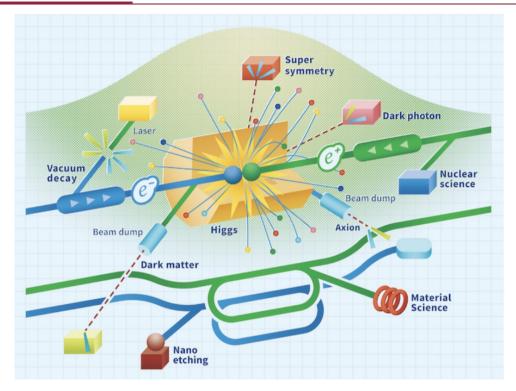
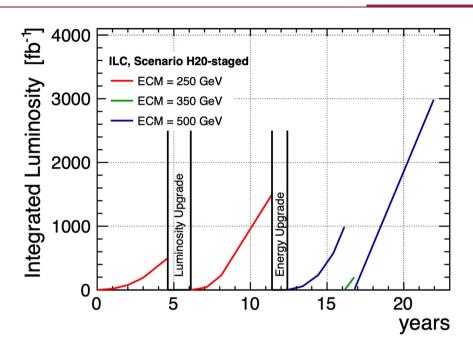


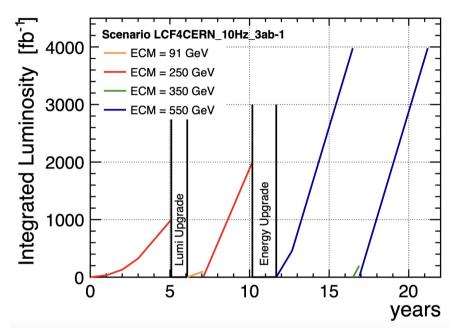
$e^-e^+ \rightarrow s\bar{s}$ at $\sqrt{s} = 250$ GeV in future linear colliders

Jesús P. Márquez Hernández (IJCLAB, CNRS)



ILC → Linear Collider Facility at CERN


- Proposed linear collider that updates the ILC concept:
 - $\triangleright P(e^{-},e^{+}) = (\pm 0.8, \pm 0.3)$
 - Possibility of improve P(e⁺) = (±0.6)
 - ⊳2 IPs
 - \sqrt{s} = (91.2), **250**, (350), 550 GeV
- ► Flexibility to adopt CLIC-like or C³-like acceleration technology in the future
 - ▶ Reaching 1-3 TeV or even more!



For a deeper introduction: I recommend you an introductory talk (by J. List) or the Linear Collider Vision paper introducing it (2503.24049)

ILC H20-staged & LCF4CERN run plans

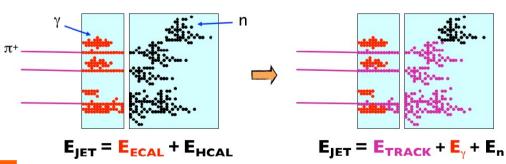
	$91~{\rm GeV}$	$250~{ m GeV}$	$350~{\rm GeV}$	$500~{ m GeV}$	$1000~{\rm GeV}$
$\int \mathcal{L} \ (ab^{-1})$	0.1	2	0.2	4	8
duration (yr)	1.5	11	0.75	9	10
beam polarization $(e^-/e^+; \%)$	80/30	80/30	80/30	80/30	80/20
(-, -+, +-, ++) (%)	(10,40,40,10)	(5,45,45,5)	(5,68,22,5)	(10,40,40,10)	(10,40,40,10)
$\delta_{ISR}~(\%)$	10.8	11.7	12.0	12.4	13.0
$\delta_{BS}~(\%)$	0.16	2.6	1.9	4.5	10.5

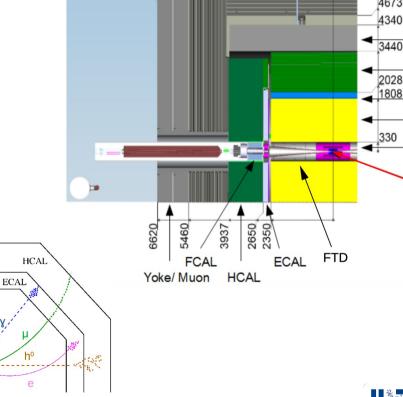
Quantity	Symbol	Unit	Initial-250	Upgr	ades	Initial-550	Upgrade
Centre-of-mass energy	\sqrt{s}	GeV	250	250	550	550	550
Inst. Luminosity	\mathscr{L} (10 34	cm ⁻² s ⁻¹)	2.7	5.4	7.7	3.9	7.7
Polarisation	$ P(e^{-}) / $	$P(e^+) \ (\%)$	80 / 30	80 / 30	80 / 60	80 / 30	80 / 60
Bunches per pulse	n _{bunch}	1	1312	2625	2625	1312	2625
Average beam power	Pave	MW	10.5	21	46	23	46
Site AC power	$P_{\rm site}$	MW	143	182	322	250	322
Construction cost		BCHF	8.29	+0.77	+5.46	13.13	+1.40
Operation & maintenance	е	MCHF/y	170	196	342	291	342
Electricity		MCHF/y	66	77	142	115	142
Operating Personnel		FTE	640	640	850	850	850

International Large Detector (ILD)

Yoke/ Muon

Coil

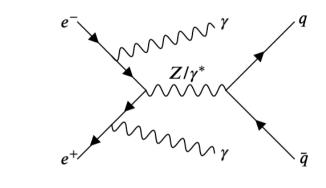

HCAL

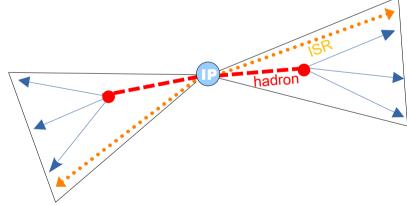

ECAL

TPC

Vertex

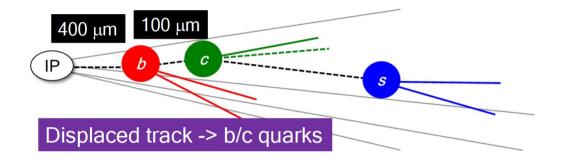
- It features excellent tracking, vertexing and IP constraining capabilities with minimal material budget
- ► High granularity, compact and hermetic calorimetry system
- Full simulation available: detailed geometry, materials, reconstruction chain, etc.
- **▶** Optimized for Particle Flow:
 - Determination of single particles
 - ▶ Based on Particle Flow Algorithms (PFA)
 - ▶ Powerful Particle identification (PID) tools
 - Jet energy measurement, flavor tagging, etc.




ILD

(b & c) diquark production in e⁻e⁺ collisions

- ► Topology: Two back-to-back jets
- ►MC simulations at 250 GeV (Whizard 1.95)
 - $P(e^{-},e^{+}) = (-0.8, +0.3), (+0.8, -0.3)$
 - ▶ Full simulation of the International Large Detector (ILD)
- Procedure:
 - > Background suppression → Selection of $q\bar{q}$ events
 - ▶ Flavor tagging \rightarrow Selection of $b\overline{b}$ & $c\overline{c}$ events
 - Double tagging (b-tag, c-tag)
- \triangleright Charge measurement \rightarrow Quark-Antiquark identification
 - Double charge

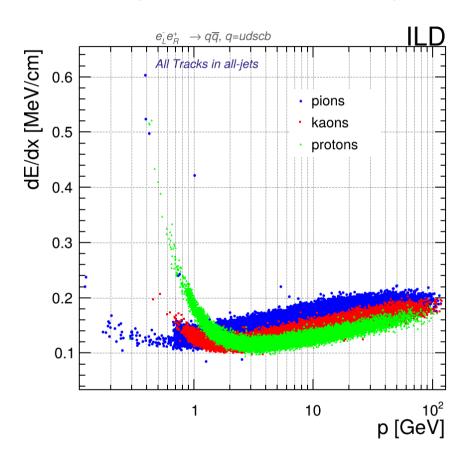

How can we move from here to strange quarks (or u/d quarks)? Can we get ‰-level uncertainties like for the b & c quarks?

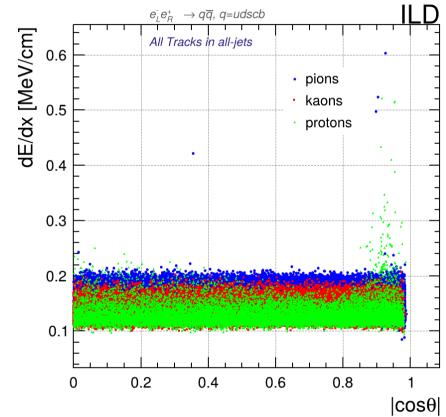
From b/c to strange quark

- ► Flavor tagging of b and c jets is "easy":
 - Decay of b/c hadrons: displaced vertexes at a distance (τ_q·c) from de IP

- ▶ But the strange quark produce kaons... no decays in the tracker to be used!
 - ▶We need to build/use an s-tag relying on kaon PID
 - Our first attempt is a "classic" cut-based analysis
 - I worked on top of the previous analysis done by Y. Okugawa in his thesis, directed by R. Poeschl

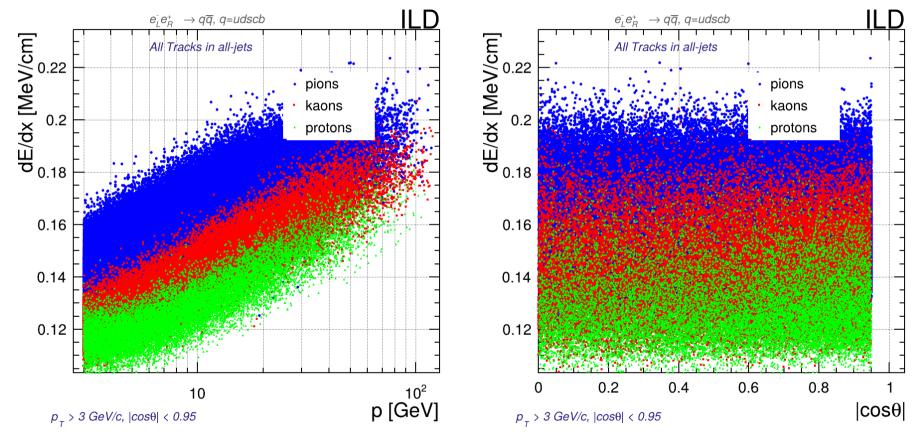
Redoing of the ssbarAnalysis


- ► Preselection of the s-quark/ud-quark signals (Modification of Y. Okugawa's analysis)
 - After the qq preselection

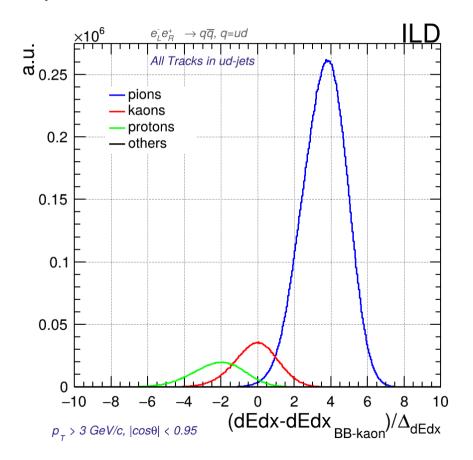

	#	Name	Quantity	Description	
	1	b-tag	btag < 0.3	Reject events with b-like jets	
uds selection	2	c-tag	ctag < 0.65	Reject events with c-like jets	
	3	nvtx	nvtx = 1	Jets should have only PV as vertex	
1	4	Leading momentum	$p_{LPFO} > 15\mathrm{GeV}$	Leading momentum cut	
Cut-based s-tag (or ud-tag)	5	LPFO acollinearity	$\cos\theta_{LPFO_{1,2}} > 0.97$	LPFOs should be back-to-back	
	6	Offset	$V_0 = \sqrt{d_0^2 + z_0^2} < 1 \mathrm{mm}$	Offset cut to reject Λ_0 contribution	
(or du tag)	7a	dE/dx PID (π)	New angular	π^{\pm} identification	
	7b	dE/dx PID (K)	k-distance cuts	K^{\pm} identification	
	8	SPFO	Veto $p_{SPFO} > 10 \mathrm{GeV}$ and	Attenuate the charge migration by rejecting	
Migration correction			charge opposite to LPFO.	oppositely charge LPFO competitor	
	9	Charge	$Q_{LPFO1} \times Q_{LPFO2} < 0$	Charge of LPFOs from both sides has	
	l		opposite charge.		

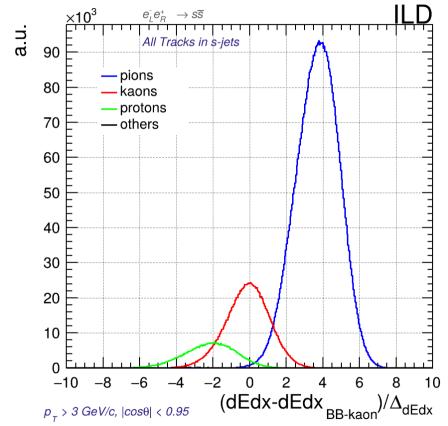
PID via dE/dx: Starting point

► Not all tracks/PFOs are valid for dE/dx



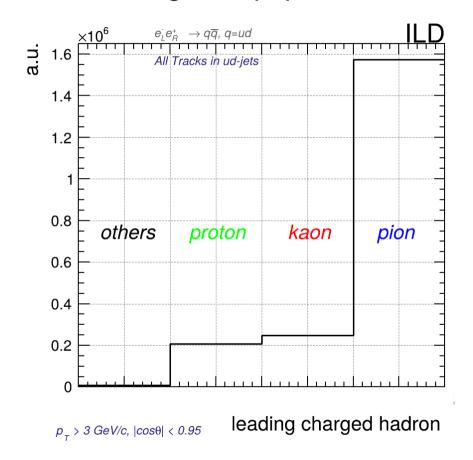
PID: Preselection

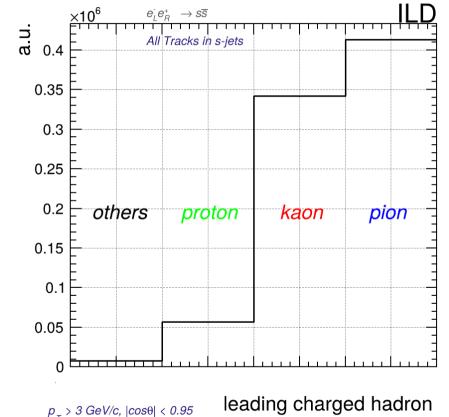

►These three bands can be used to measure an statistical distance



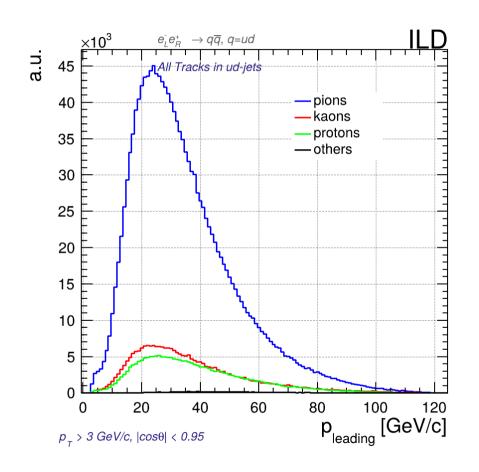
s vs ud: k-distance of tracks

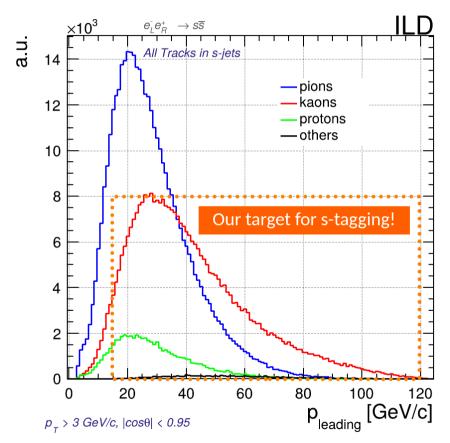
Example of distance from tracks dE/dx and the theoretical values for kaons



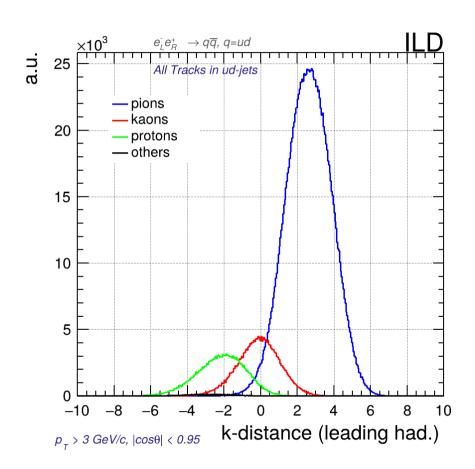


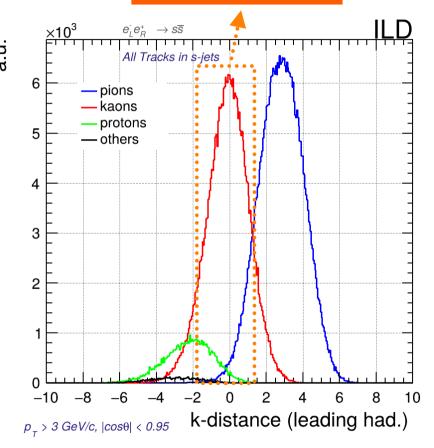
s vs ud: leading charged hadrons


▶ Different leading track population between s-jets and u/d-jets

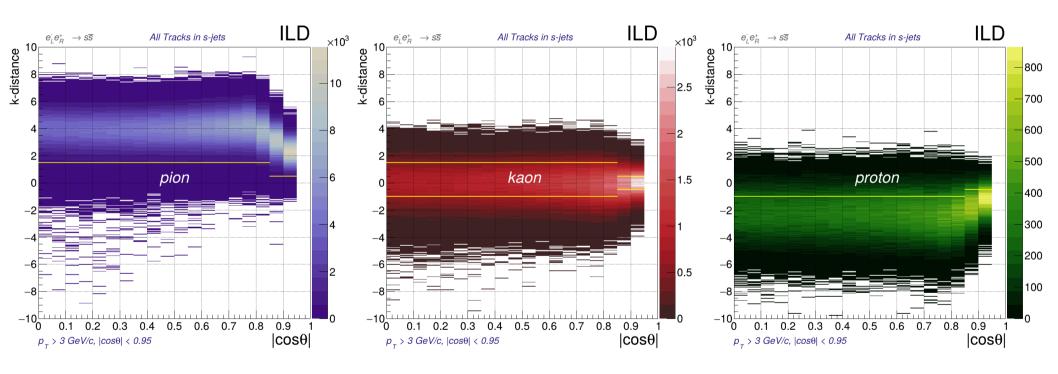


s vs ud: leading charged hadrons





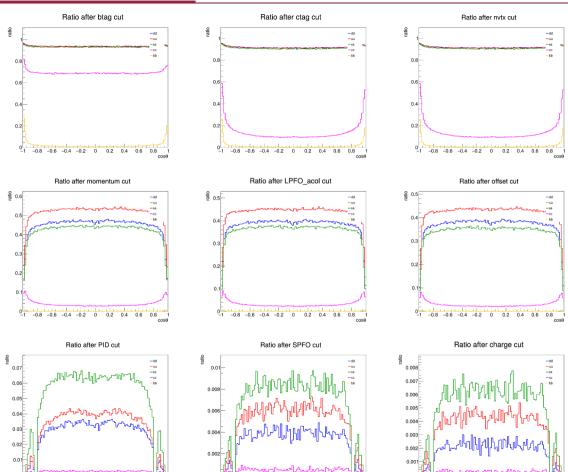
s vs ud: k-dist of leading charged hadrons


Our target for s-tagging!

2d view of k-distance (s quarks)

► Angular cuts are performed in these distributions for selection of pions/kaons

Caveat: The cuts shown here are defined by eye; we'll see later how to refine them


Cuts visualization (K selection for s-jets)

- ► Results for P(e-,e+)=(-0.8,+0.3)
- Flat when $|\cos(\theta)| < 0.8$

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%
+ Cut 7	2.37%	2.9%	4.8%	0.218%	0.00191%
+ Cut 8	0.285%	0.464%	0.634%	0.0432%	0.00115%
+ Cut 9	0.163%	0.329%	0.481%	0.0207%	0.000573%

Preliminary results

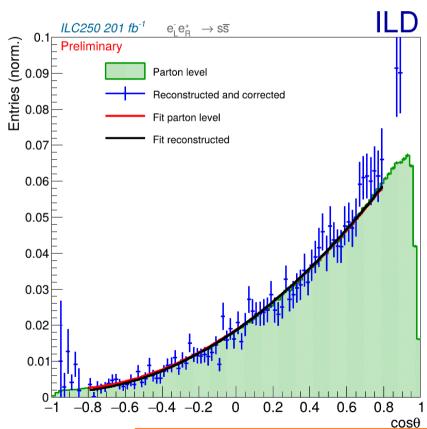
Reconstruction of A_{FR}

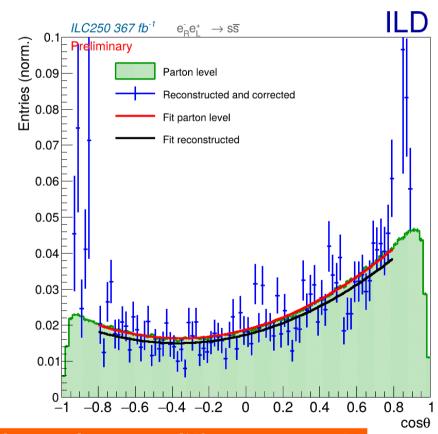
- The signal data is estimated by resting the expected angular distributions of backgrounds and doing a set of corrections to the selected signal:
 - ▶ Efficiency estimation
 - ► Kaon PID stability
 - Charge migration (p-q method)
- ► A fit is performed to the corrected signal:

$$\frac{d\sigma}{d\cos\theta} = S\left(1 + \cos^2\theta\right) + A\cos\theta$$

$$A_{FB} = \frac{\int_0^1 d\sigma_{\theta} d\cos\theta - \int_{-1}^0 d\sigma_{\theta} d\cos\theta}{\int_{-1}^1 d\sigma_{\theta} d\cos\theta}$$

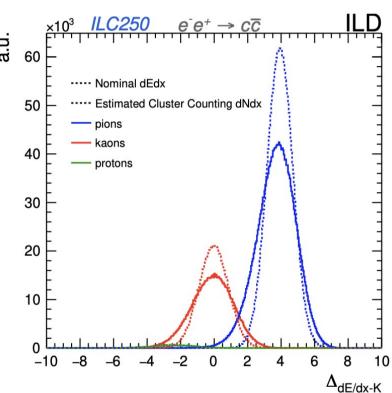
$$A_{FB}^{exp} = \frac{N_F - N_B}{N_F + N_B}$$


- ► Pseudo-experiments are performed for an estimation of systematical uncertainties due to the "tagging and correction" process (impact of q = u, d, b, c backgrounds)
 - Other systematical uncertainties are not yet consider (beam polarization, diboson backgrounds, angular correlations, etc.), but minor contributions are expected



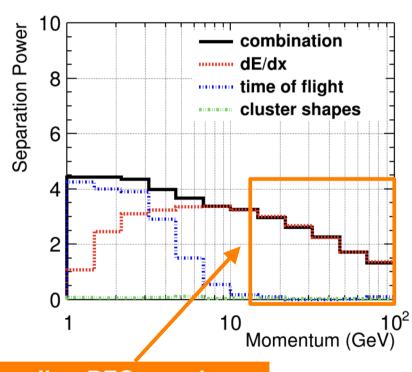
Fit to reconstructed signal

Fit constrained to $|\cos\theta|$ < 0.8 shows good agreement


Left & right handed helicity amplitudes produce very different outputs!

PID hardware prospects

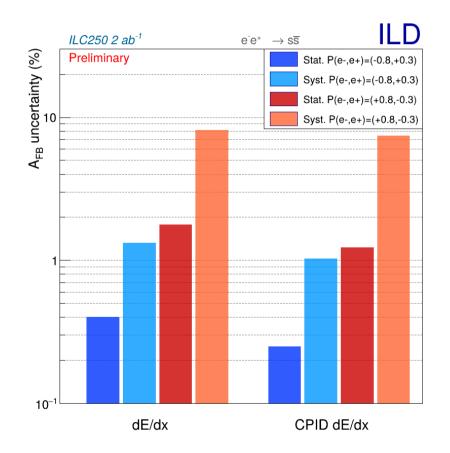
- ► A Marlin processor (CheatdEdxProcessor) is used for estimates of better PID cases
 - ▶ It uses fits to the bins of the 2D k-distance distribution
 - ▶ Then narrows those fits and rewrites the PFO info
- ► We consider two different cases:
 - ≥30% improvement for a pixel TPC PID case (dN/dx)
 - ▶99% improvement for a Perfect PID case
- ► Only PFOs with PID available are improved

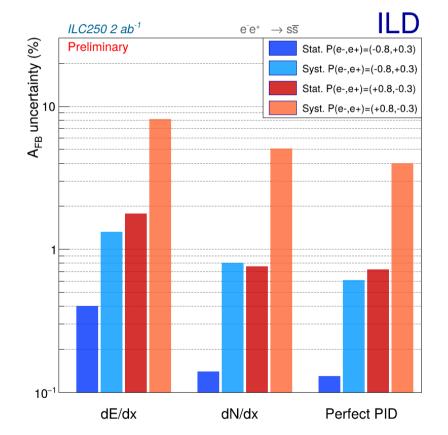

https://github.com/QQbarAnalysis/CheatdEdxDist

CPID for Kaon/Pion/Proton ID

- ► Comprehensive Particle ID Marlin processor:
 - ► Uses different PID inputs (dE/dx, TOF, etc.)
 - ▶ Uses a BDT-based ML algorithm for classification
 - ► Easy to adapt to different MC ids or PID info
- ► In our case, the CPID was trained tackling our leading PFOS:
 - ▶ Only Kaon/Pion/Proton separation
 - ▶3 GeV < Momentum < 100 GeV

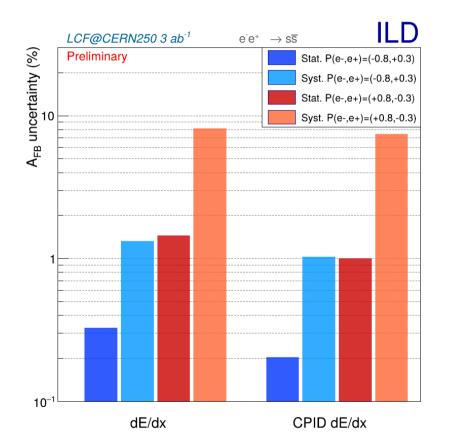
Leading PFOs are here

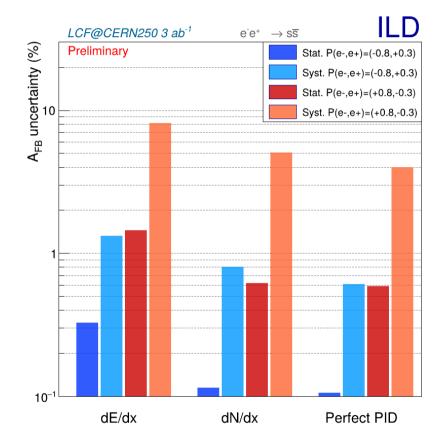

https://arxiv.org/abs/2307.15635 (U. Einhaus)



Preliminary results (ILC250)

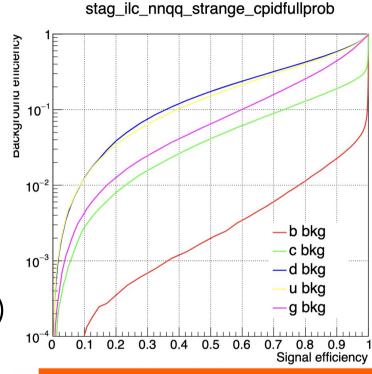
► Working points (WP) are not fully optimized yet





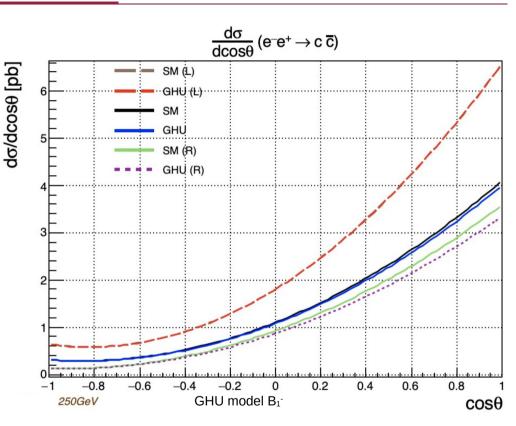
Preliminary results (LCF@CERN250)

Working points (WP) are not fully optimized yet



Ongoing work: ParT s-tagging

- ► Particle Transformers: state-of-the-art ML software
- It uses CPID for the tracks PID
- ► It not only uses PID but all the jet variables
- ► It can be ~10x better than the cut-based approach
- Still has to be fully incorporated in the analysis (WIP)
 - ightharpoonup I'm running in 11-categories tagging (q, \overline{q} , gluon), which can reduce the cuts in the analysis into basically one:
 - \bullet S-tag + \overline{s} -tag combined cut (or ML selection)
 - And then check migration corrections


1% ss signal with 0.02% u/d backgrounds

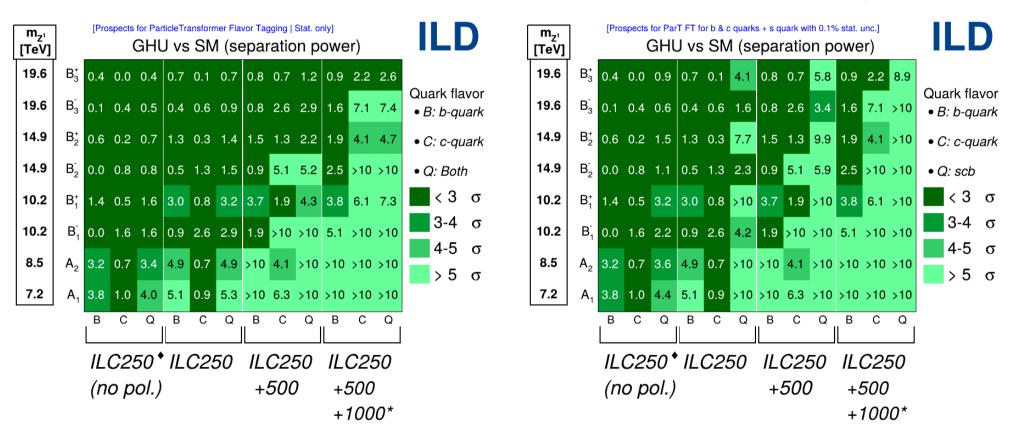
Gauge-Higgs Unification Models (GHU)

- Randall-Sundrum metric (5D)
- ► The symmetry breaking pattern is different than in the SM and features the Hosotani mechanism:
 - Masses are generated dynamically from the extra-dimension properties
- ► Only one parameter, Hosotani's angle θ_H , determines the projection of the 5D fields, fixing all physical effects:
 - \triangleright KK resonances of the Z/ γ with m_{kk} ~ O(10) TeV.
 - ► Modifications and new EW couplings/helic amplitudes.
 - ▶ Already visible deviations at 250GeV.


As **Benchmark**, we use the [Funatsu, Hatanaka, Hosotani, Orikasa, Yamatsu] models.

Future plans: GHU phenomenology

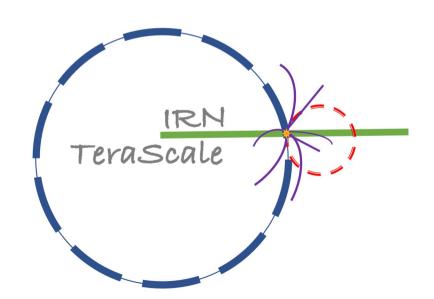
►ILC results: ParT b & c quarks A_{FB} (left) vs adding 1% unc. for s-quark A_{FB} (right)


Previous paper published with b & c quarks (2403.09144). An extension including s quark will be done with a new set of heavier models (Thanks to N. Yamatsu)

Future plans: GHU phenomenology

►ILC results: 1% stat. unc. for s-quark A_{FB} (left) vs 1‰ stat. unc. for s-quark A_{FB} (right)

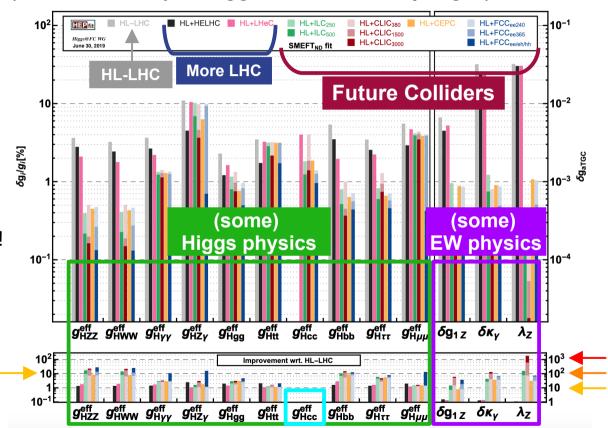
Great potential if we get s-quark uncertainties under 1%!


Conclusions/Overview

- ► A cut-based analysis has been re-tested and improved considering:
 - ▶ Software improvements: Using CPID for optimal dE/dx handling
 - ► Hardware prospects: A pixel TPC (dN/dx) or a perfect PID
- ▶There are many plans for the future of this analysis:
 - New MC simulation data will be produced in a couple of months
 - ▶ ParT double tagging is behind implemented
 - ► Extension to 500-550 GeV
 - ▶GHU discovery prospects can be done combining all the full simulation results
 - For the LCF@CERN

THANKS FOR YOUR ATTENTION

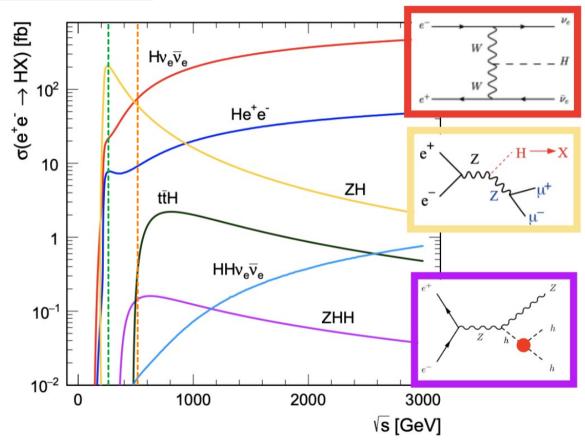
BACK-UP


Particle Colliders: What's next?

► Just some example: Expected sensitivity in **Higgs and aTGC couplings** (From SMEFT global fit)

Some measurements are O(10), $O(10^2)$, or even $O(10^3)$ better!

Others are unlocked by these experiments!


Future colliders: Unprecedented precisions for testing the SM and looking for BSM physics!

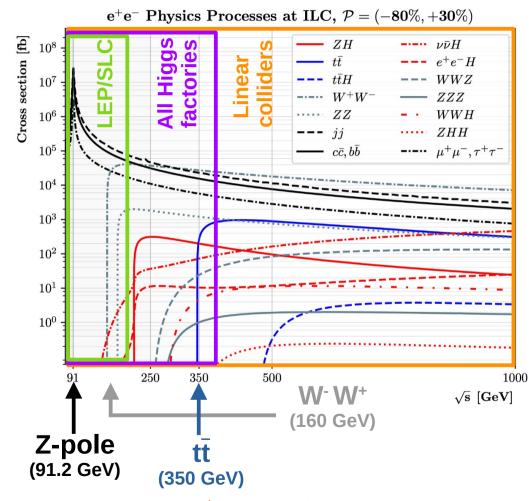
Relevant cross sections for e⁻e⁺(I)

Unpolarized e⁻e⁺

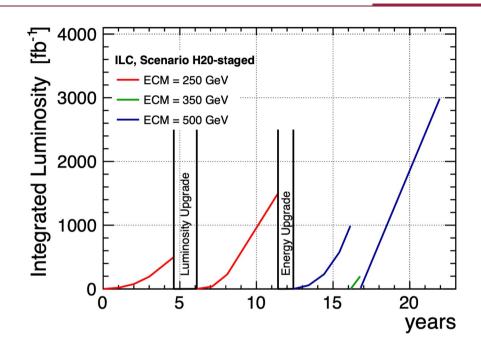
► At 250 GeV:

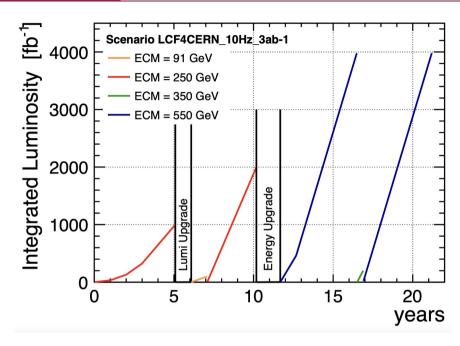
>ZH dominates.

►Over 500 GeV:


- ► Hvv dominates.
- ⊳ttH opens up.
- ►ZHH opens up.

Relevant cross sections for e⁻e⁺(II)

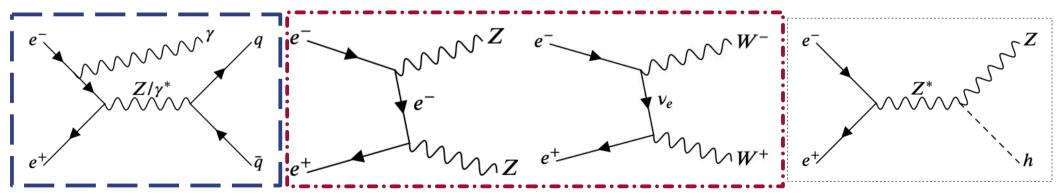



Polarized e⁻e⁺

ILC H20-staged & LCF4CERN run plans

	$91~{\rm GeV}$	$250~{ m GeV}$	$350~{\rm GeV}$	$500~{ m GeV}$	$1000~{\rm GeV}$
$\int \mathcal{L} (ab^{-1})$	0.1	2	0.2	4	8
duration (yr)	1.5	11	0.75	9	10
beam polarization $(e^-/e^+; \%)$	80/30	80/30	80/30	80/30	80/20
(-, -+, +-, ++) (%)	(10,40,40,10)	(5,45,45,5)	(5,68,22,5)	(10,40,40,10)	(10,40,40,10)
$\delta_{ISR}~(\%)$	10.8	11.7	12.0	12.4	13.0
$\delta_{BS}~(\%)$	0.16	2.6	1.9	4.5	10.5

Quantity	Symbol	Unit	Initial-250	Upgr	ades	Initial-550	Upgrade
Centre-of-mass energy	\sqrt{s}	GeV	250	250	550	550	550
Inst. Luminosity	\mathscr{L} (10 34	cm ⁻² s ⁻¹)	2.7	5.4	7.7	3.9	7.7
Polarisation	$ P(e^{-}) / $	$P(e^+) (\%)$	80 / 30	80 / 30	80 / 60	80 / 30	80 / 60
Bunches per pulse	n _{bunch}	1	1312	2625	2625	1312	2625
Average beam power	P_{ave}	MW	10.5	21	46	23	46
Site AC power	$P_{\rm site}$	MW	143	182	322	250	322
Construction cost		BCHF	8.29	+0.77	+5.46	13.13	+1.40
Operation & maintenance	е	MCHF/y	170	196	342	291	342
Electricity		MCHF/y	66	77	142	115	142
Operating Personnel		FTE	640	640	850	850	850



Preselection of qq signals

- Once we have the reconstructed pfos of the events with different targets:
 - ▶ We cluster the signal in jets (VLC algorithm):
 - •The algorithm packs together the PFOs into two jets.
 - Signal is expected in a back-to-back topology (but not the backgrounds!)
 - $^{\circ}$ Most of the background is radiative return (yqq)
 - And most of the data is background!
 - $^-$ x3 for $e^-_Le^+_R$ and x6 for $e^-_Re^+_L$ at 250 GeV
 - $^-$ x4 for $e^-_Le^+_R$ and x7 for $e^-_Re^+_L$ at 500 GeV
 - Then we apply different cuts to the signal to remove the background processes

Preselection for 250 GeV

Cuts:

• K_{reco} < 35 GeV

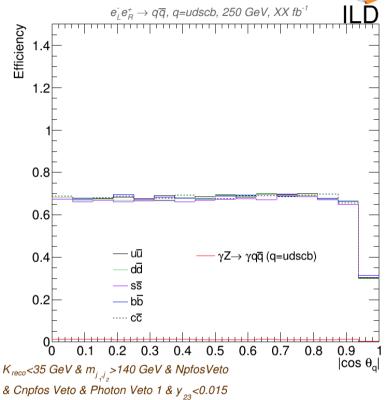
 $m_{2jets} > 140 \text{ GeV}$

Charged N pfos

Photon veto

 $Y_{23} < 0.015$

VLC Algorithm parameters:

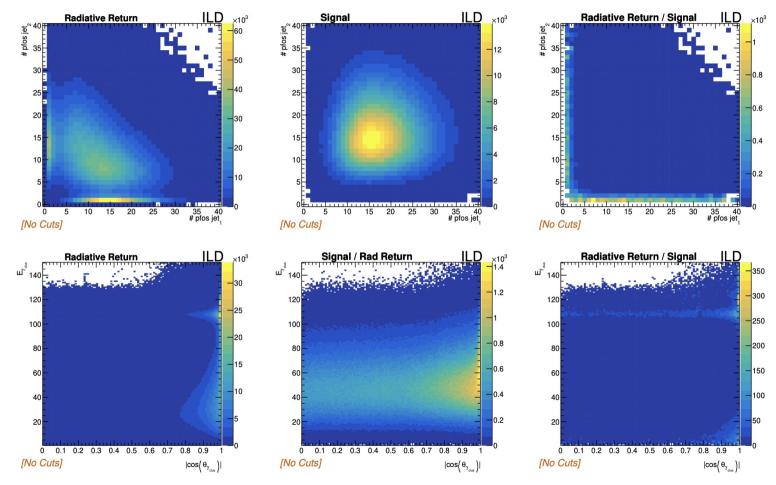

R = 1.0

y = 0.0

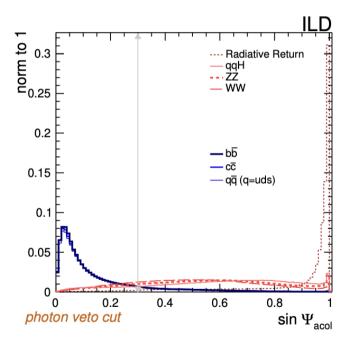
 $\beta = 1.0$

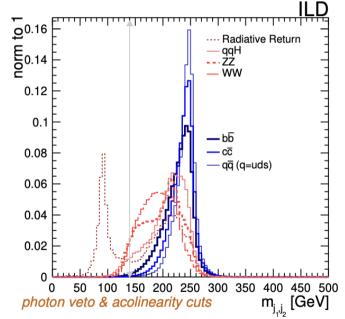
		Efficie	encies (%)			
R	$b\bar{b}$	$c\bar{c}$	$q\bar{q} \text{ (uds)}$	ISR	S/B	
1.0	64.7	64.6	64.3	0.9	23.7	
1.0	68.3	68.5	68.1	1.1	28.1	cosθ < 0.9

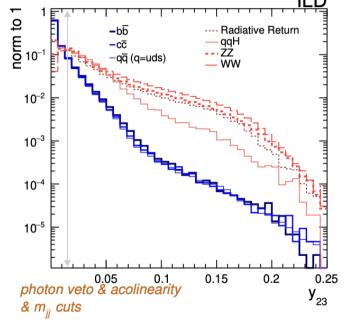
Total efficiency of the preselection for the different quark flavours and radiative return for the chosen configuration (y=0). The second row is for $|\cos\theta| < 0.9$


& Cnpfos Veto & Photon Veto 1 & y 23 < 0.015

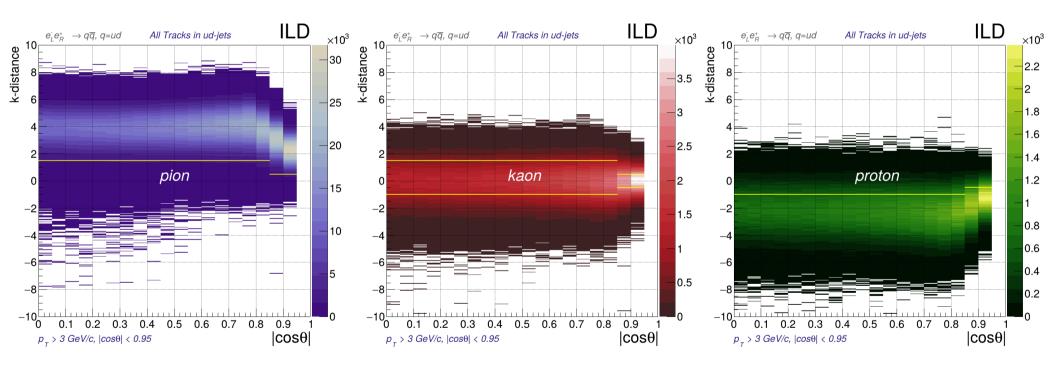
Efficiency of the preselection for the different quark flavours vs the angular distribution of the two jet system (new samples, final configuration)


Radiative return event rejection



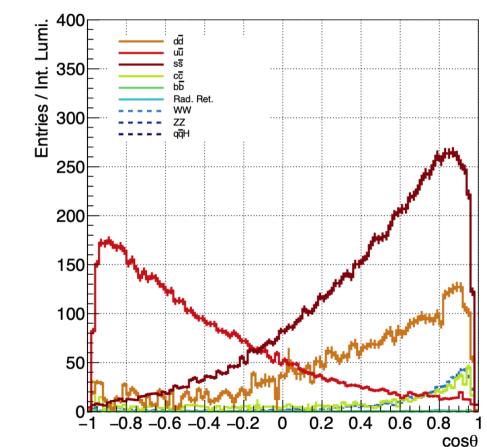


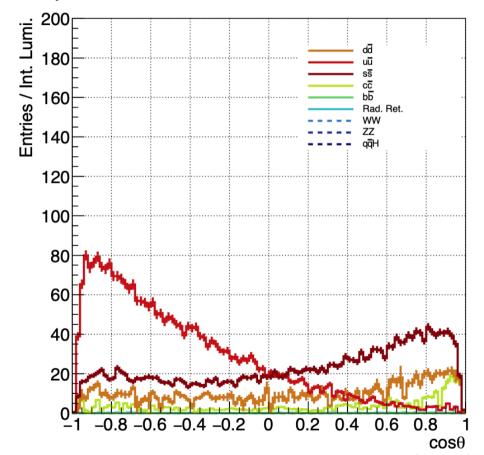
Background rejection



2d view of k-distance (ud quarks)

► Angular cuts are performed in these distributions for selection of pions





Contributions after preselection

► After K LPFO selection (Plots from Yuichi's analysis)

Preliminary results (K mode for s selection)

- ► Selecting s quark
 - ▶ Results for e⁻Le⁺R
 - •(Left) New dE/dx analysis vs (right) CPID dE/dx

CPID dE/dx

B/S=0.78

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%	+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%	+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0758%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%	+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%	+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0485%
+ Cut 7	2.37%	2.9%	4.8%	0.218%	0.00191%	+ Cut 7	0.991%	1.43%	4.21%	0.267%	0.00364%
+ Cut 8	0.285%	0.464%	0.634%	0.0432%	0.00115%	+ Cut 8	0.13%	0.228%	0.548%	0.0495%	0.00142%
+ Cut 9	0.163%	0.329%	0.481%	0.0207%	0.000573%	+ Cut 9	0.0674%	0.162%	0.421%	0.0262%	0.000607%

From 1.36 to 0.78 B/S

Preliminary results (K mode for s selection)

► Selecting s quark

dN/dx

- ▶ Results for e⁻Le⁺R
 - •(Left) New dE/dx analysis vs (right) dN/dx

B/S=0.34

	$\mathrm{d}\mathrm{d}$	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.9%	93.1%	69.3%	2.12%	+ Cut 1	93.9%	93.8%	93.1%	69.5%	2.67%
+ Cut 2	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.83%
+ Cut 3	91.7%	91.6%	90.9%	14.1%	1.37%	+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.83%
+ Cut 4	44.9%	51.7%	42.3%	4.02%	0.0755%	+ Cut 4	45.1%	52.6%	42.4%	4.76%	0.166%
+ Cut 5	38.2%	43.9%	35.9%	3.37%	0.0589%	+ Cut 5	38.1%	44.4%	35.7%	3.94%	0.119%
+ Cut 6	36.8%	42.3%	34.1%	3.12%	0.0489%	+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0776%
+ Cut 7	2.37%	2.9%	4.8%	0.218%	0.00191%	+ Cut 7	0.348%	0.524%	3.55%	0.144%	0.0011%
+ Cut 8	0.285%	0.464%	0.634%	0.0432%	0.00115%	+ Cut 8	0.0389%	0.0865%	0.457%	0.022%	0.000438%
+ Cut 9	0.163%	0.329%	0.481%	0.0207%	0.000573%	+ Cut 9	0.0214%	0.0629%	0.366%	0.0109%	0.000219%

From 1.36 to 0.34 B/S

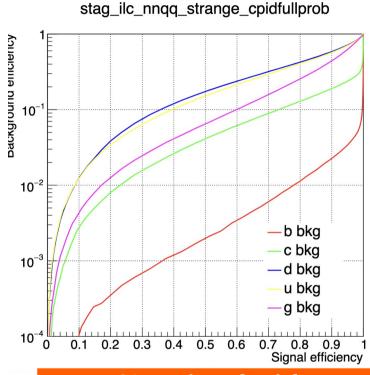
Preliminary results (K mode for s selection)

- ► Selecting s quark
 - ► Results for e⁻Le⁺R
 - •(Left) dNdx vs (right) Perfect TPC PID

Perfect TPC PID

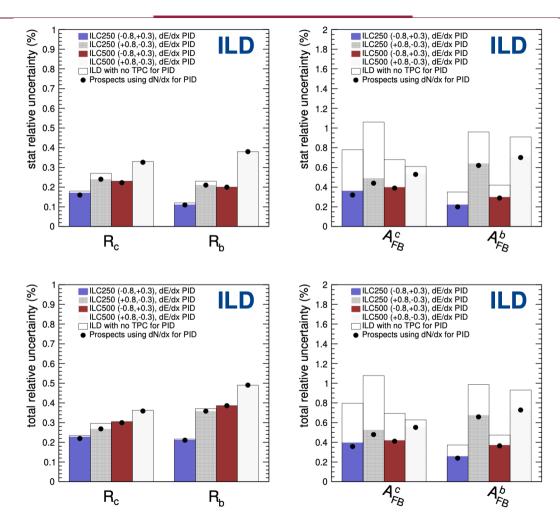
B/S=0.28

	dd	uu	SS	cc	bb		dd	uu	SS	cc	bb
+ Cut 1	93.9%	93.8%	93.1%	69.5%	2.67%	+ Cut 1	93.9%	93.9%	93.1%	69.5%	2.66%
+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.83%	+ Cut 2	91.7%	91.6%	90.9%	14.7%	1.82%
+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.83%	+ Cut 3	91.7%	91.6%	90.9%	14.7%	1.82%
+ Cut 4	45.1%	52.6%	42.4%	4.76%	0.166%	+ Cut 4	45.1%	52.5%	42.3%	4.76%	0.165%
+ Cut 5	38.1%	44.4%	35.7%	3.94%	0.119%	+ Cut 5	38.2%	44.4%	35.7%	3.94%	0.115%
+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0776%	+ Cut 6	36.2%	42.2%	33.4%	3.5%	0.0743%
+ Cut 7	0.348%	0.524%	3.55%	0.144%	0.0011%	+ Cut 7	0.385%	0.571%	4.85%	0.185%	0.00175%
+ Cut 8	0.0389%	0.0865%	0.457%	0.022%	0.000438%	+ Cut 8	0.0472%	0.0924%	0.601%	0.0263%	0.000437%
+ Cut 9	0.0214%	0.0629%	0.366%	0.0109%	0.000219%	+ Cut 9	0.0258%	0.0683%	0.497%	0.0146%	0.000218%


From 0.34 to 0.28 B/S

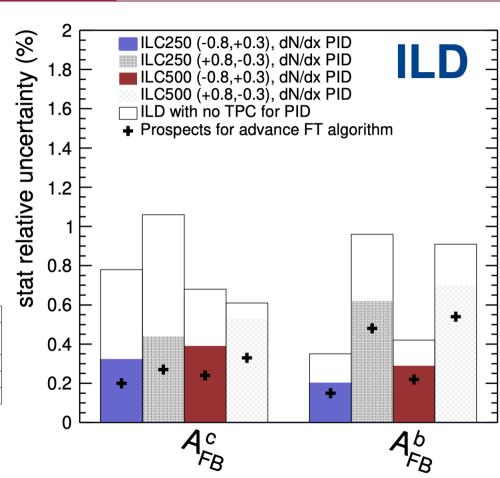
The "holy grail": ParT s-tagging

- ► Particle Transformers is state-of-the-art ML software
- It uses CPID for the tracks PID
- ► It can be 10x better than the cut-based approach
 - ▶ But how? Is this code available? Trying to get access to it to incorporate it into a chain of analysis
 - Can reduce the cuts in the analysis into:
 - B-tag
 - C-tag
 - •S-tag → Much more powerful than just kaon ID
 - •Migration cuts:
 - Secondary PFO candidate cut
 - Opposite charge LPFO cut



1% ss signal with 0.02% u/d backgrounds? Expected B/S = 0.33

Results for b & c


ParT prospects (b & c quarks)

- ► Moving from "traditional" ML (BDTs) to new methods: **Transformers**
 - ▶ Particle Transformer (ParT), developed originally by DESY/U. Hamburg researchers for optimizing jet tagging inATLAS and CMS
 - ► The developers of LCFI+ are adapting ParT to the ILC/LCF environment

	<i>b</i> -tag 80%	efficiency	c-tag 50% efficiency			
Method	c-bkg	<i>d</i> -bkg	<i>b</i> -bkg	<i>d</i> -bkg		
Wiethod	acceptance	acceptance	acceptance	acceptance		
LCFIPlus (at 250 GeV)	6.3 %	0.79 %	7.4 %	1.2 %		
ParT (at 91 GeV)	1.3 %	0.25 %	1.0 %	0.43 %		
ParT (at 250 GeV, modified)	0.48 %	0.14 %	0.86 %	0.34 %		

https://arxiv.org/pdf/2205.12160

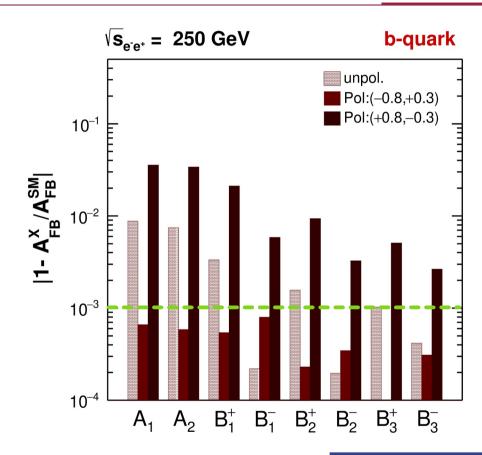
Gauge-Higgs Unification Models (GHU)

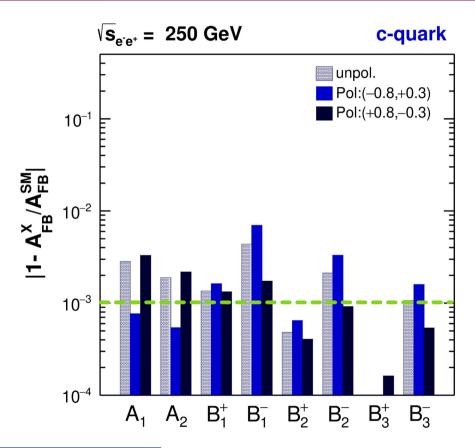
► A models: (arxiv:1705.05282)

$$A_1: \theta_H = 0.0917, m_{KK} = 8.81 \text{ TeV} \rightarrow m_{Z^1} = 7.19 \text{ TeV};$$

 $A_2: \theta_H = 0.0737, m_{KK} = 10.3 \text{ TeV} \rightarrow m_{Z^1} = 8.52 \text{ TeV},$

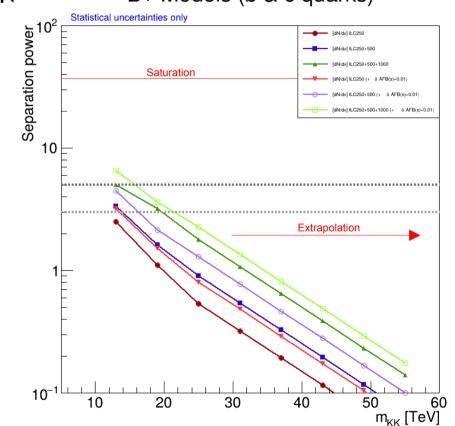
►B models: (arxiv:2309.01132) (arxiv:2301.07833)

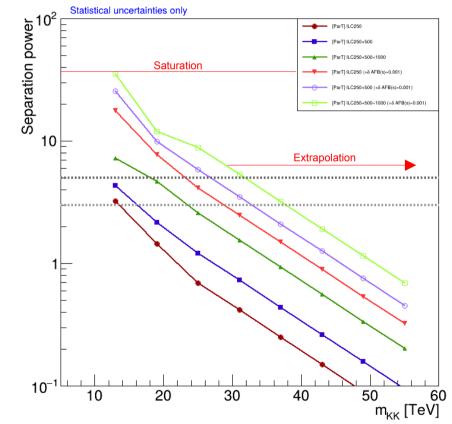

$$B_1^{\pm}$$
: $\theta_H = 0.10, m_{KK} = 13 \text{ TeV} \rightarrow m_{Z^1} = 10.2 \text{ TeV};$
 B_2^{\pm} : $\theta_H = 0.07, m_{KK} = 19 \text{ TeV} \rightarrow m_{Z^1} = 14.9 \text{ TeV};$
 B_3^{\pm} : $\theta_H = 0.05, m_{KK} = 25 \text{ TeV} \rightarrow m_{Z^1} = 19.6 \text{ TeV};$


Resonances of O(10) TeV: Only indirect measurements are possible!

GHU vs SM (250 GeV)

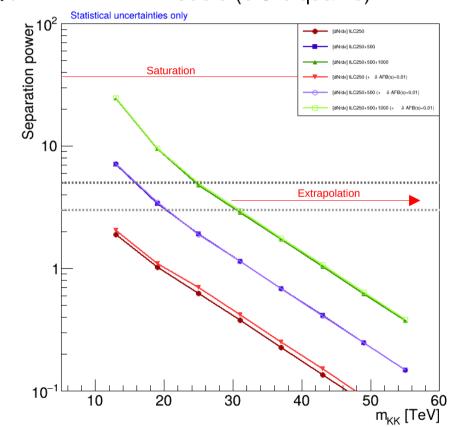
$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$

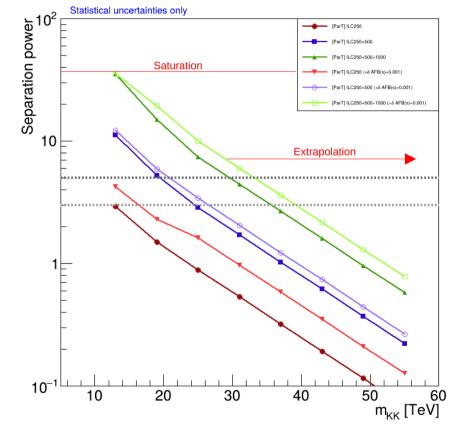

Deviations at the per mil level



B+ models mass scale

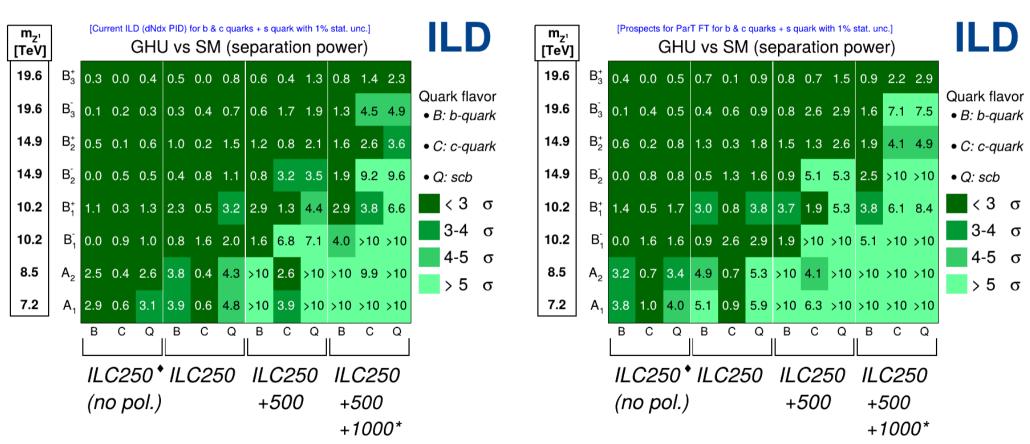
Worst (dN/dx + 1% δA_{FB} for s-quark) vs best (ParT + 1% δA_{FB} for s-quark) pr(B+ Models (b & c quarks) B+ Models (b & c quarks)



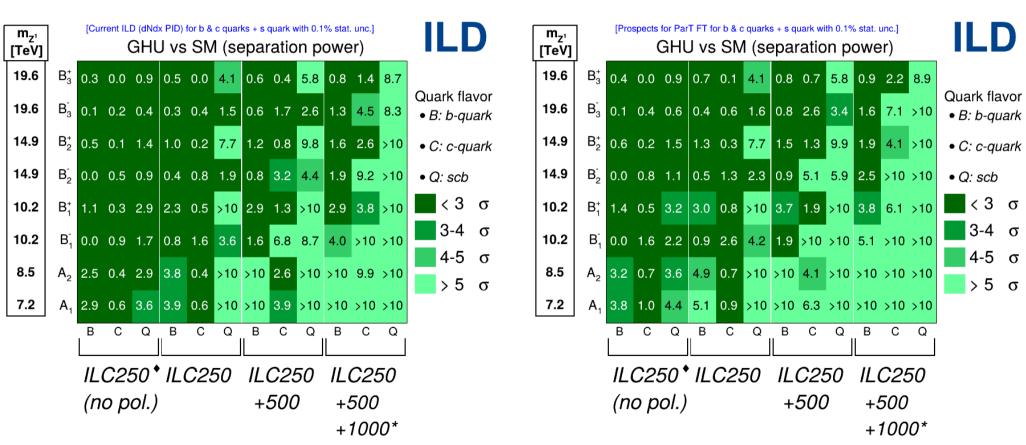


B- models mass scale

Worst (dN/dx + 1% δA_{FB} for s-quark) vs best (ParT + 1% δA_{FB} for s-quark) pr(B- Models (b & c quarks) B- Models (b & c quarks)



Adding s quark (1% relative error)


►ILC with pixel TPC (dN/dx for PID) | ILC with prospects using ParT flavour tagging

Adding s quark (1‰ relative error)

►ILC with pixel TPC (dN/dx for PID) || ILC with prospects using ParT flavour tagging

