Scaling laws for amplitude surrogates

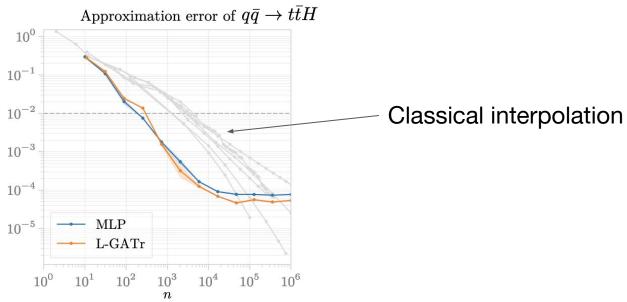
Joaquín Iturriza Ramirez

In collaboration with Anja Butter, Bertrand Laforge, Víctor Bresó Pla and Henning Bahl

IRN Terascale @ Montpellier 2025

Motivation

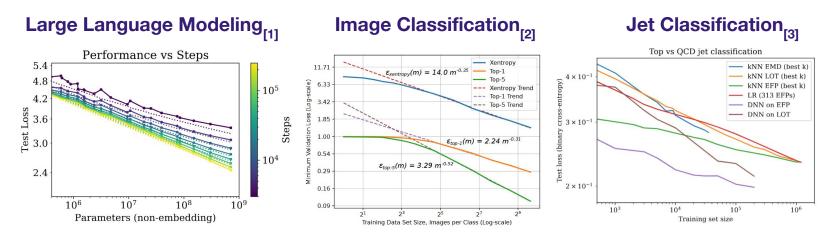
Scattering amplitudes are at the heart of MC event generators Calculating higher order scattering amplitudes is **expensive** ML surrogate models are excellent interpolates



How accurate can we become and what is the price?

Motivation

Similar scaling behaviours have been observed in many applications of deep learning



Performance improves predictably as a power law with training dataset size D, computing resources C and number of parameters N

$$L(X,Y,Z) = (X_c/X)^{\alpha_X} + K(Y,Z)$$

Exponent of power law could be related to intrinsic dimensionality[4]

Can we determine scaling laws for scattering amplitude surrogates?

Compare

Many different processes:

$$q\bar{q} \rightarrow t\bar{t}H, q\bar{q} \rightarrow Z + ng, q\bar{q} \rightarrow WZ + ng, q\bar{q} \rightarrow WWZ, gg \rightarrow \gamma\gamma + ng$$

- Scalings in D, C and N
- Different loss functions: MSE vs Heteroscedastic Loss for uncertainties estimation
- Different architectures: MLP vs LloCa-Transformer

If scaling laws are universal —— We predict desired accuracy for given resources

We know the **degrees of freedom**: Test relation between scaling and intrinsic dimensionality

Data

4-momentum of particles in the process Amplitude

All the data is generated with MadGraph, all amplitudes calculated at lowest order

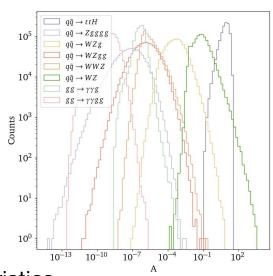
Main case study $q\bar{q} \rightarrow t\bar{t}H$

Jet-associated Z production: $q\bar{q} \rightarrow Z + ng$

Jet-associated W Z production: $q\bar{q} \rightarrow WZ, q\bar{q} \rightarrow WZg, q\bar{q} \rightarrow WZgg$

W W Z production: $q\bar{q} \rightarrow WWZ$

Jet-associated di-photon production: $gg \rightarrow \gamma\gamma g, gg \rightarrow \gamma\gamma gg$



Wide variety of processes covering many different characteristics

Neural Networks

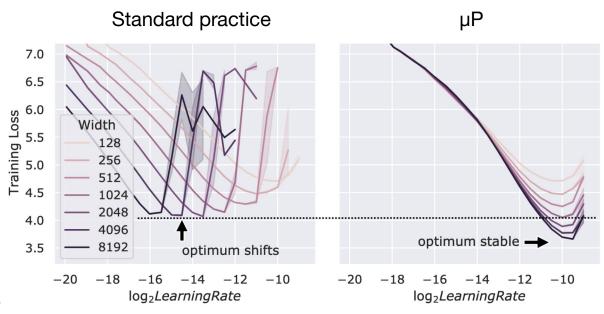
MLP set up:

- Preprocessing:
 - Inputs: Invariants derived from 4-vectors
 - O Amplitudes: Log-standardized $\hat{a} = \frac{\log(a) \log(a)}{\sigma_{\log(a)}}$ (except $q\bar{q} \to t\bar{t}H$)
- Unless explicitly changed:
 - 500 Hidden neurons, 4 hidden layers, ~10⁶ parameters
 - 10⁶ Training dataset size
 - 10⁴ Epochs
- GELU non-linearities
- Batchsize = 256
- Cosine Annealing scheduler
- Hyperparameter Transfer

Hyperparameter Transfer^[1]

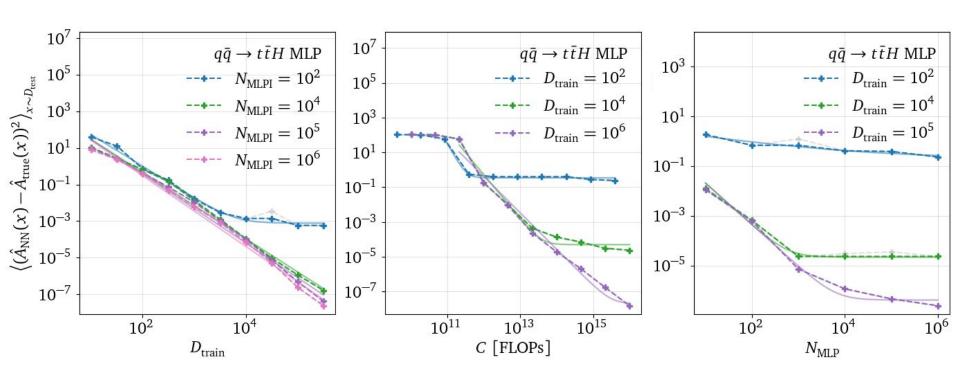
Optimal HP remain consistent across widths

- Better initialization
- Better optimizer
- Optimizer treats layers differently
- Results are comparable or better that standard practice



Allows to optimize HP on a smaller (cheaper) model once and use them for different network sizes

Results: MLP, $q\bar{q} \rightarrow t\bar{t}H$ MSE loss



Very clean power laws, consistent slopes

Losses

MSE:
$$\mathcal{L}_{\text{MSE}} = \left\langle (A_{\text{true}}(x) - A_{\text{NN}}(x))^2 \right\rangle_{x \sim D_{\text{train}}}$$

Heteroscedastic Loss:

Assume amplitude regression follows a normal distribution $p(A|x) = \mathcal{N}(A|\overline{A}(x), \sigma^2(x))$

Minimize negative log-likelihood:

$$\mathcal{L} = -\left\langle \log p(A|x) \right\rangle_{x \sim D_{\text{train}}}$$

$$\mathcal{L} = -\left\langle \log p(A|x) \right\rangle_{x \sim D_{\text{train}}} \qquad \mathcal{L}_{\text{het}} = \left\langle \frac{(A_{\text{true}}(x) - \overline{A}(x))^2}{2\sigma^2(x)} + \log \sigma(x) \right\rangle_{x \sim D_{\text{train}}}$$

The NN predicts 2 outputs: $\overline{A}(x)$ and $\sigma(x)$

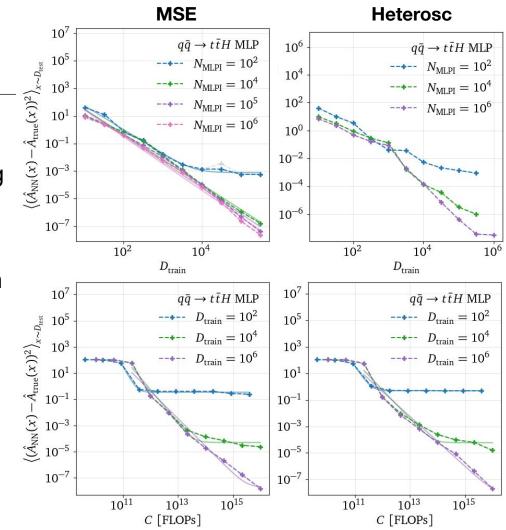
If it's well calibrated
$$t(x) = \frac{A_{\text{NN}}(x) - A_{\text{true}}(x)}{\sigma(x)}$$
 should follow a $\mathcal{N}(0, 1)$

Results: MLPI, $q\bar{q} \rightarrow t\bar{t}H$, Heteroscedastic loss

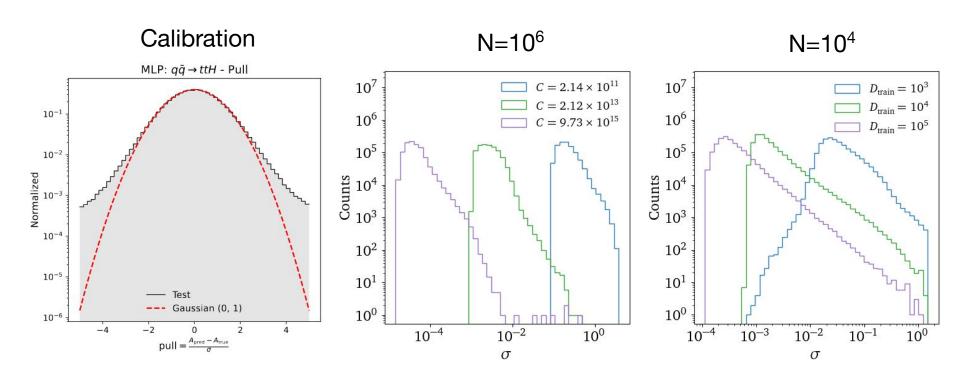
Slightly worse performance for scaling in dataset size

Very similar performance for scaling in computing resources

Important to note: Trained on Heterosc loss, showing MSE

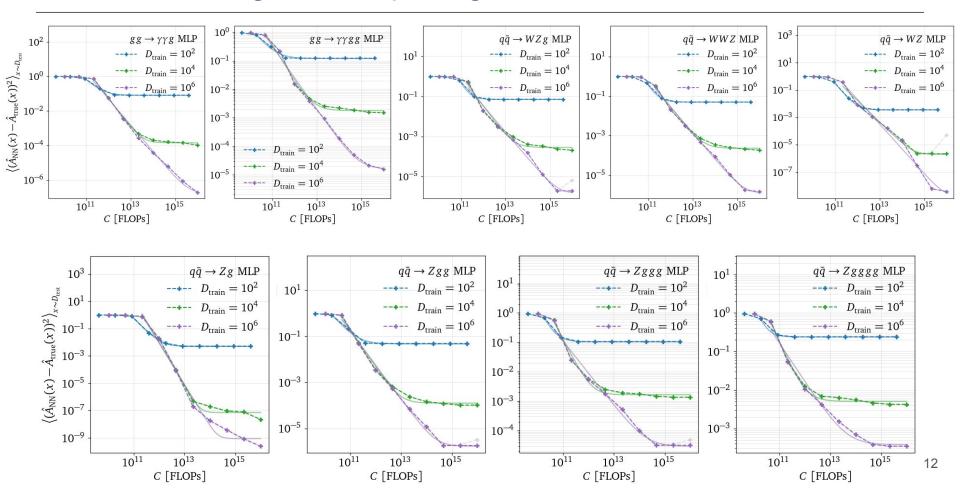


Uncertainties

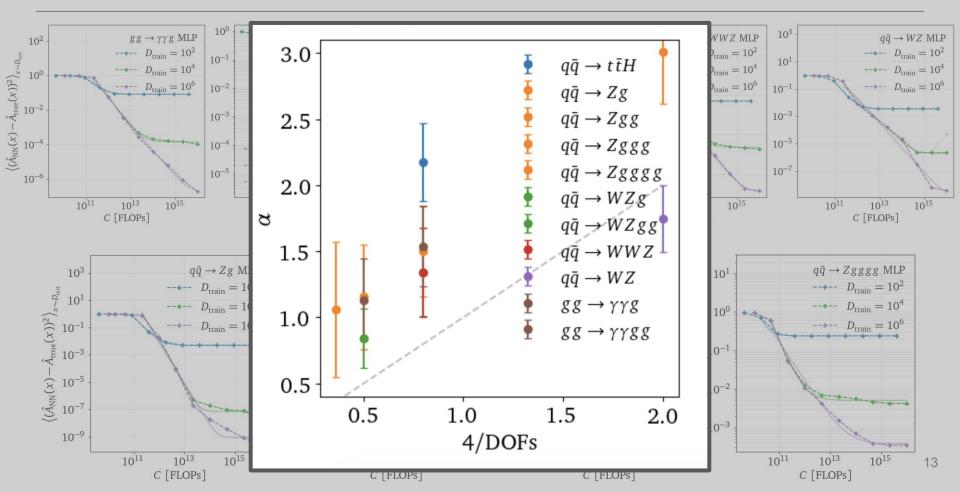


Well calibrated uncertainties for large enough dataset sizes

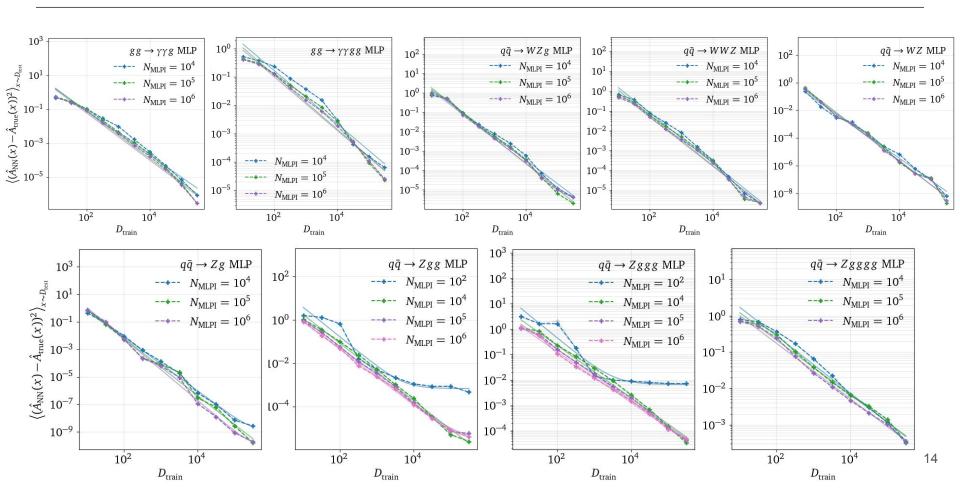
Results scaling on computing resources



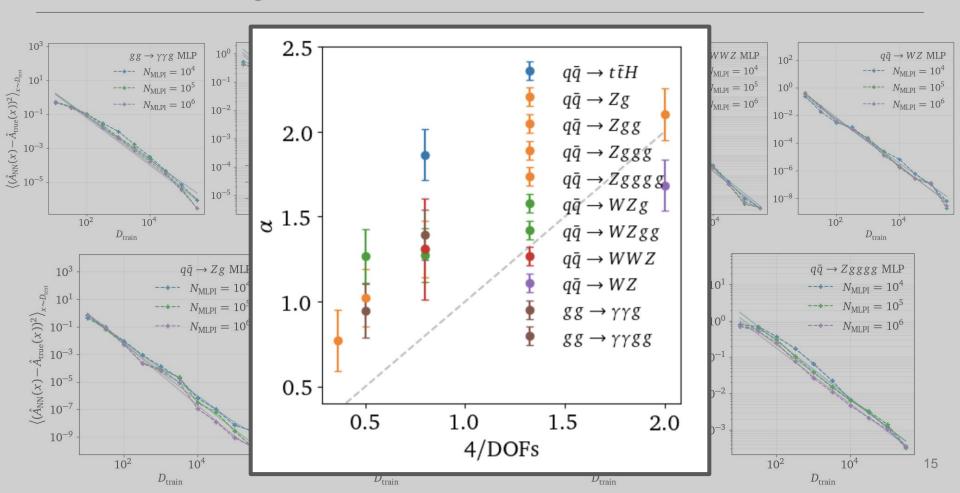
Results scaling on computing resources



Results scaling on dataset size

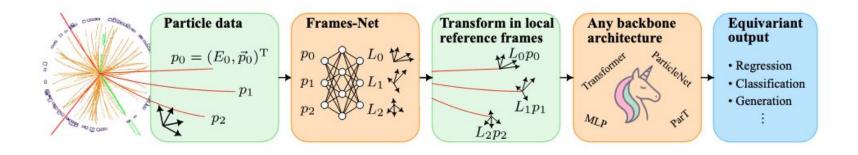


Results scaling on dataset size

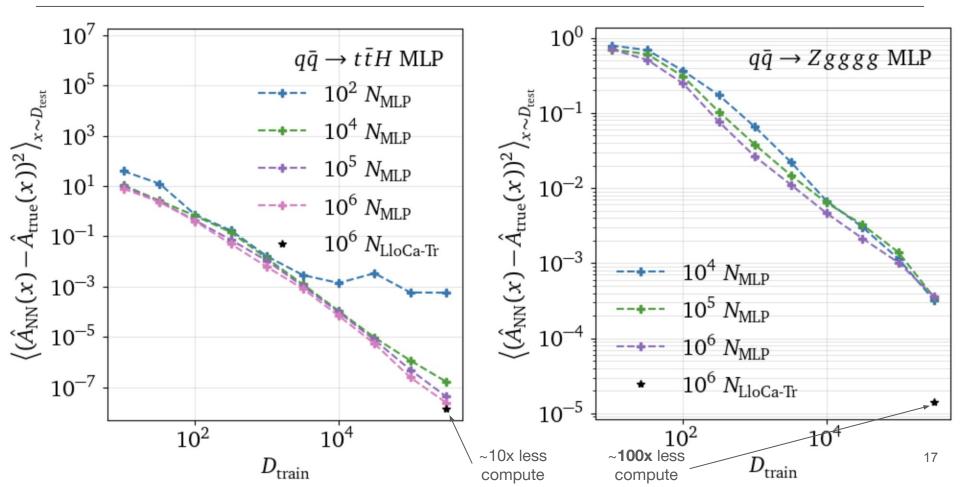


Work in progress: LloCa^[1]

Permutation invariance and equivariance yield better results



Work in progress: LloCa



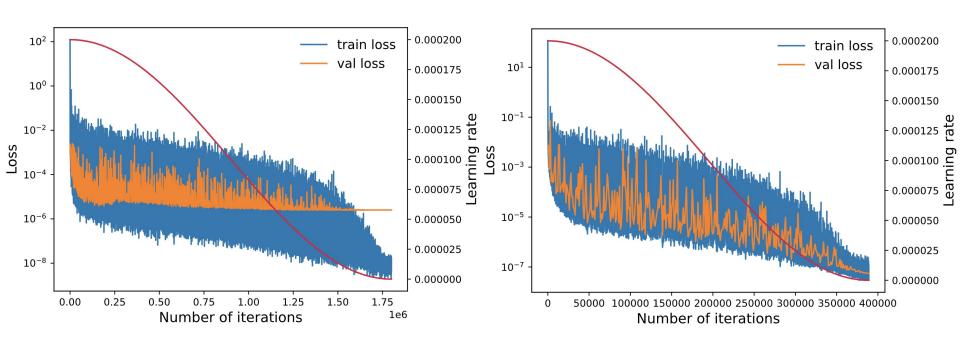
Conclusions

- Observed very clean and predictable scaling laws for amplitude surrogates
- Dataset size bottlenecks are the most important
- Scaling with MSE and Heterosc loss
- Well calibrated uncertainties across many orders of magnitude
- Observed relationship between scaling and DOFs
- Promising results with equivariant NNs

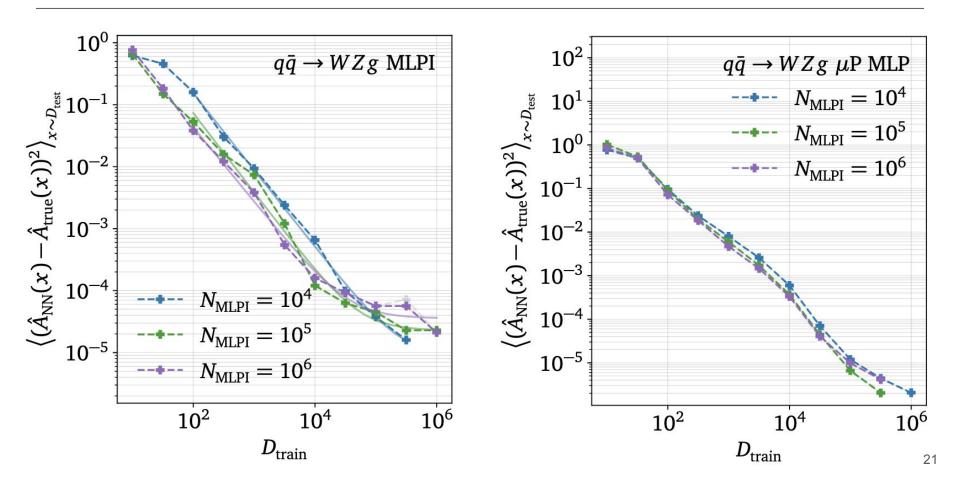
Thanks!

Scheduler

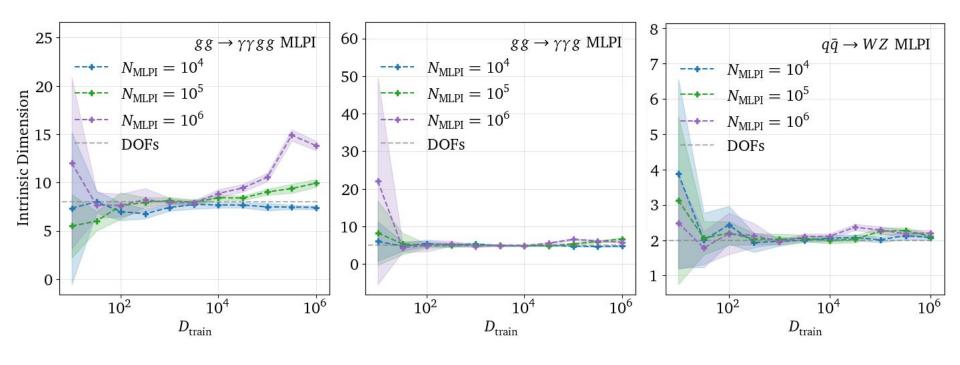
Scheduler has to go to 0 just at the right time



muP vs normal MLP

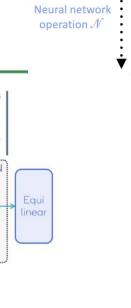


Internal Intrinsic Dimension



L-GATr

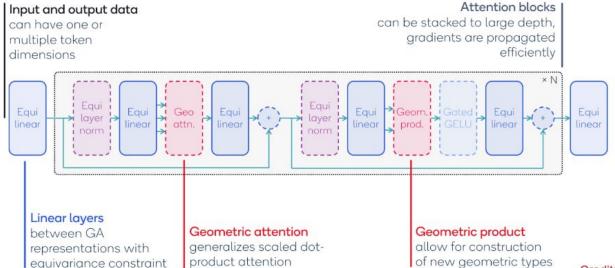
$$\mathcal{G}(\mathcal{N}(x)) = \mathcal{N}(\mathcal{G}(x))$$

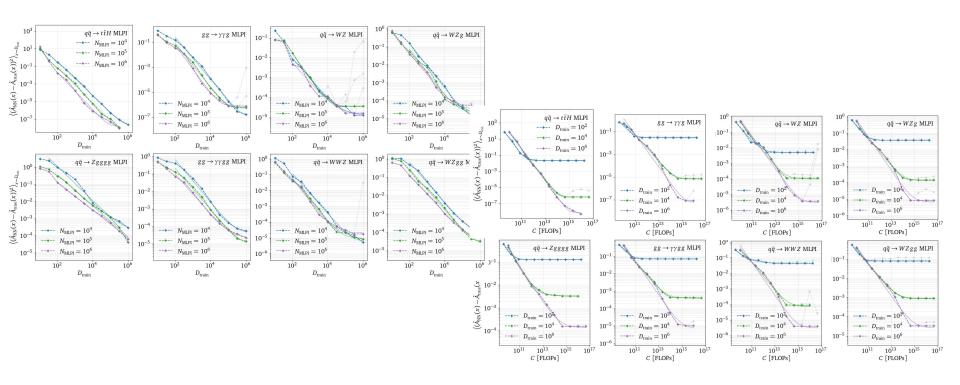


Credits to Johann Brehmer

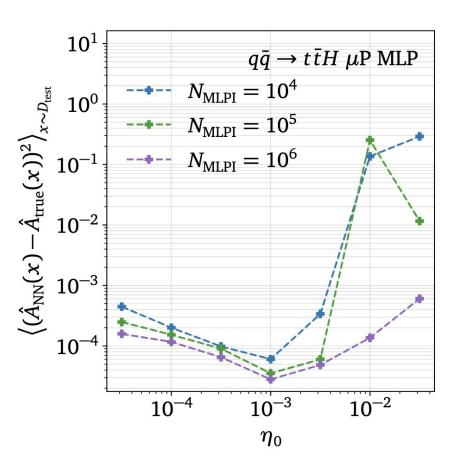
Symmetry group operation ${\mathscr G}$

8



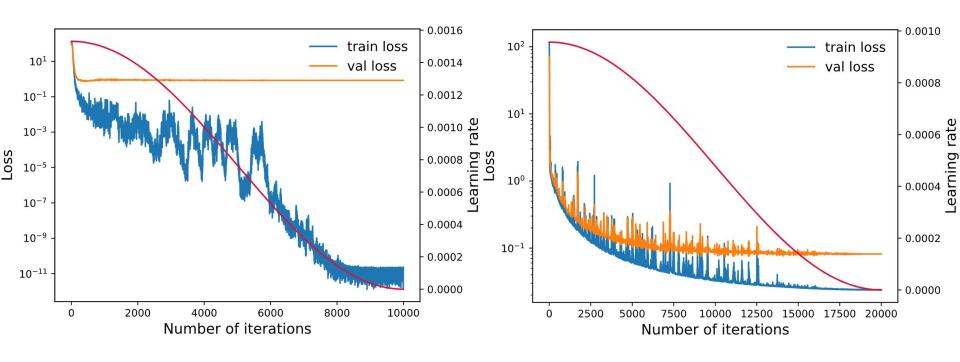


muP



muP overfitting for small datasets

100 training points



Overfitted Het loss

