No room for monopole dark matter

Théodore Fischer LUPM, Montpellier

In collaboration with F. Brümmer (LUPM), G. Ferrante (U. Brussels), M. Frigerio (LPTHE)

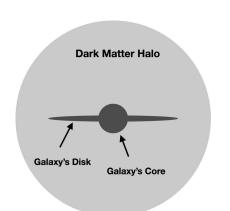
based on arXiv:2509.21924

Table of contents

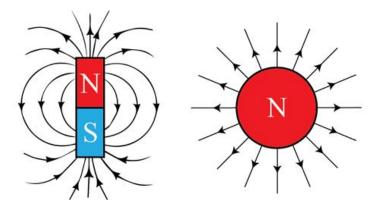
- I. Context and motivation
- II. 't Hooft Polyakov Dark Sector
- III. Cosmological history and phase transition
- IV. Monopole relic density
- V. Comparing relic densities Conclusion and outlooks

Dark matter - quick recap

- Matter interacting gravitationally, but invisible to light
- ullet Cosmological density: $\Omega_{
 m DM} h^2 = 0.12$
- Must be stable
- Dark sector: secluded from SM, with hidden particles and forces. Interacts very weakly with SM.



Monopoles

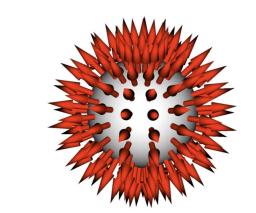


First introduced by Dirac (1931), as sources for the magnetic field, to solve the charge quantization problem:

$$q_e q_m = 2\pi n, \quad n \in \mathbb{Z}$$

Point-like, no prediction for their mass and abundances.

Monopoles



Later (1974), 't Hooft and Polyakov → monopoles naturally appear as topological solitons:

Topologically stable field configurations that behave like particles: mass and momentum (but extended objects).

Appear in theories where $\pi_2(G/H) \neq 0$

Why monopole dark matter?

- Stable (topology)
- Predicted mass
- Their cosmology is not well studied

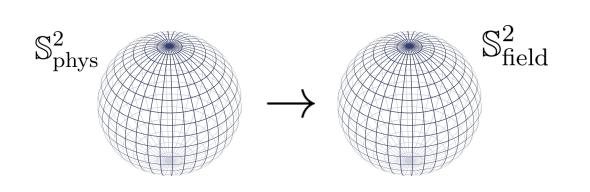
The model:
$$G = SO(3)_D \rightarrow H = SO(2)_D$$
, $\phi_a \sim \mathbf{3}_{SO(3)_D}$

$$\mathcal{L} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu a} + \frac{1}{2} D_{\mu} \phi_a D^{\mu} \phi_a + V(\phi)$$
$$V(\phi) = \frac{\lambda}{4} (\phi_a \phi_a - \eta^2)^2$$

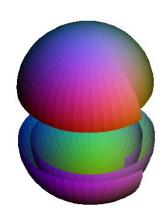
Only 3 parameters: (λ, g, η)

Monopoles in the model

$$G/H \simeq \mathbb{S}^2 \implies \pi_2(G/H) = \mathbb{Z} : g_m = \frac{4\pi n}{g}$$



E.g.

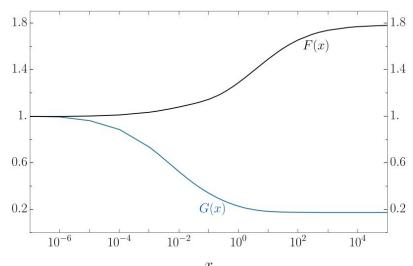


Monopoles in the model

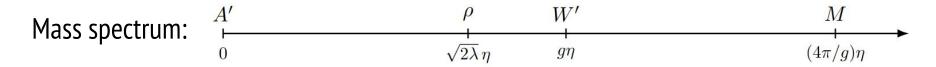
The mass and radius can be numerically computed:

$$m_M = \frac{4\pi}{g} \eta F(\lambda/g^2) \sim \frac{4\pi}{g} \eta$$

$$r_M = \frac{10}{g\eta} G(\lambda/g^2) \sim \frac{10}{g\eta}$$



Two dark matter candidates



There are two DM candidates: W'^{\pm_e} and M^{\pm_m}

Goal: understand if there is a region in parameter space where,

Fixed by phase transition

Fixed by freeze-out

Higgs portal

The dark sector is in thermal contact with the SM through a higgs portal,

$$\mathcal{L}_{DS+SM} \supset \frac{\lambda_{\phi H}}{2} \phi^2 |H|^2$$

We assume that the two sectors share the same temperature T.

Effective potential at finite temperature

The quantity that tracks the phase transition in the dark sector is the thermal effective potential for the scalar $V_{\rm eff}(\phi,T)$. At one loop,

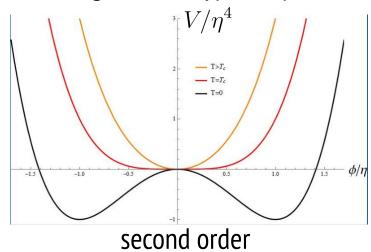
$$V_{\text{eff}}^{(1)}(\phi, T) = V^{(0)}(\phi) + V^{(1)}(\phi, T = 0) + V^{(1)}(\phi, T)$$

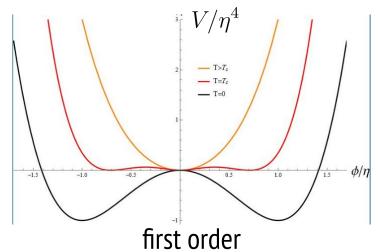
$$V^{(1)}(\phi, 0) = \sum_{i} \frac{n_i}{64\pi^2} m_i^4(\phi) \log \frac{m_i^2(\phi)}{\Lambda^2}$$

$$V^{(1)}(\phi, T) = \frac{T^4}{2\pi^2} \sum_{i} (\pm n_i) \int_0^\infty dq \, q^2 \log \left[1 \mp \exp\left(-\sqrt{q^2 + \frac{m_i^2(\phi)}{T^2}}\right) \right]$$

Effective potential at finite temperature

We distinguish two types of phase transition: second and first order

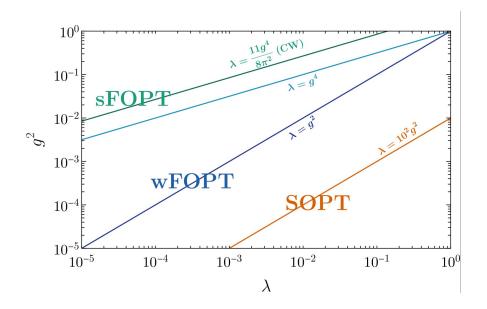




Phase space of the model

We consider three possible scenario:

- second order (SOPT)
- weakly first order (wFOPT)
- strongly first order (supercooled)



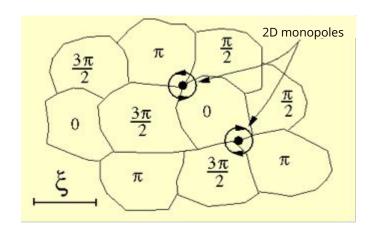
Production

The number density of monopoles produced can be linked to the correlation length at that

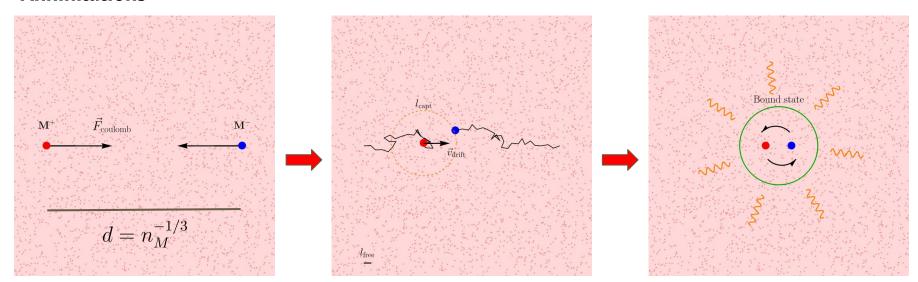
time by

$$n_M \simeq p \xi^{-3}(T_{\rm prod}),$$

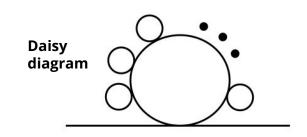
with p = 1/8 for monopoles



Annihilations



$$\Gamma_a = \frac{v_{\text{drift}}}{d} \rightarrow \text{Solve Boltzmann Equation}$$



SOPT (
$$\lambda/\mathrm{g^2}\gg 1$$
)

In this limit (purely scalar theory) the effective potential can be approximated by

$$\begin{split} V_{eff}^{(1)}(\phi,T) &= \frac{D}{2} \left(T^2 - T_0^2 \right) \phi^2 - ET \left[2 (\phi^2 - \eta^2)^{3/2} + (3\phi^2 - \eta^2)^{3/2} \right] + \frac{\lambda}{4} \phi^4 + \mathcal{O} \left(\frac{m^4}{T^4} \right) \\ \text{with } D &= 5\lambda/12, \quad E = \lambda^{3/2}/12\pi \quad \text{and } T_0^2 = 12\eta^2/5. \end{split}$$

It turns out that the loop expansion is non-perturbative close to the critical temperature and one has to resum daisy diagrams to all orders, which effectively amounts to replacing the tree-level masses

 $m_i^2(\phi)$ by the effective thermal masses $m_{i,{\rm eff}}^2=m_i^2+DT^2$, allowing us to the bound

$$\left(\frac{5}{12} - 9\lambda\right)^{-1/2} \lesssim \frac{T_c}{\eta} \lesssim \left(\frac{5}{12} + 9\lambda\right)^{-1/2}$$

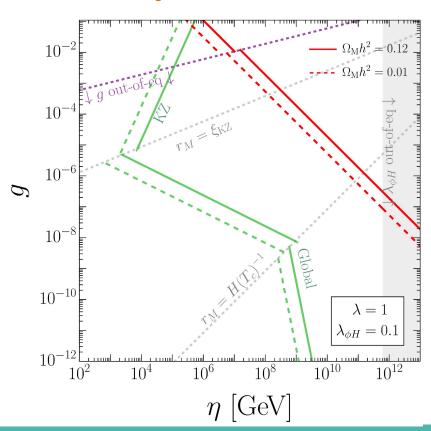
Kibble-Zurek mechanism (SOPT)

For second order phase transitions, it is well-known that both the correlation length and the relaxation time diverge at the critical temperature.

Fluctuations freeze at a spatial scale $\xi_{\rm KZ} \simeq H^{-1}(T_c) \left[H(T_c) \xi_0 \right]^{0.6}$

where $\xi_0^2 = 1/m_\rho^2$ and H is the Hubble rate.

[Kibble 1976, Zurek 1985]



FOPT ($\lambda/{ m g^2}\ll 1$)

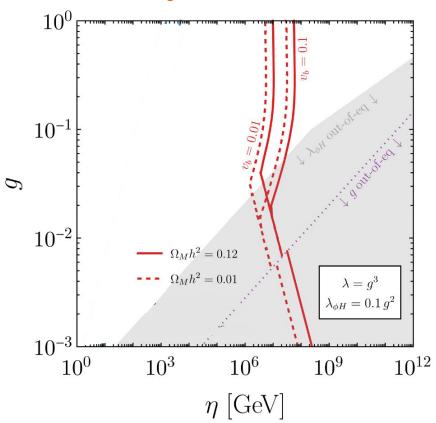
In this limit, scalar loops are now negligible and the effective potential is under perturbative control for the range of temperatures of interest.

The potential develops a barrier between the false vacuum and the true one and the PT proceeds via bubble nucleation.

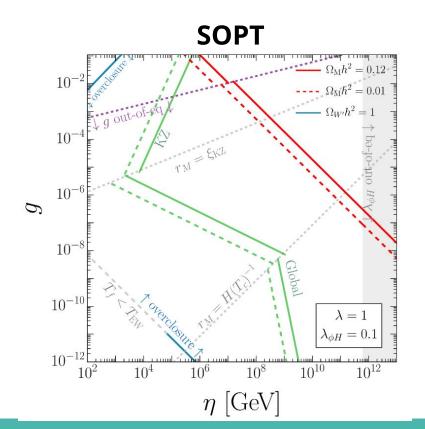
The correlation length is given by the bubble radius at the time of percolation:

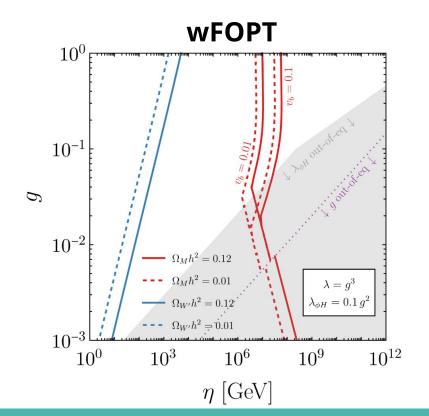
$$\xi(T_{\rm prod}) = R_{\rm bubble}(T_{\rm perc}),$$

which is evaluated numerically.



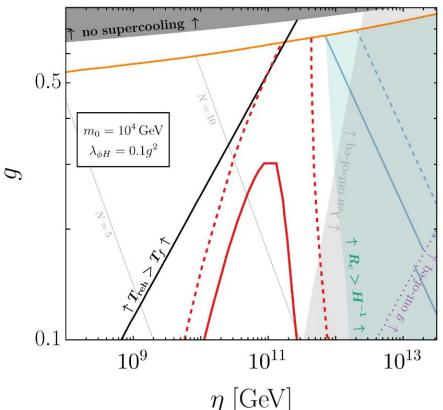
V. Comparing relic densities





V. Comparing relic densities

Supercooled scenario



Conclusion and outlooks

- Our analysis shows that $\Omega_M \ll \Omega_{W'}$, for all possible (perturbative) ranges for g, λ and η : dark monopoles cannot constitute a sizeable fraction of dark matter
- We are currently working on less minimal models where the dark sector is extended with extra light charged particles, allowing W' to decay and monopoles to dominate in some regions.