Artificial Proto-Modelling for Dispersed Signals at the LHC

Timothée Pascal

in collaboration with:

Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Humberto Reyes-González, Wolfgang Waltenberger, Jamie Yellen

IRN Terascale Meeting – Montpellier – November 2025

Outline

1 Motivation and the proto-model machine

2 The three building blocks of the proto-model machine

3 Preliminary results

Outline

1 Motivation and the proto-model machine

2 The three building blocks of the proto-model machine

3 Preliminary results

Motivation

Experiments and theory point towards a theory beyond the Standard Model (of p.p.). However, **no compelling signal of new physics** has shown up in the LHC data. **Why?**

- ▷ The new physics is too feebly coupled to the Standard Model.
- > The new physics has been recorded but is hiding in the data.

Motivation

Experiments and theory point towards a theory beyond the Standard Model (of p.p.). However, **no compelling signal of new physics** has shown up in the LHC data. **Why?**

- ▷ The new physics is too feebly coupled to the Standard Model.
- ➤ The new physics has been recorded but is hiding in the data.

Motivation

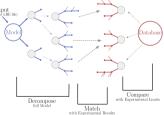
Experiments and theory point towards a theory beyond the Standard Model (of p.p.). However, **no compelling signal of new physics** has shown up in the LHC data. **Why?**

- > The new physics can only show up at higher energies.
- ▷ The new physics is too feebly coupled to the Standard Model.
- ➤ The new physics has been recorded but is hiding in the data.

How to look for it? There are many well-motivated Standard Model extensions, many of which can have a significant number of free parameters.

Need to shift perspective, and adopt a more model-independent and data-driven approach.

The proto-model machine

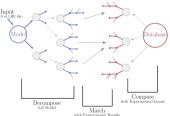

Proto-model: set of simplified models not tied to any theoretical assumption. $\downarrow m$, σ and branching ratio (BR) of few BSM particles.

(typical framework of many LHC BSM searches)

Goal: search for the proto-models that violate the Standard Model the most, while being consistent with current LHC limits.

How: use reversible jump Markov chain Monte Carlo (RJMCMC)-type walk to generate proto-models and confront their signals to the simplified models results in the SMODELS database (UL and EM-type results).

The proto-model machine


Proto-model: set of simplified models not tied to any theoretical assumption. $\downarrow m$, σ and branching ratio (BR) of few BSM particles.

(typical framework of many LHC BSM searches)

Goal: search for the proto-models that violate the Standard Model the most, while being consistent with current LHC limits.

How: use reversible jump Markov chain Monte Carlo (RJMCMC)-type walk to generate proto-models and confront their signals to the simplified models results in the $\operatorname{SMODELS}$ database (UL and EM-type results).

An initial concept has been published, comprising three building blocks: (W. Waltenberger, A. Lessa, S. Kraml, JHEP03(2021)207)

□ The builder

The combiner

□ The critic

Outline

1 Motivation and the proto-model machine

2 The three building blocks of the proto-model machine

3 Preliminary results

The builder

It builds proto-models by adding/removing BSM particles, changing $m/\sigma/BR$.

The particles that can be added are SUSY-inspired:

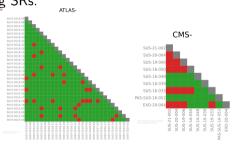
new wrt initial concept

Particle	Decay Channels	Particle	Decay Channels				
X_q	$qX_Z^j, \ q'X_W^i, \ qX_g$	X_W^1	$WX_Z^j,\ qar q'X_Z^1,\ \ell u_\ell X_Z^1$				
X_t^1	$tX_Z^j,\ bX_W^i,\ WX_b^1,\ tX_g$	X_W^2	$WX_{Z}^{j},\ ZX_{W}^{1},\ hX_{W}^{1},\ qar{q}X_{Z}^{1},\ bar{b}X_{Z}^{1},\ \ellar{\ell}X_{Z}^{1}$				
X_b^1	$bX_Z^j, tX_W^i, WX_t^1, bX_g$	$X_Z^{j=1}$	WX_W^i, ZX_Z^k, hX_Z^k				
X_t^2	tX_Z^j , bX_W^i , ZX_t^1 , WX_b^1 , tX_g	X_{ℓ}	$\ell X_Z^j,\ u_\ell X_W^i$				
X_b^2	$bX_Z^j, \ tX_W^i, \ ZX_b^1, \ WX_t^1, \ bX_g$	$X_{\nu_{\ell}}$	$ u_\ell X_Z^j,\ \ell X_W^i$				
X_g	$q\bar{q}X_{Z}^{i},\ q\bar{q}'X_{W}^{i},\ b\bar{b}X_{Z}^{i},\ t\bar{t}X_{Z}^{j},\ btX_{W}^{i},\ qX_{q},\ bX_{b},\ tX_{t}$						

with:

- \triangleright off-shell decays: $q, q' \in \{u, d, s, c\}, \ \ell \in \{e, \mu, \tau\}$ and flavor-democratic decays.
- $ightharpoonup \mathbb{Z}_2$ -odd particles.
- hd Only prompt decays and X_Z^1 lightest BSM particle \Rightarrow final states with $E_T^{
 m miss}$.

The combiner


It finds all allowed analysis combinations.

$$L_c(\mu) = \Pi_i L_i(\mu)$$

Binary combinability: two analyses are approximately uncorrelated if from different runs, experiments, or with non-overlapping SRs.

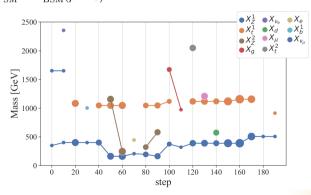
A likelihood can be built for 25 ATLAS and 8 CMS prompt, \mathbb{Z}_2 -preserving, searches. 18 use full Run 2 luminosity.

Combination of maximal length.

Combination of SRs: 9 ana. with full HISTFACTORY model, 11 ana. with cov. matrix.

An optimized pathfinder: now relies on the "pathfinder" algorithm developed in J. Y. Araz et al., SciPost Phys. 14 (4) (2023) 077 \rightarrow (much faster).

The test statistic


The combiner is used to find

$$K := \max_{c \in C} \left[2 \ln \left(\frac{L_{\mathrm{BSM}}^{c}(\hat{\mu}) \cdot \pi_{\mathrm{BSM}}}{L_{\mathrm{SM}}^{c} \cdot \pi_{\mathrm{SM}}} \right) \right]$$

Set of allowed combinations \leftarrow

 $L_{\rm SM}^c = L_{\rm BSM}^c(\mu=0) \qquad \qquad \pi_{\rm SM} = 1$ and over-fitting

The algorithm tries to maximise K through the RJMCMC-type walk (most significant combination).

 $\rightarrow \pi_{\text{BSM}} = \exp\left[-\left(\frac{n_{\text{particles}}}{2} + \frac{n_{\text{BRs}}}{4} + \frac{n_{\sigma}}{8}\right)\right]$

 $\times \pi_{\text{missing ana}}$

 $\frac{\times \pi_{\text{large or small }\sigma}}{\text{Penalise for complexity}}$

The critic

It uses limits of analyses not entering the combination to ensure they are not violated. Acts as an adversarial to the builder.

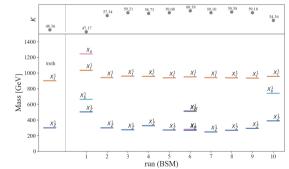
Two critics: each giving a binary output: the proto-model is excluded or not.

The fast critic: uses UL-type results. No likelihood is built; approximation but fast. Number of analyses allowed to exclude: number of analyses giving 66% of CDF of $\mathcal{B}(n,p=0.05)$, where n is the number of sensitive analyses (i.e. with $\frac{\sigma}{\sigma_{95}^{\rm exp}} \geqslant 0.7$). If more analyses exclude the proto-model, rejected by fast critic.

The slow critic: uses the combiner to get the most sensitive combination of analysis. The proto-model is excluded if $\frac{\sigma}{\sigma_{\rm g5}^{\rm comb}}\geqslant 1$.

108 (+25) prompt, \mathbb{Z}_2 -preserving, searches are available. 29 (+23) use full Run 2 luminosity.

Outline


1 Motivation and the proto-model machine

2 The three building blocks of the proto-model machine

3 Preliminary results

Closure test

- 1. Create a "fake database" by sampling from the SM hypothesis.
- 2. Inject a signal (here X_t^1 and X_Z^1).
- 3. Let many "walkers" search for it.
- 4. Did the step with the highest K of each walker find the signal?

Every walker found the 2 BSM particles, most with correct masses.

Additional particles and higher K come from fitting other SM deviations (introduced during sampling from SM).

Current best result

After many walkers and steps, proto-model with the highest K: K=32.50 and $Z\approx 6.25(!)$

 \rightarrow need K distrib. under SM hypothesis for p-value.

11 analyses enter the most significant combination.

The most significant 5 (all using full Run 2 luminosity):

523 GeV X_t	450 GeV $_{X_{3}^{3}}$
	1007
155.5.4	48% h $_{C_Z^2}$ 126 GeV
\ /	
$\sqrt{\mathrm{dd}}$	νν
X_Z^1 90 0	
Drococc (m)

Analysis Name	Dataset	Obs	Expected	Z	Process ($pp \rightarrow$)
monojet (CMS-EXO-20-004)	comb.	180.8 fb	136.7 fb	4.6 σ	$X_Z^2 X_Z^2 / X_Z^2 X_Z^1 \to E_T^{\text{miss}}$ $X_Z^2 X_W^1 / X_W^1 X_Z^1 \to qq + E_T^{\text{miss}}$
monojet (ATLAS-EXOT-2018-06)	EM10	413	359 ± 10	2.5 σ	$X_Z^2 X_Z^2 / X_Z^2 X_Z^1 \to E_T^{\text{miss}}$ $X_Z^2 X_W^1 / X_W^1 X_Z^1 \to qq + E_T^{\text{miss}}$
$2\ h(bb)$, EWK (CMS-SUS-20-004)	comb.	0.3 fb	0.2 fb	2.0σ	$X_Z^3 X_Z^3 \to hh + E_T^{\text{miss}}$
$0~\ell+$ jets (ATLAS-SUSY-2018-12)	SRBTT	67	46 ± 7	2.0σ	$X_t X_t \to tt + E_T^{\text{miss}}$
2 OS ℓ (ATLAS-SUSY-2018-08)	SRSF140	9	5.1 ± 0.9	1.5σ	$X_t X_t \to tt + E_T^{\text{miss}}$

Why BR $(X_t \to bX_W^1) \neq 0$? Maybe penalty term not strict enough?

Current best result – The critics

This proto-model passes both critics.

30 analyses are sensitive to the current best proto-model.

The 4 most sensitive datasets entering the fast critic:

Analysis Name	Dataset	σ/σ_{95}	$\sigma/\sigma_{f 95}^{\sf exp}$	Process $(pp \rightarrow)$
monojet (ATLAS-EXOT-2018-06)	EM8	1.49	1.62	$\begin{array}{c} X_Z^2 X_Z^2 / X_Z^2 X_Z^1 \to E_T^{\text{miss}} \\ X_Z^2 X_W^1 / X_W^1 X_Z^1 \to qq + E_T^{\text{miss}} \end{array}$
stop comb. (CMS-SUS-20-002)	UL	1.32	1.20	$X_t X_t \to tt + E_T^{\text{miss}}$
$jets + t ext{-} \; and \; W ext{-}tag \; ext{(CMS-SUS-19-010)}$	UL	0.98	0.93	$X_t X_t \to tt + E_T^{\text{miss}}$
$1~\ell + {\sf jets}$ (CMS-SUS-19-009)	UL	0.83	0.84	$X_t X_t \to tt + E_T^{\text{miss}}$

Excluded if $\sigma/\sigma_{95} \geqslant 1$ but allow for some leeway.

7 analyses enter the slow, likelihood-based, critic (most sensitive combination of ana.) \rightarrow Does not exclude proto-model: $\sigma/\sigma_{95} = 0.98$ (large over-fluctuation: $\sigma/\sigma_{95}^{\text{exp}} = 3.48$).

Conclusions

- The absence of positive result and the stringent constraints reflect the need to shift from the usual top-bottom approach.
- ▷ Promising preliminary results but further work is required:
- Scrutinise the walk more deeply

 $-\ K$ distribution under the SM hypothesis

More complex closure tests

- Add LLP and non- \mathbb{Z}_2 topologies
- Posterior distribution wrt model parameters Match proto-models to higher order theory

Conclusions

- The absence of positive result and the stringent constraints reflect the need to shift from the usual top-bottom approach.
- □ The proto-model machine proposes a more model-independent, data-driven approach.
- ▷ Promising preliminary results but further work is required:
- Scrutinise the walk more deeply
- $-\ K$ distribution under the SM hypothesis

More complex closure tests

- Add LLP and non- \mathbb{Z}_2 topologies
- Posterior distribution wrt model parameters Match proto-models to higher order theory
- These studies completely rely on the possibility to build likelihoods.
 Many thanks to the experimental collaborations for publishing and preserving all the valuable information needed for reinterpretation studies.

Thank you for your attention!

Acceptance probability

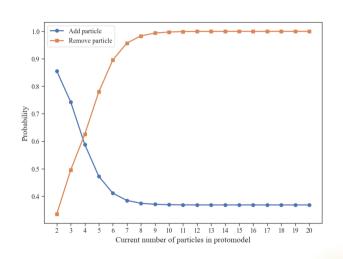
To account for dimension jump, introduce latent variables u and v: $d_{M_i} + d_u = d_{M_j} + d_v$.

To converge towards a stationary distribution for K, take step if $x \sim \mathcal{U}(0,1) \leqslant \alpha$:

$$\alpha(M_i, M_j) = \min \left\{ 1, \underbrace{\frac{L_{\mathrm{BSM}}^c(\hat{\mu}|M_j)}{L_{\mathrm{SM}}^c(M_j)} \frac{L_{\mathrm{BSM}}^{c'}(M_i)}{L_{\mathrm{BSM}}^{c'}(\hat{\mu}|M_i)}}_{\text{likelihood ratio}} \underbrace{\frac{\pi_{\mathrm{BSM}}(M_j)}{\pi_{\mathrm{BSM}}(M_i)}}_{\substack{\text{model} \\ \text{prior ratio}}} \underbrace{\frac{\pi(\theta_j|M_j)}{\pi(\theta_i|M_i)}}_{\substack{\text{parameter} \\ \text{prior ratio}}} \underbrace{\frac{q_w(M_j \to M_i)}{q_w(M_i \to M_j)}}_{\text{proposal ratio}} \right\}$$

with θ model parameters (m, σ, BR) . We take u and v from same distributions as θ :

$$\alpha(M_i, M_j) \approx \min \left\{ 1, \frac{L_{\text{BSM}}^c(\hat{\mu}|M_j)}{L_{\text{SM}}^c(M_j)} \frac{L_{\text{SM}}^{c'}(M_i)}{L_{\text{BSM}}^c(\hat{\mu}|M_i)} \frac{\pi_{\text{BSM}}(M_j)}{\pi_{\text{BSM}}(M_i)} \underbrace{\frac{p(M_j \to M_i)}{p(M_i \to M_j)}}_{\text{probability ratio}} \right\}$$


Example for adding/removing a particle

$$p_{\mathsf{add}}(M_i \to M_j) = \frac{1 + \exp(z_{M_i})}{1 + \exp(z_{M_i})}$$

$$p_{\mathsf{rem}}(M_i \to M_j) = \frac{1 + \exp(-z_{M_j})}{1 + \exp(-z_{M_i})}$$

where

$$z_M = \left(\frac{n_{\rm particles} - 8}{2} + \frac{n_{\rm BRs}}{4} + \frac{n_\sigma}{8}\right)_M$$

