overline{\mathrm{QCD}(bar{b})(bar{b})(bar{b})}$	1.07×10^4
qar q o Z(bar b)(bar b)	3.61×10^{2}
qar q o ZZbar b	1.14×10^{1}
$qar{q} o ZZZ$	1.80×10^{-1}
qar q o hZbar b	2.04
qar q o hZZ	1.48×10^{-1}
$qar{q} ightarrow hhZ$	8.11×10^{-2}
qar q o hh(bar b)	1.80×10^{-2}
qar q o h(bar b)(bar b)	7.25×10^{-1}
$gg \to ZZZ$	5.18×10^{-3}
$gg \rightarrow hZZ$	3.59×10^{-2}
$gg \rightarrow hhZ$	6.41×10^{-2}

Reducible backgrounds

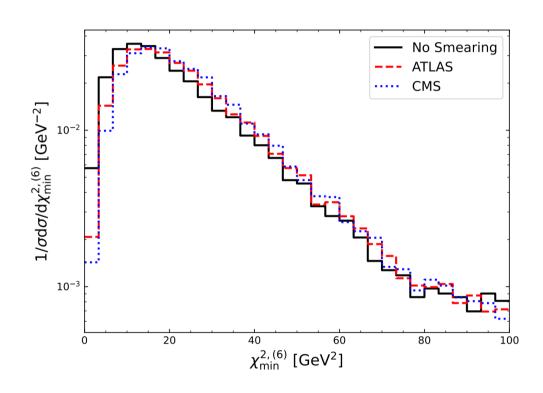
Process	$\sigma_{ ext{GEN}}$ [fb]	$\sigma_{\text{GEN}} \times k_{\text{fac}} \times \mathcal{P}(6b)$ [fb]
$(bar{b})(bar{b})(car{c})$	73.0×10^{3}	762
$(b\bar{b})(c\bar{c})(c\bar{c})$	72.0×10^3	10.4
$(c\bar{c})(c\bar{c})(c\bar{c})$	21.8×10^3	4.36×10^{-2}
$(b\bar{b})(b\bar{b})(jj)^*$	3.09×10^6	161
$(b\bar{b})(jj)(jj)^*$	1.07×10^8	1.54
$(c\bar{c})(c\bar{c})(jj)^*$	1.73×10^5	3.46×10^{-3}
$(c\bar{c})(jj)(jj)^*$	6.67×10^7	6.67×10^{-3}
$(jj)(jj)(jj)^*$	3.04×10^9	6.08×10^{-3}

Assuming a K-factor of 2

Maltoni, Vryonidou, Zaro: 1408.6542

Details on the study of the 6b final state

- Parton level events (signal/background) generated with MadGraph5_aMC@NLO.
- The source of background with the highest XS is QCD-6b-Jets.
- The production of the 6b-final state is challenging, it was generated in the <u>Siegen computer cluster</u> using the gridpack option available in MadGraph5_aMC@NLO.
- Parton shower and non-perturbative effects included with <u>Herwig 7</u>.
- The <u>analysis was performed using HwSim</u>. [*Papaefsathiou*, https://bitbucket.org/andreasp/hwsim].
- Two selection analysis approaches are followed: traditional cuts selection and gradient boosting using XGBoost.


Smearing effects

We introduce smearing effects based on ATLAS and CMS like scenarios

$$E_{\text{smeared}} = E + \Delta E$$
, $\Delta E \sim \mathcal{N}(0, \sigma_E)$,

$$E_{\text{smeared}} = E + \Delta E$$
, $\Delta E \sim \mathcal{N}(0, \sigma_E)$

$$E_{\text{smeared}} = E + \Delta E$$
 $p_{T,\text{smeared}} = \frac{E + \Delta E}{\cosh \eta}$

$$\sigma_E^{\text{ATLAS}} = \begin{cases} \sqrt{(0.0302E)^2 + 0.5205^2E + 1.59^2} & |\eta| \le 1.7 \\ \sqrt{(0.05E)^2 + 0.706^2E} & |\eta| \in [1.7, 3.2] \\ \sqrt{(0.0942E)^2 + E} & |\eta| \in [3.2, 4.9] \end{cases}, \qquad \sigma_E^{\text{CMS}} = \begin{cases} \sqrt{(0.05E)^2 + 1.5^2E} & |\eta| \le 3.0 \\ \sqrt{(0.130E)^2 + 2.7^2E} & 3.0 < |\eta| \le 5.0 \end{cases},$$

Selection Analysis

- Require 6 b-tagged jets
- Construct all the possible combinations of 3-pairs of b-jets: I.
- For each combination I calculate the observable

$$\chi^{2,(6)} = \sum_{qr \in I} (M_{qr} - m_h)^2$$

- Select the event based on the value of the combination which minimizes $\chi^{2,(6)}$
- The combination determining $\chi_{min}^{2,(6)}$ defines the best candidates for the set of 3-Higgs bosons in the event.

Selection Analysis

Set of observables and optimized cuts applied during the *traditional* selection analysis (FCC)

Observable	Threshold
$p_{T,b} >$	35.0 GeV
$ \eta_b <$	3.0
$\Delta R_{bb} >$	0.3
$p_{T,b_i} >$	[170.0, 135.0, 35.0] GeV
$\chi^{2,(6)} <$	26.0 GeV
$\Delta m_i <$	[8, 8, 8] GeV
$\Delta R_{bb}(h^i) <$	[3.5, 3.5, 3.5]
$\Delta R(h^i,h^j) <$	[3.5, 3.5, 3.5]
$p_T(h^i) >$	[200.0, 190.0, 20.0] GeV

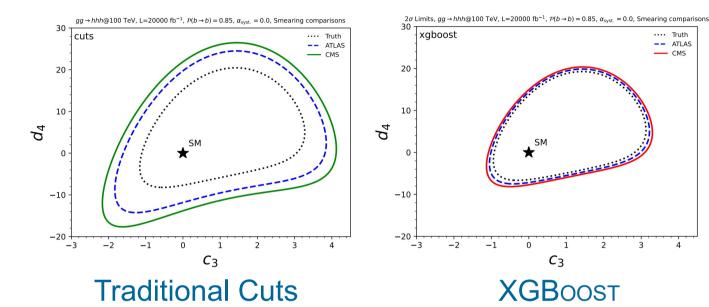
 $h^i\,$: Higgs boson candidate

$$i = 1,2,3$$

We consider a generalized version of the SM scalar potential

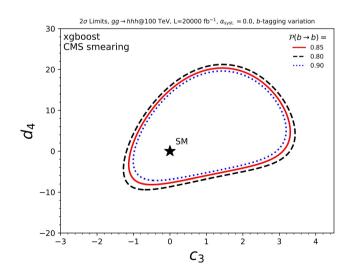
$$\mathcal{L} \supset -\frac{m_h^2}{2v} \left(1 + c_3 \right) h^3 - \frac{m_h^2}{8v^2} \left(1 + d_4 \right) h^4$$

To asses the sensitivity towards the anomalous couplings we construct the following test statistic

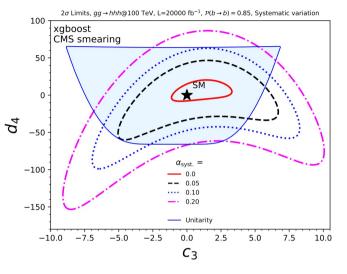

$$\chi_{\text{tot}}^{2}(c_{3}, d_{4}) = \chi^{2}(c_{3}, d_{4}) + \left(\frac{c_{3}}{\delta c_{3}}\right)^{2} \qquad \chi^{2}(c_{3}, d_{4}) = \left[\frac{S_{\text{SM}} - S(c_{3}, d_{4})}{\delta_{\text{SM+B}}}\right]^{2}$$

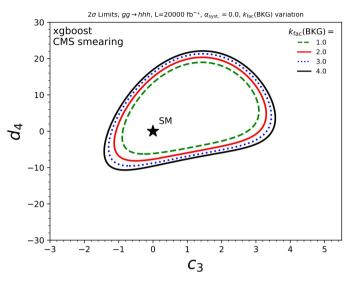
Gaussian prior to introduce information on the cubic coupling

Uncertainty in the number of expected SM events


$$\delta_{\rm SM+B} = \sqrt{S_{\rm SM} + B + (\alpha B)^2}$$

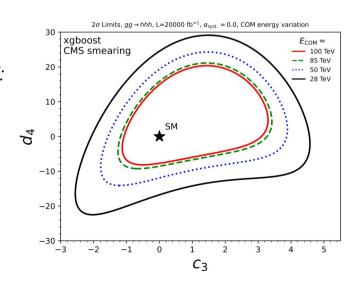
Systematic uncertainties



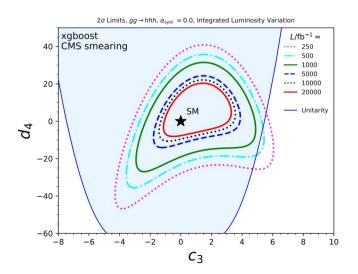

95% C. L. Regions

B. Fuks, A. Papaefstathiou, GTX: 2509.16364

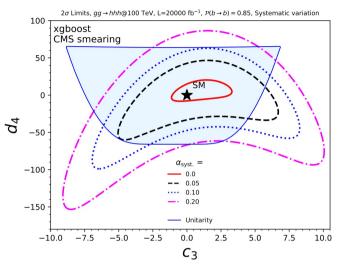
b-Tagging impact

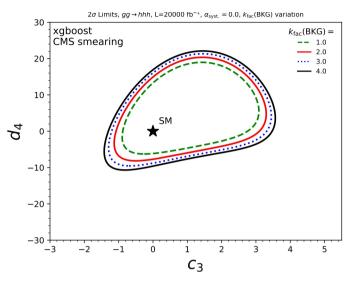


95% C. L. Regions


B. Fuks, A. Papaefstathiou, GTX: 2509.16364

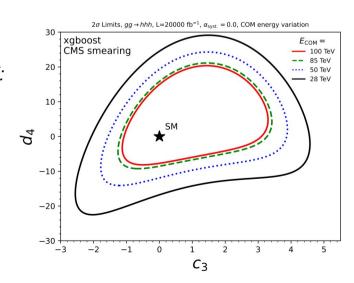
Systematic-error impact



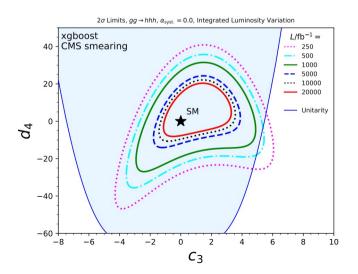

CM-impact

K-factor impact

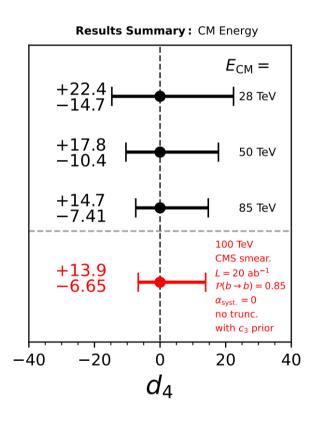
Luminosity impact

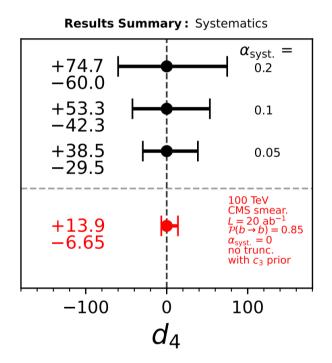


95% C. L. Regions


B. Fuks, A. Papaefstathiou, GTX: 2509.16364

Systematic-error impact


CM-impact


K-factor impact

Luminosity impact

Summaries

$$\delta c_3 = 0.05$$

B. Fuks, A. Papaefstathiou, GTX: 2509.16364

Relevant phenomenological Lagriangian to test anomalous couplings

$$\mathcal{L}_{\text{PhenoExp}} = -\lambda_{\text{SM}} v \left(1 + d_{3}\right) h^{3} - \frac{\lambda_{\text{SM}}}{4} \left(1 + d_{4}\right) h^{4}$$

$$+ \frac{\alpha_{s}}{12\pi} \left(c_{g1} \frac{h}{v} - c_{g2} \frac{h^{2}}{2v^{2}}\right) G_{\mu\nu}^{a} G_{a}^{\mu\nu}$$

$$- \left[\frac{m_{t}}{v} \left(1 + c_{t1}\right) \bar{t}_{L} t_{R} h + \frac{m_{b}}{v} \left(1 + c_{b1}\right) \bar{b}_{L} b_{R} h + \text{h.c.}\right]$$

$$- \left[\frac{m_{t}}{v^{2}} c_{t2} \bar{t}_{L} t_{R} h^{2} + \frac{m_{b}}{v^{2}} c_{b2} \bar{b}_{L} b_{R} h^{2} + \text{h.c.}\right]$$

$$- \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{2}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \bar{b}_{L} b_{R} h^{3} + \text{h.c.}\right],$$

Obtained by considering D=6 EFT operators (SILH, 0703164) and breaking correlations (ATLAS and CMS)

Can also be obtained from the Electroweak chiral Lagrangian

Relevant phenomenological Lagriangian to test anomalous couplings

$$\mathcal{L}_{\text{PhenoExp}} = -\lambda_{\text{SM}} v \left(1 + d_{3}\right) h^{3} - \frac{\lambda_{\text{SM}}}{4} \left(1 + d_{4}\right) h^{4}$$

$$+ \frac{\alpha_{s}}{12\pi} \left(c_{g1} \frac{h}{v} - c_{g2} \frac{h^{2}}{2v^{2}}\right) G_{\mu\nu}^{a} G_{a}^{\mu\nu}$$

$$- \left[\frac{m_{t}}{v} \left(1 + c_{t1}\right) \bar{t}_{L} t_{R} h + \frac{m_{b}}{v} \left(1 + c_{b1}\right) \bar{b}_{L} b_{R} h + \text{h.c.}\right]$$

$$- \left[\frac{m_{t}}{v^{2}} c_{t2} \bar{t}_{L} t_{R} h^{2} + \frac{m_{b}}{v^{2}} c_{b2} \bar{b}_{L} b_{R} h^{2} + \text{h.c.}\right]$$

$$- \left[\frac{m_{t}}{v^{3}} \left(\frac{c_{t3}}{v^{3}}\right) \bar{t}_{L} t_{R} h^{3} + \frac{m_{b}}{v^{3}} \left(\frac{c_{b3}}{2}\right) \bar{b}_{L} b_{R} h^{3} + \text{h.c.}\right],$$

Obtained by considering D=6 EFT operators (SILH, 0703164) and breaking correlations (ATLAS and CMS)

Can also be obtained from the Electroweak chiral Lagrangian

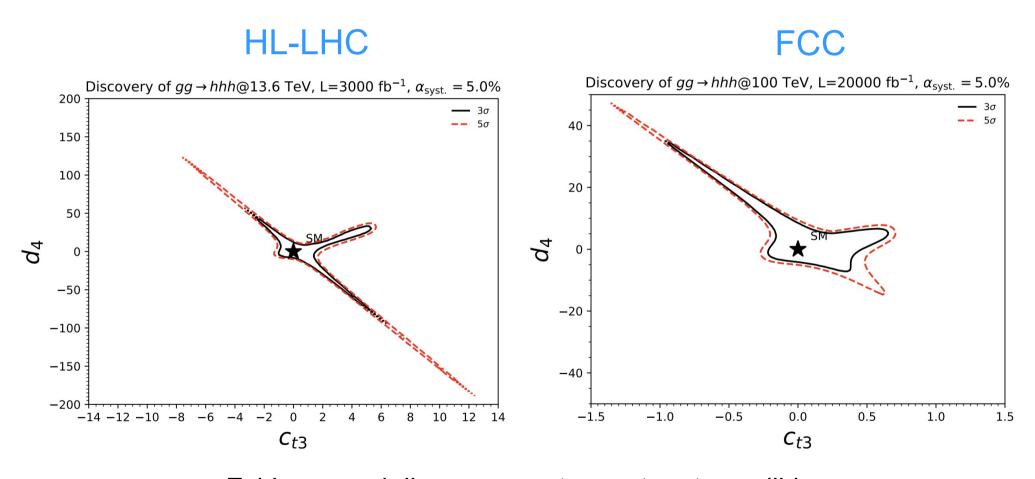
Current and expected bounds on the anomalous couplings

Percentage uncertainties								
	HL-LHC	FCC-hh	Ref.					
$\delta(d_3)$	50	5	[1905.03764]					
$\delta(c_{g1})$	2.3	0.49	[1905.03764]					
$\delta(c_{g2})$	5	1	[1502.00539]					
$\delta(c_{t1})$	3.3	1.0	[1905.03764]					
$\delta(c_{t2})$	30	10	[1502.00539]					
$\delta(c_{b1})$	3.6	0.43	[1905.03764]					
$\delta(c_{b2})$	30	10	[1502.00539]					

$$\left(\frac{c_{t3}}{2}\right)\bar{t}_L t_R h^3$$

$$\bar{t}$$

$$h$$


$$\bar{t}$$

$$h$$

$$\bar{t}$$

The couplings d_4 and c_{t3} can be bounded by triple Higgs production

Evidence and discovery regions for triple Higgs production at proton-proton colliders

Evidence and discovery contours at proton colliders

Two Real Singlet Extension of the SM TRSM

$$V(\Phi, \varphi_i) = V_{SM}(\Phi) + V(\Phi, S, X)$$

Reduce the number of parameters by imposing

$$\mathbb{Z}_2^S : S \rightarrow -S$$
, $X \rightarrow X$

$$\mathbb{Z}_2^X : S \rightarrow S$$
, $X \rightarrow -X$

$$V(\Phi, X, S) = \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + \mu_{S}^{2} S^{2} + \lambda_{S} S^{4}$$
$$+ \mu_{X}^{2} X^{2} + \lambda_{X} X^{4} + \lambda_{\Phi S} \Phi^{\dagger} \Phi X^{2} + \lambda_{SX} S^{2} X^{2}$$

$$S = (\phi_S + v_S) / \sqrt{2}$$
$$X = (\phi_V + v_S) / \sqrt{2}$$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R(\theta_X, \theta_S) \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}$$

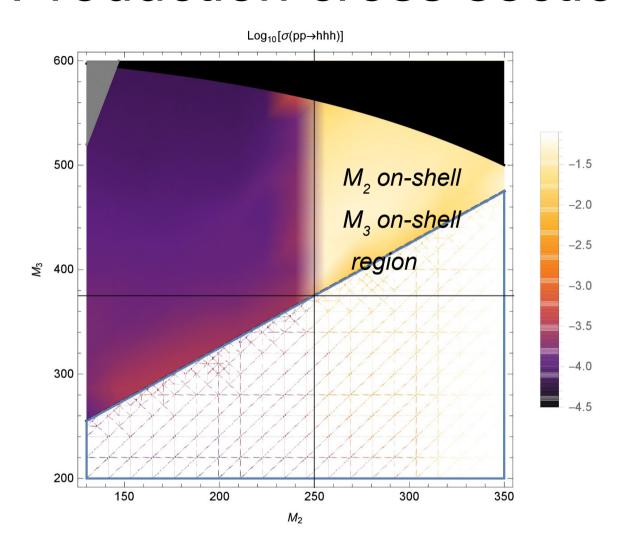
 $h_1 = h$ is the SM Higgs boson

$$M_1 = 125 \, GeV$$

Free independent parameters

$$M_{2,}M_{3,}\theta_{hS}$$
 , θ_{hX} , θ_{SX} , v_{S} , v_{X}

Robens, Stefaniak, Wittbrodt: 1908.08554


Old Benchmark Scenario of Study BP3

The BP3 Scenario introduced in 1908.08554 which allows for a large $h_1h_1h_1$ production while obeying current theoretical and experimental constraints.

Parameter	Value
M_1	$125.09~{\rm GeV}$
M_2	$[125,\ 500]\ \mathrm{GeV}$
M_3	$[255,\ 650]\ \mathrm{GeV}$
$ heta_{hS}$	-0.129
$ heta_{hX}$	0.226
$ heta_{SX}$	-0.899
v_S	$140~{\rm GeV}$
v_X	$100~{\rm GeV}$

Production cross section

The X-Section can reach up to 50 fb for M_2 ~(263,280) GeV and M_3 ~450 GeV

Old benchmark points

Label	(M_2,M_3)	$\varepsilon_{\mathrm{Sig.}}$	$S _{300fb^{-1}}$	$arepsilon_{ m Bkg.}$	$B\big _{300 fb^{-1}}$	$\mathrm{sig} _{300\mathrm{fb}^{-1}}$	$\mathrm{sig} _{3000\mathrm{fb}^{-1}}$
	[GeV]						
\mathbf{A}	(255, 504)	0.025	14.12	8.50×10^{-4}	19.16	2.92	9.23
${f B}$	(263, 455)	0.019	17.03	3.60×10^{-5}	8.11	4.78	15.11
${f C}$	(287, 502)	0.030	20.71	9.13×10^{-5}	20.60	4.01	12.68
\mathbf{D}	(290, 454)	0.044	37.32	1.96×10^{-4}	44.19	5.02	15.86
${f E}$	(320, 503)	0.051	32.54	2.73×10^{-4}	61.55	3.76	11.88
${f F}$	(264, 504)	0.028	18.18	9.13×10^{-5}	20.60	3.56	11.27
${f G}$	(280, 455)	0.044	38.70	1.96×10^{-4}	44.19	5.18	16.39
\mathbf{H}	(300, 475)	0.054	41.27	2.95×10^{-4}	66.46	4.64	14.68
\mathbf{I}	(310, 500)	0.063	41.42	3.97×10^{-4}	89.59	4.09	12.94
${f J}$	(280, 500)	0.029	20.67	9.14×10^{-5}	20.60	4.00	12.65

These points are associated with large couplings which can break perturbativity at the energy scale MZ

Determine phase space that enhances triple Higgs production in the TRSM based on

Determine phase space that enhances triple Higgs production in the TRSM based on

Perturbative conditions

$$\lambda_{11} < \frac{\pi^2}{3} \approx 3.3, \quad \lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4, \quad \lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$$

Determine phase space that enhances triple Higgs production in the TRSM based on

Perturbative conditions

$$\lambda_{11} < \frac{\pi^2}{3} \approx 3.3, \quad \lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4, \quad \lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$$

Boundedness from below

Determine phase space that enhances triple Higgs production in the TRSM based on

Perturbative conditions

$$\lambda_{11} < \frac{\pi^2}{3} \approx 3.3, \quad \lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4, \quad \lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$$

Boundedness from below

Experimental constraints from HiggsTools (HiggsSignals and HiggsBounds)

Determine phase space that enhances triple Higgs production in the TRSM based on

Perturbative conditions

$$\lambda_{11} < \frac{\pi^2}{3} \approx 3.3, \quad \lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4, \quad \lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$$

Boundedness from below

Experimental constraints from HiggsTools (HiggsSignals and HiggsBounds)

Relevant HiggsBounds Experimental Analyses							
Processes	Experiment	Int. Luminosity	arXiv ref.				
$gg \to S \to W^+W^-, ZZ$	ATLAS	$139 \; {\rm fb^{-1}}$	2004.14636 [57]				
$gg \to S \to ZZ$	ATLAS	$139 \; {\rm fb^{-1}}$	2009.14791 [58]				
$gg \to S \to h_1 h_1 \to (b\bar{b})(\tau^+\tau^-)$	CMS	$137 \; {\rm fb^{-1}}$	2106.10361 [59]				
$(b\bar{b}, \tau^+\tau^-, W^+W^-, ZZ, \gamma\gamma)(b\bar{b})$		35.9 fb^{-1}	1811.09689 [60]				
$gg \to S \to h_1 h_1 \to$	ATLAS	$36.1 \; \mathrm{fb^{-1}}$	1906.02025 [61]				
$(b\bar{b},\tau^+\tau^-,W^+W^-,\gamma\gamma)^2$							
$gg \to S \to h_1 h_1 \to (b\bar{b})(\gamma\gamma)$	ATLAS	$36.1 \; {\rm fb^{-1}}$	1807.04873 [62]				
$gg \to S \to W^+W^-, ZZ$	ATLAS	$36.1 \; {\rm fb^{-1}}$	1808.02380 [63]				
$pp \to S \to ZZ$ (incl. VBF)	CMS	$35.9 \; \mathrm{fb^{-1}}$	1804.01939 [64]				
$gg \to S \to h_1 h_1 \to (b\bar{b})(b\bar{b})$	CMS	35.9 fb^{-1}	1806.03548 [65]				
$gg \to S \to h_1 h_1 \to (b\bar{b})(b\bar{b})$	ATLAS	$36.1 \; \mathrm{fb^{-1}}$	1806.03548 [65]				

Determine phase space that enhances triple Higgs production in the TRSM based on

Perturbative conditions

$$\lambda_{11} < \frac{\pi^2}{3} \approx 3.3, \quad \lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4, \quad \lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$$

Boundedness from below

Experimental constraints from HiggsTools (HiggsSignals and HiggsBounds)

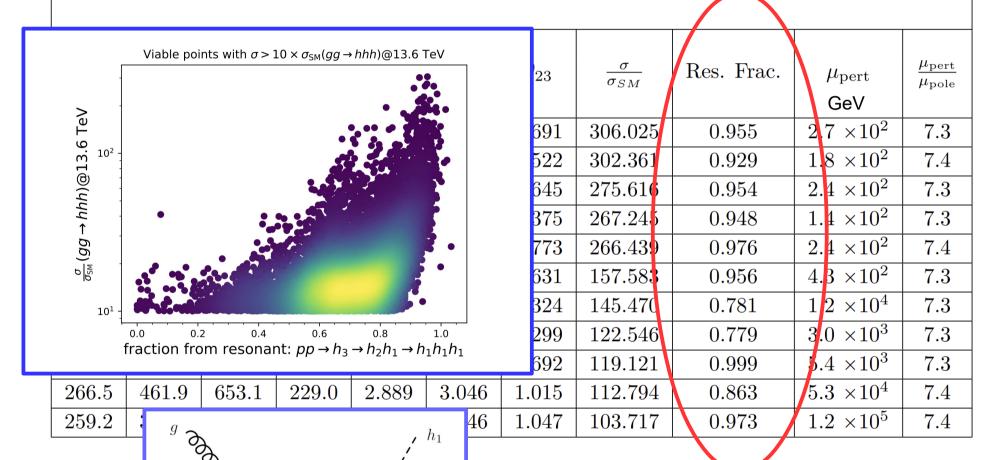
We consider the threshold

$$\sigma_{3h_1} > 100 \, \sigma_{3h_1}^{SM},$$

Our analysis entailed 530,000 phase space points

Only 130 points fulfilled all the conditions

See Osama Karkout talk


Benchmark points for enl	hanced triple Hig	rs production
--------------------------	-------------------	---------------

M_2	M_3	v_2	v_3	$ heta_{12}$	θ_{13}	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	Res. Frac.	$\mu_{ m pert}$	$rac{\mu_{ m pert}}{\mu_{ m pole}}$
									GeV	
259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	2.7×10^2	7.3
270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	1.8×10^2	7.4
268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	2.4×10^{2}	7.3
272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	1.4×10^2	7.3
269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	2.4×10^{2}	7.4
269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	4.3×10^2	7.3
259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	1.2×10^4	7.3
283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	3.0×10^{3}	7.3
264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	5.4×10^{3}	7.3
266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	5.3×10^4	7.4
259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.2×10^5	7.4

Update of

A. Papaefstathiou, T. Robens, GTX: 2101.00037/ JHEP 05 (2021), 193

Benchmark points for enhanced triple Higgs production

 h_3

	Benchmark points for enhanced triple Higgs production										
M_2	M_3	v_2	v_3	$ heta_{12}$	$ heta_{13}$	θ_{23}	$rac{\sigma}{\sigma_{SM}}$	Res. Frac.	$\mu_{ m pert}$ GeV	$rac{\mu_{ ext{pert}}}{\mu_{ ext{pole}}}$	
259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	2.7×10^{2}	7.3	
270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	1.8×10^{2}	74	
268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	2.4×10^{2}	7.3	
272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	1.4×10^2	7.3	
269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	2.4×10^{2}	7.4	
269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	4.3×10^{2}	73	
259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	1.2×10^4	7.3	
283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	3.0×10^{3}	7.3	
264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	5.4×10^{3}	7.3	
266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	5.3×10^4	7.4	
259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.2×10^5	7.4	

$$\lambda_{11} < \frac{\pi^2}{3} \approx 3.3, \quad \lambda_{22}, \lambda_{33} < \frac{4\pi^2}{9} \approx 4.4, \quad \lambda_{12}, \lambda_{13}, \lambda_{23} < 2\pi^2 \approx 20$$

Benchmark	points i	for	enhanced	triple	Higgs	production
-----------	----------	-----	----------	--------	-------	------------

M_2	M_3	v_2	v_3	$ heta_{12}$	θ_{13}	θ_{23}	$\frac{\sigma}{\sigma_{SM}}$	Res. Frac.	$\mu_{ m pert}$	$rac{\mu_{ m pert}}{\mu_{ m pole}}$
250.0	405.0	015.0	100.0	0.101	0.169	F 601	200.005	0.055	GeV	7.0
259.0	495.0	215.8	180.8	6.191	0.163	5.691	306.025	0.955	2.7×10^2	7.3
270.6	444.7	122.4	847.2	0.268	0.030	0.522	302.361	0.929	1.8×10^2	7.4
268.6	452.7	137.8	784.8	0.263	0.023	0.645	275.616	0.954	2.4×10^2	7.3
272.6	480.7	928.3	143.7	3.098	2.9	2.375	267.245	0.948	1.4×10^2	7.3
269.0	409.8	138.0	599.4	0.244	0.004	0.773	266.439	0.976	2.4×10^{2}	7.4
269.1	486.9	227.5	307.9	0.074	6.149	2.631	157.583	0.956	4.3×10^{2}	7.3
259.2	577.0	289.0	275.6	0.137	6.148	2.324	145.470	0.781	1.2×10^4	7.3
283.7	575.0	259.4	330.4	0.137	6.152	2.299	122.546	0.779	3.0×10^{3}	7.3
264.3	469.3	207.3	359.5	0.285	6.277	0.692	119.121	0.999	5.4×10^{3}	7.3
266.5	461.9	653.1	229.0	2.889	3.046	1.015	112.794	0.863	5.3×10^4	7.4
259.2	399.7	444.5	217.0	2.917	3.046	1.047	103.717	0.973	1.2×10^{3}	7.4

In practice our points fulfil the following theoretical relationship

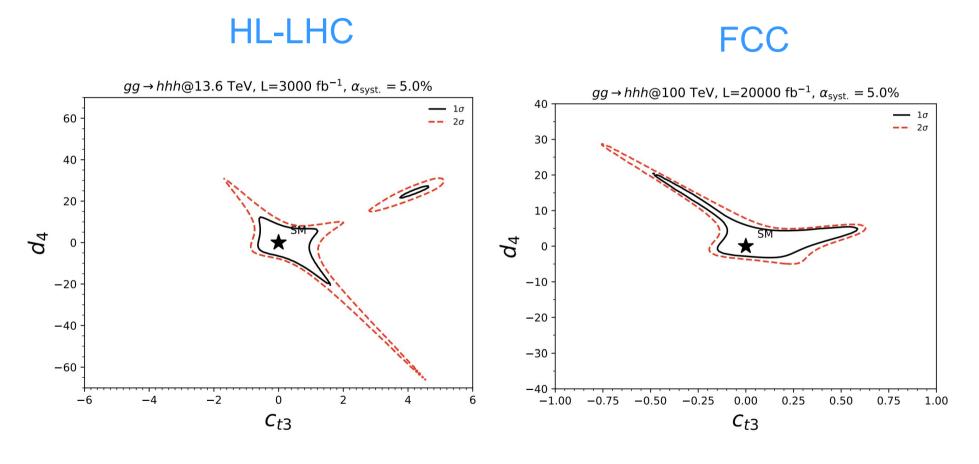
$$\ln(\mu_{\text{pole}}/\mu_{\text{pert}}) = 2$$

$$\mu_{\rm pole} \approx 7.4 \mu_{\rm pert}$$

Closing Remarks

- The 6-b jets final state is a good candidate to search for h₁h₁h₁ within and beyond the SM
- Extended scalar sectors can be probed through h₁h₁h₁ even in the HL-LHC (consider for instance the TRSM).
- We have presented projections on the potential values that future hadron colliders can explore on the cubic and quartic self couplings.
- The double resonance dominance allows to find a universal simplified approach which allows to get bounds on potential optimal selection points in a model independent way.

Acknowledgements


This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945422

Backup

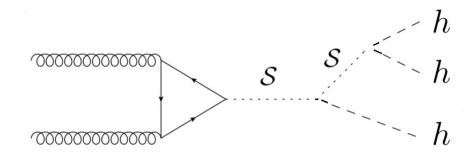
$$\mathcal{L}_{h^{n}} = -\mu^{2}|H|^{2} - \lambda|H|^{4} - \left(y_{t}\bar{Q}_{L}H^{c}t_{R} + y_{b}\bar{Q}_{L}Hb_{R} + \text{h.c.}\right) + \frac{c_{H}}{2\Lambda^{2}}(\partial^{\mu}|H|^{2})^{2} - \frac{c_{6}}{\Lambda^{2}}\lambda_{\text{SM}}|H|^{6} + \frac{\alpha_{s}c_{g}}{4\pi\Lambda^{2}}|H|^{2}G_{\mu\nu}^{a}G_{a}^{\mu\nu} - \left(\frac{c_{t}}{\Lambda^{2}}y_{t}|H|^{2}\bar{Q}_{L}H^{c}t_{R} + \frac{c_{b}}{\Lambda^{2}}y_{b}|H|^{2}\bar{Q}_{L}Hb_{R} + \text{h.c.}\right),$$

Confidence regions on the anomalous couplings at proton-proton colliders

In this plot it is assumed that the SM is the underlying theory

Adding an Extra-Scalar Singlet

The x-SM potential


$$\begin{split} V(\Phi\,,S) = & \mu_\Phi^2 \Phi^\dagger \, \Phi + \lambda_\Phi \big(\Phi^\dagger \Phi\big)^2 + \big(\frac{a_1}{2}\big) \big(\Phi^\dagger \Phi\big) S \qquad \text{Kotwal et al. 1605.06123} \\ & + \big(\frac{a_2}{2}\big) \big(\Phi^\dagger \Phi\big) S^2 + \big(\frac{b_2}{2}\big) S^2 + \big(\frac{b_3}{3}\big) S^3 + \big(\frac{b_4}{4}\big) S^4 \end{split}$$

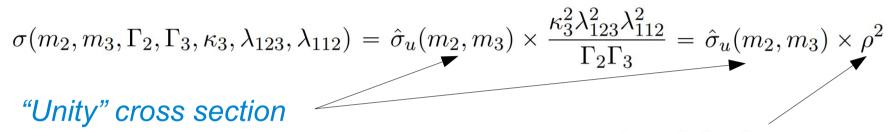
$$h_1 = h\cos\theta + \phi_s\sin\theta$$

$$h_2 = -h\sin\theta + \phi_s\cos\theta$$

$$S = (\phi_S + v_S)/\sqrt{2}$$

Triple Higgs production in the presence of an extra-scalar

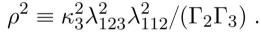
Analysis results

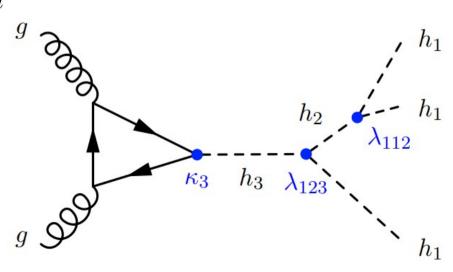

Benchmark points which lead to a Strong-First Order EW Phase Transition

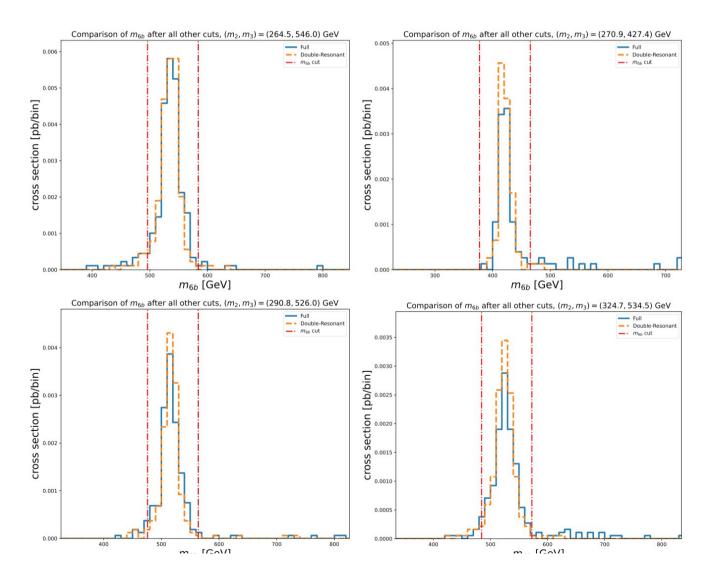
Benchmark	$\cos \theta$	$\sin \theta$	m_2	Γ_{h_2}	x_0	λ	a_1	a_2	b_3	b_4	$\frac{\sigma(h_1h_1)}{\sigma(hh)_{\rm SM}}$	$\frac{\sigma(h_1h_1h_1)}{\sigma(hhh)_{\text{SM}}}$
£			(GeV)	(GeV)	(GeV)		(GeV)		(GeV)		, John	/5/11
B1max	0.976	0.220	341	2.42	257	0.92	-377	0.392	-403	0.77	22.44	60.55
_ B2max	0.982	0.188	353	2.17	265	0.99	-400	0.446	-378	0.69	22.43	56.69
B3max	0.983	0.181	415	1.59	54.6	0.17	-642	3.80	-214	0.16	6.43	3.01
B4max	0.984	0.176	455	2.08	47.4	0.18	-707	4.63	-607	0.85	5.19	3.37
B5max	0.986	0.164	511	2.44	40.7	0.18	-744	5.17	-618	0.82	3.49	2.94
B6max	0.988	0.153	563	2.92	40.5	0.19	-844	5.85	-151	0.083	2.79	3.60
B7max	0.992	0.129	604	2.82	36.4	0.18	-898	7.36	-424	0.28	2.51	4.70
B8max	0.994	0.113	662	2.97	32.9	0.17	-976	8.98	-542	0.53	2.28	4.91
B9max	0.993	0.115	714	3.27	29.2	0.18	-941	8.28	497	0.38	1.98	2.68
B10max	0.996	0.094	767	2.83	24.5	0.17	-920	9.87	575	0.41	1.95	2.35
B11max	0.994	0.105	840	4.03	21.7	0.19	-988	9.22	356	0.83	1.76	1.03

Identification of the Extra-scalar at 100 TeV

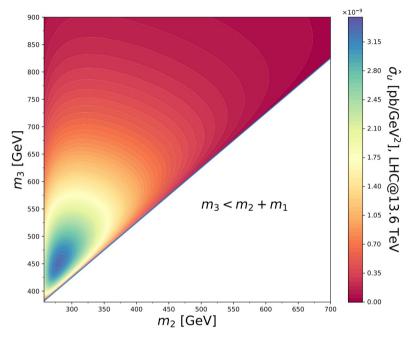
Benchmark	Significance
B1max	46.6
B2max	42.9
B3max	2.9
B4max	3.7
B5max	3.0
B6max	3.8
B7max	5.3
B8max	7.8
B9max	5.9
B10max	4.9
B11max	2.3


When the double resonant channel is dominant


$$\kappa_3 = 1, \, \lambda_{123} = \lambda_{112} = 1 \text{ GeV}$$


$$\Gamma_2 = \Gamma_3 = 1 \text{ GeV}$$

$$\Gamma_i \ll M_i$$

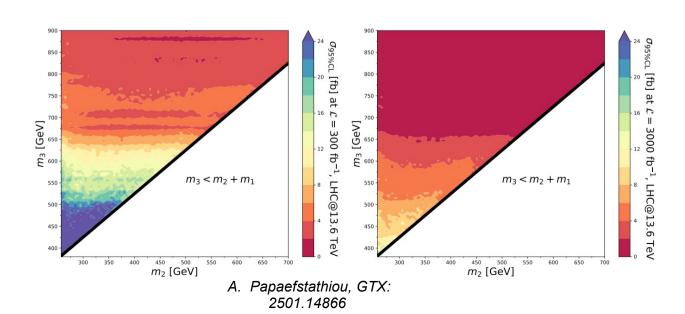


Model dependent factor

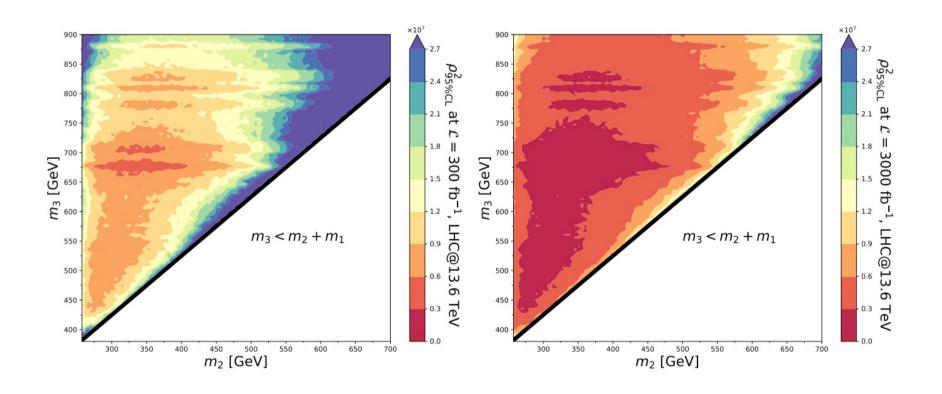
A. Papaefstathiou, GTX: 2501.14866

Define a "universal" set of selection cuts by optimizing

$$\Sigma_{\Pi} \equiv \prod_{i=1}^{N} \Sigma_{i} = \prod_{i=1}^{N} \frac{S_{i}}{\sqrt{B}} \qquad \qquad \Sigma_{\Pi} = \left(\prod_{j=1}^{N} \frac{\sqrt{\mathcal{L}}\sigma_{j}}{\sqrt{\sigma_{B}}}\right) \left(\prod_{i=1}^{N} \frac{\varepsilon_{i}}{\sqrt{\varepsilon_{B,i}}}\right)$$


$$\Sigma = \frac{\varepsilon_S \sigma_S \mathcal{L}}{\sqrt{\varepsilon_B \sigma_B \mathcal{L}}} \quad \Sigma = 2$$

$$\sigma_{95\%CL} = 2 \frac{\sqrt{\varepsilon_B \sigma_B}}{\varepsilon_S \sqrt{\mathcal{L}}}$$


"Universal" set of selection cuts

Observable	Constraint
$p_{Tmin,b}$	37.0
$ \eta_{b,max} $	2.95
$\chi^{2,(6)}$	12.0
$\chi^{2,(4)}$	34.0
Δm_{6b}^{inv}	$^{+38.0}_{-50.0}$
m_{4b}^{inv}	$\leq m_3$
$p_T(h_1^i)$	$\geqslant [50, 50, 0]$
$\Delta m_{\mathrm{min,med,max}}$	$\geqslant [15, 14, 20]$
$\Delta R(h_1^i, h_1^j)$	≤ 3.5
$\Delta R_{bb}(h_1)$	≤ 3.5

For the TRSM

A. Papaefstathiou, GTX: 2501.14866