
A Short Course On ADQL

Markus Demleitner Hendrik Heinl

November 28, 2025

Abstract

This is a course on the Virtual Observatory’s main query language ADQL (short for
Astronomical Data Query Language), which is a SQL dialect standardised so users do not
have to learn new languages each time they want to use a new resource. We also introduce
the basic aspects of the Table Access Protocol TAP, which transports ADQL queries, their
results, as well as the metadata necessary to write meaningful queries.

The course comes with many exercises, most of which also have solutions. We hope
it is suitable for both self-study and as lecture notes in teacher-led situations. Participants
should have some basic knowledge of astronomy, and they should have some basic knowl-
edge of the TOPCAT table processor.

TAP/ADQL

T(able) A(ccess) P(rotocol)
A(stronomical) D(ata) Q(uery) L(anguage)

Open a browser on http://docs.g-vo.org/adql for lecture notes.

1

http://docs.g-vo.org/adql

Data Intensive Science

Data-intensive science means:

1. Using many data collections

2. Using large data collections

Point (1) requires standard formats and access protocols to the data, point (2) means moving
the data to your box and operating on it with FORTRAN and grep becomes infeasible.

The Virtual Observatory (VO) in general is about solving problem (1), TAP/ADQL in par-
ticular about (2).

A First Query

To follow the examples, start TOPCAT and select TAP in the VO menu.
At Keywords, type gavo. Wait until the results are filtered and select the entry GAVO DC TAP.
Then click Use Service.
You already made use of the VOs Google-like service: the Registry. A rough introduction of the
registry how you can use it for data discovery will be explained in chapter “Data Discovery”.
In the query pane, enter:

SELECT TOP 1 1+1 AS result FROM ivoa.obscore

and then click “Ok”. This should give you a table with a single 2 in it. If that does not work
out, complain now.
Note that in the top part of the dialog there is metadata on the tables exposed by the service (in
particular, the names of the tables and the descriptions, units, etc., of the columns). Use that
when you construct queries later.
There are other TAP clients than TOPCAT – after all, we’re talking about a standard protocol.
Another TAP client widely used is Aladin.
You can also use TAPHandle, which runs entirely in your browser.
For running a TAP client in scripts there is STILTS or PyVO
More TAP clients can be found on the IVOA applications page.
You can also use TAP from Python. A lot more on this later. If you are curious now, see an

ipython notebook explaining the basics.

Why SQL?

The SELECT statement is written in ADQL, a dialect of SQL (“sequel”). Such queries make up
quite a bit of the science within the VO.
SQL has been chosen as a base because

• There is a solid theory behind it (relational algebra)

• Lots of high-quality engines are available

• It is not Turing-complete, i.e., automated reasoning on “programs” is not very hard

2

{
 "cells": [
 {
 "cell_type": "markdown",
 "id": "compatible-thickness",
 "metadata": {},
 "source": [
 "This notebook briefly introduces you into doing TAP/ADQL queries interactively using the pyVO package (on Debian-derived systems, do ``apt install python3-pyvo``; otherwise, see http://pypi.org/project/pyvo).\n",
 "\n",
 "Note that for this sort of interactive use, most people prefer TOPCAT (Debian: topcat; otherwise http://www.star.bris.ac.uk/~mbt/topcat)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "inner-highway",
 "metadata": {},
 "outputs": [],
 "source": [
 "import pyvo\n",
 "# Also, shut up a few overzealous warnings\n",
 "import warnings\n",
 "warnings.filterwarnings('ignore', module=\"astropy.io.votable.*\")\n",
 "warnings.filterwarnings('ignore', module=\"pyvo.utils.xml.elements\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "intensive-performance",
 "metadata": {},
 "source": [
 "You typcially first have to discover a TAP service, perhaps based on names (blind discovery, finding tables by topic or coverage, is left as an exercise to the reader; see https://pyvo.readthedocs.io/en/latest/registry for inspration)."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "demonstrated-groove",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs = pyvo.registry.search(servicetype=\"tap\", keywords=\"rave\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "floral-translator",
 "metadata": {},
 "source": [
 "You can now browse the various services matching your constraints."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-solomon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svcs.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "assigned-activation",
 "metadata": {},
 "source": [
 "Pick one of them by index of short name:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "tested-button",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = svcs[\"GAVO DC TAP\"].get_service()"
]
 },
 {
 "cell_type": "markdown",
 "id": "convertible-training",
 "metadata": {},
 "source": [
 "Equivalently, if you have the TAP access URL right away, you can directly construct a TAP service like this:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "prompt-camera",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc = pyvo.dal.TAPService(\"http://dc.g-vo.org/tap\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "executive-button",
 "metadata": {},
 "source": [
 "Once you have such a service, you can see what tables are on it:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "adaptive-balloon",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables.describe()"
]
 },
 {
 "cell_type": "markdown",
 "id": "expensive-skirt",
 "metadata": {},
 "source": [
 "...and then inspect the columns of each table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "desperate-peninsula",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.tables[\"rave.main\"].columns[:10]"
]
 },
 {
 "cell_type": "markdown",
 "id": "greatest-nature",
 "metadata": {},
 "source": [
 "Based on this, you can now run your queries:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "included-trading",
 "metadata": {},
 "outputs": [],
 "source": [
 "res = svc.run_sync(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\")"
]
 },
 {
 "cell_type": "markdown",
 "id": "junior-purple",
 "metadata": {},
 "source": [
 "The results's to_table method returns a normal astropy table:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "decimal-soldier",
 "metadata": {},
 "outputs": [],
 "source": [
 "res.to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "stylish-virgin",
 "metadata": {},
 "source": [
 "For longer-running jobs, you can also run async jobs:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "educational-light",
 "metadata": {},
 "outputs": [],
 "source": [
 "svc.run_async(\"SELECT TOP 5 raveid, raj2000, dej2000, rv FROM rave.main\"\n",
 ").to_table().show_in_notebook()"
]
 },
 {
 "cell_type": "markdown",
 "id": "precious-rotation",
 "metadata": {},
 "source": [
 "Finally, the examples you see in TOPCAT are also available in pyVO, although for browsing you will probably want to go to the service's examples endpoint:"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "affiliated-particle",
 "metadata": {},
 "outputs": [],
 "source": [
 "import webbrowser, pprint\n",
 "webbrowser.open(svc.baseurl+\"/examples\")\n",
 "pprint.pprint(svc.examples[:3])"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "dynamic-spice",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.2"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

http://aladin.u-strasbg.fr/
http://saada.u-strasbg.fr/taphandle/
http://www.star.bris.ac.uk/~mbt/stilts/
http://pyvo.readthedocs.io/en/latest/index.html
http://www.ivoa.net/astronomers/applications.html

Relational Algebra

At the basis of relational data bases is the relational algebra, an algebra on sets of tuples (“re-
lations”) plus six operators:

• unary select – select tuples matching to some condition

• unary project – make a set of sub-tuples of all tuples (i.e., have less columns)

• unary rename – change the name of a relation (this is a rather technical operation)

• binary cartesian product – the usual cartesian product, except that the tuples are concate-
nated rather than just put into a pair; this is not usually actually computed but rather
used as a formal step

• binary union – simple union of sets. This is only well-defined for “compatible” relations;
the technical points don’t matter here

• binary set difference as for union; you could have used intersection and complementing
as well, but complementing is harder to specify in the context of relational algebra.

Good News: You don’t need to know any of this. But it’s reassuring to know that there is a
solid theory behind all of this.

SELECT for real

ADQL defines only one statement, the SELECT statement, which lets you write down expres-
sions of relational algebra. Roughly, it looks like this:
SELECT [TOP setLimit] selectList FROM fromClause
[WHERE conditions] [GROUP BY columns] [ORDER BY columns]
In reality, there are yet a few more things you can write, but what’s shown covers most things
you’ll want to do. The real magic is in selectList, fromClause (in particular), and conditions.

TOP

setLimit: an integer giving how many rows you want returned.

SELECT TOP 5 * FROM rave.main

SELECT TOP 10 * FROM rave.main

SELECT: ORDER BY

ORDER BY takes columns: a list of column names (or expressions), and you can add ASC (the
default) or DESC (descending order):

SELECT TOP 5 *

FROM rave.main

ORDER BY rv

SELECT TOP 5 *

FROM rave.main

ORDER BY rv DESC

3

SELECT TOP 5 *

FROM rave.main

ORDER BY fiber number, rv

Note that SELECT * (pulling all columns) is usually wasteful and you should do better from the
next slide on.
Also note that ordering is outside of the relational model.
That sometimes matters because it may mess up query planning (a rearrangement of relational
expressions done by the database engine to make them run faster); also, of course ordering has
to look at everything in a table, which is a sure way to make things slow. So: if you use ORDER,
make sure it is actually necessary and that you do it at the latest possible moment (i.e., when
the result set hopefully already is small).
On the other hand, looking at extreme values is a good way to find odd, presumably bad cases.
I severely doubt that RVs of 1000 km/s actually correspond to any physical reality for the sort
of object RAVE looked at.

Exercise 1
Select the (rows of) the 20 brightest stars in the table fk6.part1.

SELECT: what?

The select list has column names or expressions involving columns.
SQL expressions are not very different from those of other programming languages.

SELECT TOP 10

POWER(10, phot_g_mean_mag) AS rel_flux,

SQRT(POWER(ra_error, 2)+POWER(dec_error, 2)) AS errTot

FROM gaia.dr3lite

The value literals are as usual:

• Only decimal integers are supported (no hex or such)

• Floating point values are written like 4.5e-8

• Strings use single quotes (’abc’). Double quotes mean something completely different
for ADQL (they are “delimited identifiers”, which we will briefly revisit below).

The usual arithmetic, comparison, and logical operators work as expected:

• +, −, *, /; as in C, there is no power operator in ADQL. Use the POWER function instead.

• = (not ==), <, >, <=, >=

• AND, OR, NOT

• String concatenation is done using the || operator. Strings also support LIKE that sup-
ports patterns. % is “zero or more arbitrary characters”, “exactly one arbitrary charac-
ter” (like * and ? in shell patterns).

Here is a list of ADQL functions:

4

• Trigonometric functions, arguments/results in rad: ACOS, ASIN, ATAN, ATAN2, COS, SIN,
TAN; atan2(y, x) returns the inverse tangent in the right quadrant and thus avoids the
degeneracy of atan(y/x).

• Exponentiation and logarithms: EXP, LOG (natural logarithm), LOG10

• Truncating and rounding: FLOOR(x) (largest integer smaller than x), CEILING(x) (small-
est integer larger than x), ROUND(x) (commercial rounding to the next integer), ROUND(x,
n) (like the one-argument round, but round to n decimal places), TRUNCATE(x), TRUNCATE(x,n)
(like ROUND, but discard unwanted digits).

• Angle conversion: DEGREES(rads), RADIANS(degs) (turn radians to degrees and vice
versa)

• Random numbers: RAND() (return a random number between 0 and 1), RAND(seed) (as
without arguments, but seed the the random number generator with an integer)

• Operator-like functions: MOD(x,y) (the remainder of x/y, i.e., x%y in C), POWER(x,y)

• SQRT(x) (shortcut for POWER(x, 0.5))

• Misc: ABS(x) (absolute value), PI()

Note that all names in SQL (column names, table names, reserved words, etc) are case-insensitive
(i.e., VAR and var denote the same thing). You can force case-sensitivity (and use SQL reserved
words as identifiers) by putting the identifiers in double quotes. These are the delimited iden-
tifiers mentioned above, and they are a constant source of trouble. Only use double quotes
if the data providers force you to because they chose flamboyant names (VizieR, regrettably,
did). If you publish data yourself, just use C identifiers for your column names; the full rules
for how delimited identifiers interact with normal ones are difficult and confusing.
Also note how I used AS to rename a column. You can use the names assigned in this way in,
e.g., ORDER BY:

SELECT TOP 10

gaia_edr3_id,

SQRT(POWER(pmra, 2)+POWER(pmra, 2)) AS pmTot

FROM cns5.main

ORDER BY pmTot

Don’t do that on large catalogues without a very good reason – even with the TOP 10, the
database will have to compute pmTots for all items in the table and then sort by that, which
will take a long time with, for instance, Gaia DR3’s 1.8 billion rows.
To select all columns, use *

SELECT TOP 10 * FROM rave.main

In general, try to only select the columns you actually need; there is no point retrieving a hun-
dered columns when five would do, and carrying all these superfluous columns around has a
very real cost in terms of ease-of-use and resources (in particular when it comes to uploads).
TOPCAT makes picking the columns really easy: Control-click the columns you want in the
Columns tab, and then use the “Cols” button above the the query input to insert their names.
Use COUNT(*) to figure out how many items there are.

5

SELECT count(*) AS numEntries FROM rave.main

COUNT is what’s called an aggregate function in SQL: A function taking a set of values and re-
turning a single value. The other aggregate functions in ADQL are (all these take an expression
as argument; count is special with its asterisk):

• MAX, MIN

• SUM

• AVG (arithmetic mean)

Note that on most services, COUNT(*) is an expensive operation. If you just want to get an es-
timate of how many rows a table has, on many services a peek into the Table pane in TOPCAT
when you have selected a table will tell you.

Exercise 2
Select the absolute magnitude and the common name for the 20 stars with the greatest
visual magnitude in the table fk6.part1 (in case you don’t remember: The absolute
magnitude is M = 5 + 5 log π + m with the parallax in arcsec π and the apparent
magnitude m (check the units!).

SELECT: WHERE clause

Behind the WHERE is a logical expression; these are similar to other languages as well, with
boolean operators AND, OR, and NOT. To find bright stars (apparently) moving quickly towards
or from us:

SELECT raveid FROM rave.main

WHERE

jmag<10

AND ABS(rv)>100

Exercise 3
As before, select the absolute magnitude and the common name for the 20 stars with the
greatest visual magnitude, but this time from the table fk6.fk6join. This will fail for
reasons that should tell you something about the value of Bayesian statistics. Make the
query work.

Missing Data: NULLs

SQL has an explicit concept of missing data: The magic value NULL. It has some interesting
properties:

SELECT count(*) FROM tap_schema.tables WHERE NULL=NULL

returns 0. So does

SELECT count(*) FROM tap_schema.tables WHERE NULL!=NULL

6

All comparisons with NULLs are false, which turns out to be the least horrible thing in the
presence of NULLs.
To select rows for which a given piece of data is or is not NULL use the special construct
IS (NOT) NULL.
Explicit NULL values are an important feature, because it is extemely common that tables in
astronomy contain unknown values. Just think of protometry near the detection limit: An
object that is detectable in one band might be too faint in another.
In the FORTRAN age, people put in sentinel values like -9999 in such cases, but that is a dan-
gerous practice: if you forget about checking for them, these might enter actual calculations.
Consider an average: it will be possibly dramatically wrong, but when you notice that, it may
very well be far too late.
A related concept is the NaN (not a number) from IEEE floating point numbers. In VOTables,
somewhat regrettably, there is no difference between NULLs and NaNs; libraries will turn
NaNs into NULLs where possible (in Python, using masked arrays or Python’s own NULL
value, None).
There are semantic differences, though, which you will notice as long as you do ADQL queries,
where NULL and NaN are different (although data providers should generally avoid ingesting
NaNs). As an example, when you take the average of a column, a NaN in just a single row will
make the entire average NaN. Against that, rows that have NULLs will simply be ignored for
computing the average. But as for NULL, NaN ̸= NaN holds.

Exercise 4
How many objects in the Fifth Catalogue of Nearby Stars (cns5.main on the GAVO TAP
server) are missing a radial velocity?

SELECT: Grouping

For histogram-like functionality, you can compute factor sets, i.e., subsets that have identical
values for one or more columns, and you can compute aggregate functions for them.

SELECT

COUNT(*) AS n,

ROUND(mv) AS bin,

AVG(color) AS colav

FROM dmubin.main

GROUP BY bin

ORDER BY bin

Note how the aggregate functions interact with grouping (they compute values for each group).
Also note the renaming using AS. You can do that for columns (so your expressions are more
compact) as well as for tables (this becomes handy with joins).
To just figure out the domain of columns, there is a shortcut: DISTINCT.

Exercise 5
Get the averages for the total proper motion from lspm.main in bins of one mag in Jmag
each. Let the output table contain the number of objects in each bin, too.

7

SELECT: Grouping by HEALPix

If you want to characterise some property over the sky, HEALPixes are your friend.
These are mathematical miracles: a tesselation of the sky with pixels of equal area. No more
headaches at the poles! ADQL as such does not know about these, but a widely implemented
extension function does: ivo_healpix_index.
While for large catalogues, such queries will have long runtimes, because they will always
scan the whole table, you can try it for smallish catalogues even in a course situation.
A common operation is trying some statistical qualification over the entire sky or a significant
part of it. Since healpixes have equal areas and are well-beheaved at the poles and across the
stitching line of a spherical coordinate system, they are particularly well suited for work like
this. An introduction to this with sample queries is given on a poster by Mark Taylor. Not all
services support the necessary functions (in TOPCAT, you can check in the “service” tab).

SELECT ivo_healpix_index(5, raj2000, dej2000) AS bin,

COUNT(*) AS n,

AVG(rv) AS meanrv,

MAX(rv)-avg(rv) AS updev,

AVG(rv)-min(rv) AS lowdev

FROM rave.main

WHERE e_rv<20

GROUP BY bin

HAVING COUNT(*)>5

Plot this in TOPCAT using the sky plot, see Layers / Add Healpix Control .
Use bin as HEALPix index, set the healpix level to 5, and the select what you want to see
plotted. As annotation for healpix columns improves, plotting these things should involve
less manual work.

Exercise 6
Make an all-sky plot of the number of objects and their average effective temperature in
HEALPixes of level 5 of the catalogue rave.main. Hint: In the server-provided
Examples on the GAVO server, there is an example “Make a HEALPix Map of
something” (in Local UDFs ; if you don’t see it, update your TOPCAT). Start from there.
Can you understand the structures that you see?

ADQL User Defined Functions

ivo_healpix_index is an example of an ADQL extension mechanism: Operators can add UDFs.
The purpose of this is to not overload ADQL with features that may only be relevant for a
limited selection of services or even impossible with certain kinds of backends. In the exam-
ple, to implement the HEALPix index computation, the database engine has to know about
HEALPixes in the first place, which generally requires rather elaborate extensions. These may
be entirely irrelevant for services that do not have have data in spherical coordinates.
See TOPCAT’s ADQL TAP for the UDFs available on a service:

8

http://www.star.bris.ac.uk/~mbt/papers/adassXXVI-P1-31-poster.pdf

In older TOPCAT’s you will find a less elaborate listing of these functions in the Service tab.
UDFs prefixed with ivo_ play a special role: These are guaranteed to have a common syntax
and semantics across services – if they are available, that is.

SELECT: JOIN USING

The brainiest point in ADQL is the FROM clause. So far, we had a single table. Things get
interesting when you add more tables: JOIN.

SELECT TOP 10 lat, long, flux

FROM lightmeter.measurements

JOIN lightmeter.stations

USING (stationid)

Check the tables in the Table Metadata shown by TOPCAT: flux is from measurements, lat and
long from stations; both tables have a stationid column.

JOINing is Selecting from the Cartesian Product

JOIN is a combination of cartesian product and a select.

measurements JOIN stations USING (stationid)

yields the cartesian product of the measurement and stations tables but only retains the rows
in which the stationid columns in both tables agree.
Note that while the stationid column we’re joining on is in both tables but only occurs once in
the joined table.
To understand the way joins work, consider the following simplified example, where we have
two sets, A and B. Like database tables, they consist of tuples, and we will join them on the
second column of A and the first column of B.
So, we first compute the cartesian product (which has six elements in this case). We will,
however, only retain the rows in the result that have identical elements in the join column
(highlighted here in red). That yields the rows marked in green – well, except that only one
copy of the joined column is retained in a database; anything else would be a pointless waste
of resources.

9

A = {(a, 1), (b, 2), (b, 3)}
B = {(1, u), (2, v)}
A × B =

(a, 1, 1, u)

(a, 1, 2, v)

(b, 2, 1, u)

(b, 2, 2, v)

(b, 3, 1, u)

(b, 3, 2, v)

SELECT: JOIN ON

If your join criteria are more complex than simple equality, you can join ON.

SELECT dateobs as lswdate, t min as appdate

FROM lsw.plates AS a

LEFT OUTER JOIN applause.main AS b

ON (dateobs BETWEEN t min AND t max)

WHERE dateobs BETWEEN 36050 and 36100

This particular query compares two archives of scanned plates, lsw.plates (from the K”onigstuhl
observatories) and applause.main (from various other German observatories) and sees if lsw.plate’s
observation date (dateobs) is within the exposure time of the other’s (which is between t min
and t max).
The LEFT OUTER JOIN makes it so that every match on the lsw.plates side is retained. Where
there is a simultaneous observation in Applause, the second column will have its MJD. Where
there is no match, that second column will be NULL.
Of course, I have picked a WHERE clause for didactic reasons. If you drop it, you will get a
large table with only very few matches in between (and you may need to go async; see below).

Flavours of JOIN

There are various kinds of joins, depending on what elements of the cartesian product are
being retained in the presence of missing data (NULL).
First note that in a normal join, rows from either table that have no “match” in the other table
get dropped. Since that’s not always what you want, there are join variants that let you keep
certain rows. In short (you’ll probably have to read up on this):

• t1 INNER JOIN t2 (INNER is the default and is usually omitted): Keep all elements in the
cartesian product that satisfy the join condition.

• t1 LEFT OUTER JOIN t2: as INNER, but in addition for all rows of t1 that would vanish in
the result (i.e., that have no match in t2) add a result row consisting of the row in t1 with
NULL values where the row from t2 would be.

• t1 RIGHT OUTER JOIN t2: as LEFT OUTER, but this time all rows from t2 are retained.

• t1 FULL OUTER JOIN t2: as LEFT OUTER and RIGHT OUTER performed in sequence.

10

Geometries

The main extension of ADQL wrt SQL is addition of geometric functions. Unfortunately, these
were not particularly well designed, but if you don’t expect too much, they’ll do their job.

SELECT TOP 500 rv, e rv, p.radial velocity,

p.ra, p.dec, p.pmra, p.pmdec

FROM gaia.dr3lite AS p

JOIN rave.main AS rave

ON 1=CONTAINS(

POINT(p.ra, p.dec),

CIRCLE(rave.raj2000, rave.dej2000, 1.5/3600.))

For historical reasons some geometrical functions accept an optional string value as the first
argument e.g.
POINT(’ICRS’,p.raj2000,p.dej2000)

As of ADQL 2.1 this option is marked as deprecated. Many services still only support ADQL
2.0 and hence require this argument.
There are more geometry functions defined in ADQL:
AREA, BOX, CENTROID, CIRCLE, CONTAINS, COORD1, COORD2, COORDSYS, DISTANCE, INTERSECTS,

POINT, POLYGON

Exercise 7
Look at the documentation of the ivo_epoch_prop_pos UDF (refer back to the UDF slide if
necessary). Can you figure out how to propagate (i.e., apply the proper motions to
compute positions in the future) the CNS5 to the year 2150? The positions in the CNS5
are (somewhat unusally) given for what is in the column epoch.
What’s the RA of Sirius you determine in this way? And why will this be probably a
rather poor guess?

Exercise 8
Compare the radial velocities given by the rave.main and arihip.main catalogues,
together with the respective identifiers (hipno for arihip, raveid for rave). Use the
POINT and CIRCLE functions to perform this positional crossmatch with, say, a couple
of arcsecs.

DISTANCE

ADQL has a DISTANCE function to compute the spherical distance between two points:

DISTANCE(lon1, lat1, lon2, lat2)

You can also use distance with the POINT geometry, like this:
DISTANCE(POINT (lon1, lat1), POINT (lon2, lat2))

– but this probably only makes sense if you have native POINT-s in a table.
The DISTANCE function can be used to make cone selections and is the prefered way to perform
crossmatches on sky positions in ADQL 2.1.

11

SELECT TOP 1000

raj2000, dej2000, parallax

FROM arihip.main

WHERE

DISTANCE(raj2000, dej2000,

189.2, 62.21) < 10

Note that there are still many TAP services out there that do not support DISTANCE or become
very slow when you use it. You can always fall back to the CONTAINS/CIRCLE pattern
introduced above in such cases.

Subqueries

One of the more powerful features of SQL is that you can have subqueries instead of tables
within FROM. Just put them in parentheses and give them a name using AS. This is particu-
larly convenient when you first want to try some query on a subset of a big table:

SELECT COUNT(*) AS n, ROUND((u-z)*2) AS bin

FROM (

SELECT TOP 4000 * FROM sdssdr16.main) AS q

GROUP BY bin ORDER BY bin

Another use of subqueries is in the connection with EXISTS, which is an operator on queries
that’s true when a query result is not empty.
Beware – people coming from other languages have a tendency to use EXISTS when they
should be using JOIN (which typically is easier to optimise for the database engine). On the
other hand, EXISTS frequently is the simpler and more robust solution.
As an example, to get arihip stars that happen to be in RAVE DR5, you could write both

SELECT TOP 10 *

FROM arihip.main AS a

WHERE

EXISTS (

SELECT 1

FROM rave.main AS r

WHERE DISTANCE(

r.raj2000, r.dej2000,

a.raj2000, a.dej2000) < 1/3600.)

or

SELECT TOP 10 a.*

FROM arihip.main AS a

JOIN rave.main AS r

ON DISTANCE(

a.raj2000, a.dej2000,

r.raj2000, r.dej2000) < 1/3600.

(but see the exercise 9 before making a pattern out of this).

Exercise 9
Sit back for a minute and think whether the JOIN and the EXIST solution in the
Subqueries chapter are actually equivalent. You are not supposed to see this from staring
at the queries – but comparing the results from the two queries ought to give you a hint;
retrieve a few more objects if your results happen to be identical.

12

Common table expressions

WITH lets you name a subquery result for later use in your main query.
This usually makes for more readable queries – the top-level operation is easily findable at the
end of the query, and if you are curious what the individual contributions are, you can go back
to the proper with clause. Consider this example where we are downloading low-resolution
spectra exclusively for objects for which we have rave data:

WITH withrvs AS (SELECT TOP 200

ra, dec, source_id,

a.radial velocity, b.rv as raverv

FROM gaia.dr3lite AS a

JOIN rave.main AS b

ON (

DISTANCE(a.ra, a.dec,

b.raj2000, b.dej2000) < 1/3600.))

SELECT *

FROM gdr3spec.spectra

JOIN withrvs

USING (source id)

This particular example also illustrates a technique WITH is being used for as well: planner barriers in
case of catastrophic query plans.
Each ADQL query will be translated in a sequence of steps the database will process in order to perform
the whole query. This query plan may switch the order of steps which were defined in the scripts
to enhance the performance. The query planner bases this plan on estimates of table sizes and the
“selectivities” of predicates (basically: how often they will be true). If they get these estimates wrong,
the query plans can be wrong, too, sometimes catastrophically so. In these cases, forcing the planner
using CTEs may save the day.

In our example, we crossmatch Gaia and Rave and pull radial velocities from both. Then we want to
add BP/RP spectra (which here come in arrays) with a simple join on the Gaia source id; since at least in
2022, the backend database gets the estimate of the selectivity of the distance condition grossly wrong,
without the CTE the database would first match the 200 million rows of of the Gaia spectra to the Gaia
catalogue before turning to the half a million rave rows, turning a reasonably fast query into a matter
of hours.

TAP: Uploads

TAP lets you upload your own tables into the server for the duration of the query.
Note that not all servers already support uploads. If one doesn’t, politely ask the operators for
it.
Example: Add proper motions to an object catalogue giving positions reasonably close to ICRS;
grab some table, falling back to the attached ex.vot, load it into TOPCAT, go to the TAP
window and there say:

SELECT mine.*, refcat.pmra, refcat.pmde FROM

gaia.dr3lite AS refcat

JOIN tap upload.t1 AS mine

ON DISTANCE (

refcat.ra, refcat.dec,

mine.raj2000, mine.dej2000) < 0.001

13

 Query successful Right ascension (J2000) Declination (J2000) H selected default magnitude J selected default magnitude K selected default magnitude QHSXCsKb8WNASgpzgdfb9UF1jVBBgKn8QXIcrEB0lvDqGDcuQEoKYXwb2lFBVlHsQWGyLUFTEm9A
dJbyckMTe0BKCrf+CK77QXVHrkF/si1BdbItQHSWnVwxWT5ASgpLPD50sEFlmZpBbnrhQWIcrEB0
ln7sOXmeQEoKbH6uW8hBQ9LyQU+hy0E/521AdJa7yxzJZEBKCn1e0G/vQWybpkGCp/BBcD1xQHSW
t/FzdUNASgqcAiml7EFj3ztBgRiTQWKTdUB0lrx+az/qQEoKyN4qwyJBTT99QU+FH0FKuFJAdJat
/4Irv0BKCrNfPX05QVOVgUFaYk5BUhBiQHSW132VVxVASgq6Ymb9ZUF+RaJBglP4QXo5WEB0lspI
+W4WQEoLMJx//edBgHjVQYKRaEF2m6ZAdJbZ0Syt3kBKC1ZcLSeAQX1gQkGEtkZBhPGqQHSW74i5
d4VASgu+wkgOjUFjT99BaPXDQWIUe0B0lsxxkupTQEoLpV0cOslBcCj2QXCfvkFrysFAdJcqaw2V
FEBKCnJ9y926QXNHrkF5rhRBcedtQHSXK+vhZQpASgrIPsiSq0FeGJNBYx64QV5FokB0l0+KTB69
QEoKnZ00WM1Bd64UQYBiTkF32yNAdJdhFEy+H0BKCu3+dbxFQX8OVkGD0OVBffvnQHSXR1cMVlBA
Sgq/XXiBG0FisCFBaR64QWZaHUB0lxvddmg8QEoK8f3evZBBaNkXQW5iTkFko9dAdJc4H5aePUBK
Cu3c580DQXDItEF541RBc2BCQHSXFnqVyFRASgs9IPK+z0FpAgxBbp++QWXztkB0l0vwmVqvQEoL
VFx4pttBY6n8QWkvG0FhysFAdJdnA6+36UBKC7D/EOy3QWrZF0F164VBZ753QHSXa7iADq5ASgvP
gNwzckF47ZFBhAo9QXPrhUB0l4mnfl6rQEoMBmPHT7VBee+eQYPdL0F2wINAdJcPnB+F10BKC7Mg
U1yeQVS0OUFpCj1BUwYlQHSXB3FDOTtASgvAXVLBbkFflYFBf6HLQV564UB0lw5Lh73PQEoLz/6w
dKdBVR64QWpeNUFSl41AdJczru6VdEBKC5Mcp9ZzQXJFokF7tkZBcsi0QHSXKMJhOQBASgv/3nIQ
v0FBdLxBTMScQT5eNUB0lwLBsQ/YQEoL9R77bcpBc41QQXk/fUFvFodAdJZm3vx6OkBKCxuCPIXC
QWXnbUFrlYFBY9LyQHSWagqVhThASguKwY+B6UF2UexBfcKPQW+JN0B0loTxoZhsQEoLuv2Xb/RB
ekWiQYI5WEF2FHtAdJZsoUi6hEBKC7YkE9t/QVvS8kFecrBBWS8bQHSWiH2ys0ZASgwHHFPznUF+
FHtBgq4UQXTMzUB0lrBGhEjPQEoL655JK8NBeLxqQYI/fUF4euFAdJa7b+Lm60BKDCLdepn6QWL9
9EFm4UhBYS8bQHSWt47ihnJASgyfHxSYPUF51wpBgkm6QXD520B0llaQmu1XQEoNOcDr7fpBfFod
QYJwpEFyTdNAdJaV4X40uUBKDPykKu0UQX3XCkGEeuFBgVP4QHSWgarFOwhASg0r3Cbc5EGAnbJB
hRaHQYebpkB0lmce8wpOQEoNUKArhBJBczMzQXu+d0FyKPZAdJcMy8BdU0BKDH8jzI3jQWv3z0F1
64VBZrxqQHSXC/sVtXRASgywY+B6KUF3dLxBf+uFQXg5WEB0ltfhMrVfQEoMwX668QJBeBR7QYC0
OUF2i0RAdJbnlXA/LUBKDPiDM/yHQXZR7EGB989BdKPXQHSXC3solUpASg07IT4+KUFJ87ZBTi0O
QUel40B0l1eD3/PxQEoNMN+b3GpBelodQYEtDkF1gQZAdJc3b212JUBKDVPepGWlQXmZmkF/WBBB
co9cQHSXJnL7oB9ASg2hf0Eov0F8PXFBgzlYQYa6XkB0lwYR/ViGQEoNdWQwK0FBfhysQYKl40F1
++dAdJcwrUb1iEBKDei8FpwkQW45WEF2sCFBbsCDQHSWyylenhtASg3PX05EMUF87ZFBgsaoQYW6
XkB0luq+8Gs4QEoN1B+nZTRBdbItQX2VgUFzEm9AdJbZ1FH8TEBKDhGhEjPfQWw9cUFwUexBaaXj
QHSW46CDmKZASg4pnYg7o0Ftsi1BddsjQWjAg0B0ltXmvGIbQEoOPbwjMV1Bfu2RQYJDlkFui0RA
dJcfw7T2FkBKDoLgGbCrQWwUe0F1KwJBZ9cKQHSW8T8HfMxASg5NXYDkl0FMrAhBV3jVQUnO2UB0
lw1/DtPYQEoPDsMRYihBeeNUQYN0vEFjAgxAdJcWsA/9pEBKDyDh99c9QU0zM0FXaHNBST99QHSX
2bsniNtASgwYm9g4O0F1peNBgel5QXMm6UB0mAP07KaHQEoMhwEQoThBYPXDQWQYk0Ff87ZAdJf+
+/QBxUBKDTr/sE7oQXybpkGEP31BdqPXQHSXsmWt2cJASgy4e9zwMEFmHKxBcIcrQWTZF0B0l5lO
Gj9GQEoNAt4A0bdBTi0OQVWdskFMi0RAdJd9Dx9XtEBKDRR/EwWWQTQQYkE+7ZFBMedtQHSX2D+R
5kdASg2JHiFTN0F9DlZBhisCQXfS8kB0l6naWX1KQEoN3X7Lt/pBa753QXaPXEFpWBBAdJgrGipN
sUBKDLhisny/QX0/fUGD755BfpN1QHSYYREnb7FASg09IPK+z0FMo9dBWSbpQUhumEB0mDhjvuw5
QEoNQj2SMcZBcmJOQXzItEFwo9dAdJg5iVjZtkBKDYUeuFHsQXBumEF0crBBa+dtQHSYbxqfvndA
Sg1JQLux8kFkLQ5BaUvHQWOyLUB0mHVWjoIOQEoNuv2Xb/RBcXzuQXSDEkFo4UhAdJiLWI42j0BK
DcJ+lTFVQVuhy0FkWh1BWkGJQHSYgrtmcvxASg3I4lyBCkFqQYlBgBysQWyPXEB0mGmce8wpQEoO
Eh7mdRRBgNcKQYSNUEF/3ztAdJh+pfhMrUBKDjABT4tZQX1wpEGBtkZBfU/fQHSYGUnogV5ASg2Y
fGMn7kF+gxJBhHzuQXP3z0B0mAJeE7GOQEoN3+MqBmRBcQIMQXpJukFtDlZAdJgcTrVvuUBKDoP9
UCJXQQkvG0EZsi1BAqPXQHSYY77sOXpASg7N4Z/CqUF8+dtBgvGqQXfvnkB0mE065oXbQEoO8r7O
3UhBXwo9QWYUe0FdZFpAdJhg62fCh0BKDvze40/GQXfztkGDMzNBdYk3QHSYaa5PM0RASg8A3kxR
EUFznbJBfTMzQW/ztkB0l3AtWdVeQEoNm6GxlhBBeBiTQYCPXEFwIMVAdJeJw84gikBKDbihnJ1a
QSwYk0E1ztlBKt0vQHSXiI1tO21ASg5W3jMmnkF1DlZBezMzQXV41UB0l7Q9ic5KQEoOTj/+85FB
ZjU/QXDU/kFiCDFAdJfBYFJQL0BKDlNDc/MXQUuyLUFWyLRBSIcrQHSXv/WDpTxASg6kfs/puEF2
sCFBfw5WQXCLREB0l4oZydWiQEoOrsByS3dBbOVgQXDZF0Fq0OVAdJe1oxpL3EBKDzviLl3hQW6f
vkF4hytBbffPQHSXIc3l0YFASg8EHMUypUFyCDFBdjlYQXI9cUB0l1E5QxetQEoPTH80k4ZBf5ma
QYOn8EGBBBlAdJeMEzO5a0BKD04iosI3QXxWBEGDQYlBcTtkQHSXokJKJ2tASg9SwW3z+UF5aHNB
hCbpQXWl40B0l5ld1MdtQEoPg9/z8P5BfOVgQYNumEF2CDFAdJdyNXHR1EBKD2X9itq6QXGp/EF5
jVBBban8QHSXbPldTpBASg/Roh6jWUF6VgRBeOFIQXReNUB0l4DJU5uJQEoP9R77bcpBW7ItQWIY
k0FaNT9AdJfUJv5xi0BKDx0EHMUzQWMOVkFogxJBYfO2QHSXzjrAxi5ASg9K/VRUFUF4o9dBgLhS
QXFT+EB0mAsEq2BrQEoQAJ9iMHdBeZFoQYX1w0F8n75AdJfjNIK+jEBKD8rAgxJvQX+RaEGC/fRB
guNUQHSXsifQKKJASg/solUp/kFLP31BW7peQUXjVEB0l6EFnqVyQEoQQL/jsD5BfXS8QYP99EF2
CDFAdJfWo3rD60BKEFdC3PRiQVqn8EFjWBBBWPGqQHSYHbZezD5AShCs4ku6E0FQfvpBVkWiQU8a
oEB0l/Vx0dR0QEoQ2NvOyFBBV9cKQV60OUFWDEpAdJfsU7CBPUBKENrj5sTGQWrlYEF0Wh1Ba9sj
QHSUJS3solVASgie/Yao/EF0an9Bf8KPQXTpeUB0lDBeokzHQEoJmyPdVNpBZjEnQXFDlkFmm6ZA
dJRfzjFQ20BKCRbB42S/QWiDEkFwKPZBZS8bQHSUdh3JPqNASglX3g1m8UFym6ZBejU/QW8Wh0B0
lGP1ct5EQEoJaoMrmQtBRxqgQVPvnkFDvndAdJSZvDP4VUBKCY1gpjMFQUXbI0FSLQ5BQ1wpQHSU
hoEjgQ9ASgmbgCOmzkFocrBBbpumQWdcKUB0lFZdOZb7QEoJ8n/kvK5BakGJQXbhSEFom6ZAdJRr
sByS3kBKCch9srNGQXP3z0F9N0xBdgAAQHSUe54GD+RASgojQiRnvkFpxqhBdkWiQWXfO0B0lBXq
7iAEQEoJu4PPLPlBaVgQQW+hy0Fm+dtAdJQJSzgMt0BKCgjhUBGQQXPGqEGEVgRBcnbJQHST+hPC
VKRASgoHxBmf5EE2zM1BRYk3QTLEnEB0k+lN1yNoQEoKSoOx0MhBVyLRQWSXjUFTcKRAdJQZA6dU
bUBKCmZeAuqWQXCj10F5521BcDU/QHSUQx33YcxASgpg/keZHEFz2yNBfj1xQXQtDkB0lF3B55Z9
QEoKTmGM4tJBfbItQYPQ5UF1S8dAdJRr7O3UhEBKCo0ALiMpQUlDlkFL3ztBSHKwQHSUKoAGSp1A
SgsGX5WRzUFjHrhBbtDlQWAUe0B0lEYfnwG4QEoK6T4cm0FBeLQ5QYDQ5UFzYEJAdJS2g3974UBK
CdcjZ+QVQX5aHUGFO2RBdVwpQHSUuLvTgEVASgpGe+VTrEE7JulBSP30QTbxqkB0lKN2ki2VQEoK
UUO/cnFBdpN1QX8KPUFv64VAdJTXnhbW3EBKClq8DjioQVKDEkFfQ5ZBTvGqQHSU/9Hc1wZASgqD
wpe/pUE9WBBBQoMSQTyn8EB0lQ7+1jRVQEoKymALApNBfmZmQYQ9cUGGJulAdJTGNJe3QUBKCxh+
fAbiQWfCj0FtEm9BZYUfQHSU8an7521ASguHHmzSkUF93ztBgwYlQXX750B0lHFrEcbSQEoLAqNI
bwVBaT99QWy4UkFkXjVAdJSQw9JSSEBKCwL/jsD5QWtHrkFxfO5BZ8KPQHSUazmfXf9ASgt3IMjN
ZEFvhR9BebpeQW7Ag0B0lIvxpcoqQEoLaaCtihFBHR64QSZFokEbT99AdJSAood+5UBKC668QI2P
QXdgQkGES8dBcKfwQHSUieVcD8tASgupfhMrVkFx1wpBeFHsQXIYk0B0lMGu9vjwQEoLiF0xM39B
YSLRQW141UFhR65AdJTm+0w8GUBKC/Q8fV7QQXF87kF92yNBa6XjQHSUuzY287JASgu3vx6OYUE+
QYlBP4k3QT5FokB0lLCvX9R8QEoMAMDwH7hBTyLRQVtsi0FMan9AdJTXHzYmLUBKDEfDDTBqQW33
z0F6n75Bb9LyQHST4fjjrAxASgrqfOD8L0FttkZBdmJOQW+2RkB0k/vphWo4QEoKrT6SDAdBet0v
QX5++kF0QYlAdJQHObAk9kBKCsAeaKDTQWxqf0FwBBlBaMzNQHST+MAFPi1ASgtaQmu1W0F1gQZB
g52yQXEWh0B0lBGvwEyMQEoK7HyVfNRBcR64QX3jVEF4Wh1AdJQmYSg5BEBKC56+nIhhQXjU/kF8
OVhBb9cKQHST/BnBciZASgu74BV+7UFYdslBX9cKQVkzM0B0lAh0Qsf8QEoLzp5eJHlBfPGqQYSs
CEF85WBAdJQx6v7m+0BKC/igkC3gQXszM0GDDEpBdm6YQHSTt9MK1G9ASgu8AaNuL0FZgQZBYGJO
QVk/fUB0k8gB91EFQEoLsANoak1Bbn76QXcrAkFtmZpAdJPVOsT37EBKC9GAkLQYQVvnbUFh64VB
W/vnQHSTlXiiqQ1ASgvovBacJEF7ul5BgjlYQXNYEEB0k7Dbah6CQEoL+717IDJBf6XjQYSfvkF0
7ZFAdJO9v0h/zEBKDDx9XtBwQYBYEEGEEGJBez99QHSTzzVc2R9ASgw/3WWhRUF0AABBgA5WQXDx
qkB0k/KQq7ROQEoMMZxaPjpBbxqgQXgQYkFvBiVAdJPekHlfZ0BKDEC/47A+QWqwIUFyZmZBZhys
QHST+10DEFZASgxlQMx46kF+KPZBhP30QXnCj0B0k9Z8rqdIQEoM1b7j1f5BcszNQXblYEFogxJA
dJPtfXwsoUBKDO8CgbqAQXqTdUGB7ZFBcmJOQHST9If8uSRASg0e4kNWl0FgtDlBaFYEQWA5WEB0
lF2eQMhHQEoLpV0cOslBYRaHQW52yUFdgQZAdJRo9LYf4kBKC+8f3evZQXRN00GCnbJBg2hzQHSU
YCU5dW1ASgwZn+Q2dkFzoctBdu2RQW5FokB0lEb961LKQEoL8b70nPVBWeuFQWUi0UFVpeNAdJRQ
iA2AG0BKDBJiAlOXQXKXjUF4ZmZBb9cKQHSUYvalDWtASgxJXhfjTEE1MzNBN4EGQTSLREB0lI+F
DfFaQEoMz3yqdYpBZiDFQW7U/kFldLxAdJQwnYxtYUBKDL0jC53DQXA5WEF4hytBa0/fQHSUSAH3
UQVASgzronrpq0E1lYFBOUvHQTQtDkB0lF5Pdl/ZQEoM274BV+9BPbZGQUKXjUE81P5AdJQwW3z+
WEBKDRZ+x4Y8QX5mZkGBcKRBdEGJQHSUTjBEa2pASg2ig00m+kF8n75BgrItQXl41UB0lD0mMOwx
QEoNyd4FA3VBfdsjQYIYk0F6zM1AdJSLORkmQkBKDX8fms/6QXTlYEF/XClBdocrQHSUdj9XLeRA
Sg3rQgLZz0F8gxJBhHKwQWxumEB0lIoH9m6HQEoN3fyf+S9BUxJvQV33z0FQKPZAdJR5Ec81XUBK
DiFj/dZaQXeRaEF+IMVBcul5QHSVK2jO9nNASgtWQwK0D0F0j1xBgTtkQXeyLUB0lSuGKyfMQEoM
CEHt4RpBXdcKQWSPXEFdaHNAdJVvMKTjekBKC/xc3VCpQXibpkGBDlZBcggxQHSVUSElE7ZASgwt
nPE870FzhR9Be++eQXEaoEB0lV13dKukQEoMbkOqebxBh5FoQYPMzUF/nbJAdJVyCFsYVUBKDGDc
uanaQXOFH0F5jVBBcS8bQHSU8DfWMCNASgxAfMfRu0F7hR9BgGhzQXPfO0B0lRG+bmU4QEoMwV0t
AcFBOp++QUjdL0E3cKQ=

You must replace the 1 in tap upload.t1 with the index of the table you want to match.
You may also need to adjust the column names of RA and Dec for your table, and the match
radius.
Always take into account that positions in you upload table use the same coordinate system as
the remote table, and also pay attention to the epoch.

Exercise 10
If you have some data with celestial positions of your own, try reading it into TOPCAT
and try the crossmatch with that. If you do not have any suitable data, try the ex.vot
from the TAP: Uploads slide.

Almost real world

Just so you get an idea how SQL expressions can evolve to span several pages:
Suppose you have a catalogue giving alpha, delta, and an epoch of observation sufficiently
far away from the Gaia epoch. To match it, you have to bring the reference catalogue on our
side to the epoch of your observation. For larger reference catalogues, that would be quite an
expensive endeavour. Thus, it’s usually better to just transform a smaller selection of candidate
stars.
To do this, you decide how far one of your stars can have moved (in the example below 0.1
degrees, the inner crossmatch), and you generate a crossmatch there. From that crossmatch,
you select the rows for which the transformed coordinates match to the precision you want.
To play this through, load matchme.vot from the HTML or PDF attachment into TOPCAT. The
rough crossmatch with Gaia is standard fare:

SELECT

alpha, delta, epoch,

source id, ra, dec, pmra, pmdec

FROM tap upload.t1

JOIN gaia.dr3lite

ON distance(alpha, delta, ra, dec)<0.1

That is returning some 10000 pairs, almost all of which are wrong (there are certainly fewer
than 55 true matches, as there are just 54 rows in matchme). We will thus have to filter more
strictly constraining the positions. For that, we have to apply proper motions.
There is nothing in ADQL’s core that can do that. For the small distances we are talking about
here, you could write something like

ra+pmra/cos(radians(dec))*(epoch-2016)

AS palpha,

dec+pmde*(epoch-2016) AS pdelta,

as a workable approximation.
More and more TAP services, however, have an ADQL extension function (UDF; see TOP-
CAT’s “Service” tab for a per-service list of those) ivo epoch prop pos that will do a precise
job. We will use it here:

14

http://docs.g-vo.org/adql/html/matchme.vot

SELECT alpha, delta, parallax, pmra, pmdec, source_id

FROM (

SELECT

alpha, delta, parallax, pmra, pmdec, source_id,

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, radial_velocity, 2016, epoch) AS tpos

FROM tap_upload.t1

JOIN gaia.dr3lite

ON DISTANCE(alpha, delta, ra, dec)<0.1) AS q

WHERE DISTANCE(POINT(alpha, delta), tpos)<2/3600.

(don’t forget to adapt the table name behind tap upload!).
If you’ve tried it, you’ll have noticed that 53 rows were returned for 54 input rows. For “real” data you’d
of course not have this; there’d be objects not matching at all and probably objects matching multiple
objects. The reason this worked so nicely in this case is that the sample data is artificial: I made that up
using ADQL, too. The statement was:

SELECT coord1(tpos) alpha, coord2(tpos) AS delta, epoch FROM (

SELECT

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, radial_velocity, 2016, epoch) AS tpos,

epoch

FROM (SELECT d3l.*, 1900+75*rand() AS epoch

FROM gaia.dr3lite AS d3l tablesample(1)

WHERE

POWER(pmra,2)+POWER(pmdec,2)>500*500) AS gs) AS transgs

This is rather subquery-heavy and in addition uses two features that we have not seen yet. For one,
rand() returns a random number between 0 and 1, which we use here to generate a random source
epoch.
And there is TABLESAMPLE; this is a prototype extension that may go into ADQL 2.2, perhaps some-
what modified. As used here, you pass in how many percent of the table you want to look at. Over a
TOP 100 or so, this has the advantage that you get different rows every time you use it. It’s not some
statistically valid sampling, though.

The handcrafted VOTable for the example is attached as matchme.vot.

Exercise 11
Follow the example on the “Almost Real World” slide with the matchme.vot table
provided there.
Despite the artificial setting, we have lost one object in the upload join. Can you find it?
And can you guess why we have lost it?
Hint: Have a look at TOPCAT’s Pair Match facility, paying attention to the Join Type
setting.

Exercise 12
In the last exercise, we met the star with the Gaia source id 1872046574983497216 and a
total proper motion of 5 arcsec/yr. In the solution I claimed this is a really extreme case.
Well: how extreme is it? Can you estimate how many faster stars there are?
(Please resist the temptation to use the full Gaia catalogue for this purpose; see also the
next exercise).

15

 This schema contains data re-published from the official Gaia mirrors
(such as ivo://uni-heidelberg.de/gaia/tap) either to support combining
its data with local tables (the various Xlite tables) or to make the
data more accessible to VO clients (e.g., epoch fluxes).

Other Gaia-related data is found in, among others, the gdr3mock,
gdr3spec, gedr3auto, gedr3dist, gedr3mock, and gedr3spur schemas.

 If you use public Gaia DR3 data in a paper, please take note of
`ESAC's guide`_ on how to acknowledge and cite it.

.. _ESAC's guide:
https://gea.esac.esa.int/archive/documentation/GDR3/Miscellaneous/sec_credit_and_citation_instructions/

 This is gaia_source from the Gaia Data Release 3, stripped to just
enough columns to enable basic science (but therefore a bit faster and
simpler to deal with than the full gaia_source table).

Note that on this server, there is also The gedr3dist.main, which
gives distances computed by Bailer-Jones et al. Use these in
preference to working with the raw parallaxes.

This server also carries the gedr3mock schema containing a simulation
of gaia_source based on a state-of-the-art galaxy model, computed by
Rybizki et al.

The full DR3 is available from numerous places in the VO (in
particular from the TAP services ivo://uni-heidelberg.de/gaia/tap and
ivo://esavo/gaia/tap).

 Query successful

 For advice on how to cite the resource(s) that contributed to this result, see http://dc.zah.uni-heidelberg.de/tableinfo/gaia.dr3lite#ti-citing

 More information on a resource that contributed to this data is found at http://dc.zah.uni-heidelberg.de/tableinfo/gaia.dr3lite

 -- *TAINTED*: the value was operated on in a way that unit and ucd may be severely wrong

 333.6340140164655 27.849976857459605 1965.7858191799014
 333.63439154152104 27.847405123061925 1947.3519247585068
 37.640932548792456 -15.722883426074057 1970.7613362859495
 15.640617887051132 -31.881568979728115 1938.7438159932215
 318.3940312945749 -19.321046247513873 1972.0091052176801
 57.349591580851666 -3.326745763069553 1962.9485602093544
 10.08306308889046 -59.46174063841194 1942.3577591141157
 10.071623788088228 -59.46362265289873 1926.8545099913676
 8.632337773885284 71.20022343355981 1945.4506167731026
 134.78530929035358 36.45282227746787 1902.1701747353989
 71.95882645149462 48.27898180625064 1961.1810783581943
 308.17298046054367 5.847303573127917 1940.316450898357
 282.4414223127152 -23.832277351526997 1926.5229776949748
 316.61589193043056 38.67331845368693 1921.525472658736
 185.64760924528508 -40.033957760460126 1933.0340149658534
 177.47117195940297 -40.20894686704706 1931.7337387029202
 127.66703999616873 32.70431313196559 1946.3142521041284
 125.61558454964111 7.416129715367857 1968.3133986152607
 118.27728417448131 -14.793122661781078 1952.5157837774932
 129.96316706834125 11.529560242153291 1950.438824708746
 266.66088065304507 -12.965997565691493 1942.4389675114317
 229.83187163328384 23.067880433803026 1937.4327307097165
 208.16982032762863 -50.92087061793369 1921.4381561523028
 208.1617517256657 -50.92086550762734 1962.9586603645034
 227.34014275805797 -19.959301753021517 1958.9875913830242
 8.951982058702276 52.68959526402702 1943.2097281411643
 8.95919839022566 52.695621024043355 1959.1512094428379
 270.7574708312609 75.9582084752584 1950.5022597628474
 44.124398209628296 55.44958708143954 1936.572709014636
 254.71752220896474 68.89309779083949 1913.4494566871606
 265.6172109619817 75.61616196744106 1902.6093151808363
 152.37996453042464 51.29479013901907 1973.9560056023508
 133.88317005174167 70.79658403271424 1973.392616854931
 133.89468833368636 70.79807667551529 1964.2796928702403
 274.3324327736555 68.5717716124557 1962.3805489099857
 117.16711189884757 53.65851586215758 1930.00739348807
 117.170724364647 53.663065606320096 1901.2948549576042
 217.67195825701702 59.722149014004565 1967.4392505929422
 299.2362835032754 -42.25472256197355 1935.5251281548265
 312.83117367077637 -79.28731780277282 1913.0609048993458
 62.13731001403038 50.17996217339884 1956.0809722309855
 183.2653558716693 3.2644351082596477 1926.2454559551074
 195.18525425602405 19.221439088945132 1965.890505736405
 220.38663157588852 -51.96509368354733 1960.9900359149158
 278.8628157269665 -19.725528411088195 1963.9790407796252
 203.01499743926288 -1.3009835552844349 1910.0729652970142
 247.15007724114255 3.2641606982975873 1923.4890432221996
 34.538354208523124 44.27284169091741 1925.0252727929708
 159.6427919671567 35.49494033204997 1971.4734780822916
 354.8107803302858 -20.941480001483324 1908.7872016815916
 351.4219103574577 -18.794354277818243 1900.632318417714
 22.709508881043494 -4.121517588977726 1972.6064576949682
 257.0677087562446 -34.59051259100995 1932.3458402124845
 213.13028261265407 10.148536987117131 1972.4337744759741

Exercise 13
(This is slightly advanced) In the last exercise, you were asked not to consult the Gaia
source catalogue to get proper motion statistics, although to a contemporary
astronomer that would be the obvious choice. That is because all-catalogue statistics are
expensive on Gaia.
Can you find a way to still get the fastest stars in gaia.dr3lite within the time limit of
sync queries on that server (i.e., a couple of seconds)?
Cheap hint: see what columns are indexed.

TAP: Async operation

TAP jobs can take hours or days. To support that, you can run your TAP jobs asynchronously.
This means you do not have to keep a connection open all the time.
Most servers have relatively tight limits on the execution times of queries when they are run
synchronously. For instance, on the GAVO DC TAP service, the following query will probably
time out (remember that the result of this query is available in TOPCAT’s table tab, too, but it’s
a simple query that demonstrates timeouts):

select count(*)

from ucac4.main

(if this doesn’t time out, the machine has a good day; use another slow query in that case).
Async queries can also be queued (i.e., put into a waiting state until the executing machines
have resources free), and hence it is much easier to be generous with execution limits in async,
too.
To go async in TOPCAT, change the Mode selector to “Asynchronous”. After submitting the job,
you can watch your job go through “UWS phases”:

PENDING Job created, you can configure it Configuration includes setting the query, adding
uploads, setting execution limits, etc.

QUEUED Waiting for compute time

EXECUTING The job is running

COMPLETED Successful completion, fetch results

ERROR The Job has failed, fetch error message

Resuming async Jobs

You can quit your client with async and resume from somewhere else.
To do that: In Running Jobs, select the URL and save it. Uncheck Delete on Exit and leave
TOPCAT.
Then restart TOPCAT, open the TAP window and paste the URL back into the URL field. If the
job has finished, you can retrieve the result.
There is a bit more to async operation; for example, the server will not keep your jobs indef-
initely (see “destruction time” in the resume tab). TAP lets you change these values, though
TOPCAT doesn’t offer an interface to that as of now. PyVO (for instance) does, and so does
stilts, the command line variant of TOPCAT.

16

Exercise 14
In async mode, run this on the GAVO server:
SELECT TOP 500 source_id, flux

FROM gdr3spec.spectra

WHERE arr_max(flux)>arr_avg(flux)*5

This is using the experimental array extension to ADQL1. You can probably guess
without reading the blog post that this will select spectra with something like strong
lines.
Run that query in async mode on the GAVO server. In a course situation, shout out
your job’s phases to watch the dequeuing. Save the job URL, exit TOPCAT, resume it,
and load the result when the job is COMPLETE-d.

TAP: the TAP schema

TAP services try to be self-describing about what data they contain. They provide information
on what tables they contain in special tables in TAP SCHEMA. Figure out what tables are in
there by querying TAP SCHEMA itself:

SELECT * FROM tap schema.tables

WHERE table name LIKE ’tap schema.%’

Of the tables you get there, the most relevant ones are tap schema.tables and tap schema.columns.
From the former, you can obtain names and descriptions of tables, from the latter, about the
same for columns.
To see what columns there are in tap schema.columns, say:

SELECT * FROM tap schema.columns

WHERE table name=’tap schema.columns’

Of course, in normal operations, clients like TOPCAT do that querying for you: it’s how they
fill their metadata views.
In addition to description, unit, datatype and arraysize (the latter two corresponding to what
you have in VOTable), there is the indexed column that says whether the column is part of an
index. While that information is, in general, not enough to be sure, on large tables querying
against indexed columns can steer you clear of the dreaded “sequential scan”, which is when
the database engine has to go through all rows (which is slow and may take hours for really
large tables).
The ucd column is also interesting. UCD stands for Unified Content Descriptor and defines
simple semantics for physical quantities. For more information, see the UCD standard. To get
an idea what UCDs look like, try:

SELECT DISTINCT ucd

FROM tap_schema.columns

ORDER BY ucd

Exercise 15
Pick a server that piques your interest from TOPCAT’s server selection. How many
tables are there on the server? How many columns? How many columns with UCDs
starting with phot.mag?

1https://blog.g-vo.org/a-proposed-vector-extension-for-adql.html

17

http://www.ivoa.net/Documents/latest/UCDlist.html
https://blog.g-vo.org/a-proposed-vector-extension-for-adql.html

Data Discovery 1: the Registry

The list of services in TOPCAT’s TAP window comes from the VO Registry, an inventory of
the services and data kept within the VO.
There are a few more ways to search the Registry, for instance in a web browser using WIRR.
Use case: Find tables talking about quasars that have redshifts.

WIRR is not limited to search TAP services only, but also services using other VO protocols
like SIAP or SCS.
In WIRR, you add and define constraints on the data collections.
Any Text Field - match - quasar

then click + Add Constraint and in the new row select
Service Type - is - TAP(SQL) ,

again click + Add Constraint and in the new row select Blind Discovery → Column UCD .
You will then get a Pick one button. Try it to locate a redshift UCD.
What you get back is a list of data collections (“resources”) that match your criteria. In prin-
ciple, you could transmit these to TOPCAT using SAMP, and that works fine for SCS, SSAP,
and SIAP services. For TAP services, this does not work yet (2024) for complicated reasons not
easy to fix.

Data Discovery 2: use ADQL

The relational registry standard says how to query this data set using ADQL. All tables are in
the rr schema and can be combined through NATURAL JOIN. Our use case looks like this in
ADQL:

SELECT ivoid, access_url, name,

ucd, column_description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id LIKE ’ivo://ivoa.net/std/tap%’

AND 1=ivo_hasword(table_description, ’quasar’)

AND ucd=’src.redshift’

18

http://dc.zah.uni-heidelberg.de/wirr/q/ui/
http://www.ivoa.net/documents/RegTAP/

As in WIRR, we constrain the UCD find columns with redshifts. It is instructive to compare
the query above with the following one:

SELECT ivoid, access_url, name, ucd, column_description

FROM rr.capability

NATURAL JOIN rr.interface

NATURAL JOIN rr.table_column

NATURAL JOIN rr.res_table

WHERE standard_id LIKE ’ivo://ivoa.net/std/tap%’

AND 1=ivo_hasword(table_description, ’quasar’)

AND 1=ivo_hasword(column_description, ’redshift’)

– the difference here is that we don’t use the controlled UCD vocabulary but do a freetext
query similar to the query we performed with WIRR. You notice that precision is down (you
get many columns that talk about redshifts, for instance), but recall is up (for instance, our
naive query was missing columns with UCDs src.redshift;pos.heliocentric, but, worse, some with
empty UCDs).
To find UCDs relevant for you used “in the wild”, you can use WIRR’s Pick one button as
above, or you can do a query like

SELECT ucd, MIN(column_description), MAX(column_description)

FROM rr.table_column

WHERE 1=ivo_hasword('redshift', column_description)

GROUP by ucd

The MIN and MAX clauses sample a few of the descriptions collected into each UCD’s group. In
this example, this is admittedly not very illuminating. It might be for other cases.
As to columns with missing UCDs, the recommended remedy is to complain to data providers
that have lousy metadata, and make sure metadata is good on data that you publish yourself.
High-quality metadata is of utmost importance for the VO – but on the other hand: Even
shoddily published data is better than entirely unpublished data.
Incidentally, if you are in the business of writing RR queries yourself, be sure to look at the
sample queries in the RegTAP standard.

Simbad

Simbad has a TAP interface; find it TOPCAT’s server selector and inspect Simbad’s table meta-
data. Try queries like:

SELECT TOP 20 * FROM basic

Example: Filter out boring stars. To get a sample, use your own data if you have some. Oth-
erwise, let’s use some HIPPARCOS stars. In TOPCAT, do VO/Cone Search, enter hipparcos
as keyword, use the Hipparcos Main Catalogue resource and search with, say, RA 30, Dec 12,
and Radius 10.
With that table open and Simbad’s public.basic metadata in the TAP window, do Examples/Upload
Join. Edit the resulting query to end up like

19

SELECT TOP 1000

otype txt, tc.*

FROM basic AS db

JOIN TAP_UPLOAD.t7 AS tc

ON 1=CONTAINS(POINT(’ICRS’, db.ra, db.dec),

CIRCLE(’ICRS’, tc.ra, tc.dec, 2./3600.))

WHERE otype txt!=’star’

Whatever is left either is so boring that nobody ever bothered to publish about it – or it is
something except a boring, plain star.
For otypes, simbad has a fairly elaborate classification system that you will need to know to
make useful queries against otype. Another secret they are not advertising loudly enough at
the moment is that you can append two dots to an object designation to query against “thing
and descendants”, as in otype=’V*..’ to catch all variable stars.

Exercise 16
In exercise 14, you selected stars with odd spectra. Can you use Simbad’s TAP service
to find what types of star these are?
Hint: you probably need to do two upload joins, first with gaia.dr3lite (or some other
Gaia DR3 table out there), then with public.basic on Simbad.

Onward

If you get stuck or a query runs forever, the operators are usually happy to help you. To find
out who could be there to help you, check TOPCAT’s Service tab or use – the relational registry.
If you have the ivoid of the service, say

SELECT role_name, email, base_role

FROM rr.res_role

WHERE ivoid=’ivo://org.gavo.dc/tap’

– if all you have is the access URL, do a natural join with interfaces.
If we have done a good job, you now know how. . .

Solution for Exercise 1

SELECT TOP 20 *

FROM fk6.part1

ORDER BY vmag ASC

Solution for Exercise 2

SELECT TOP 20

5+5*LOG10(pres*3600.)+vmag AS absmag, comname

FROM fk6.part1

ORDER BY vmag ASC

Solution for Exercise 3 Just add a WHERE pres>0. In serious science, one would of course need
to be more careful; there is a reason, after all, for the negative parallaxes (at least with frequen-
tist estimators, but really with any kind of measurement).

20

http://simbad.u-strasbg.fr/simbad/sim-display?data=otype

Solution for Exercise 4 Inspecting TOPCAT’s metadata browser, you will find that the radial
velocity in cns5.main is called rv. With this, you can write

SELECT COUNT(*) FROM cns5.main WHERE rv IS NULL

This will yield just one row containing 4323. If you try the inverse, rv IS NOT NULL, you will see
that a mere 1586 objects do have a radial velocity; RVs are expensive.

Solution for Exercise 5

SELECT

ROUND(Jmag) AS bin,

COUNT(*) AS n,

AVG(SQRT(POWER(pmRA,2)+POWER(pmDE,2))) AS pmavg

FROM lspm.main

GROUP BY bin

ORDER BY bin

Solution for Exercise 6 The query would look something like

SELECT

COUNT(*) as n,

AVG(teff_k) AS mean_teff,

ivo_healpix_index(5, raj2000, dej2000) AS hpx

FROM rave.main

GROUP BY hpx

When plotting this, remember to do Layers → Add HEALPix Control , and select your table
in the Data tab. Also, you still need to manually set the HEALPix Data Level to 5, or the plot
will look really odd (and not mean a thing).
As to what the structures mean: The survey largely excluded the Galactic plane, presumably
to dodge blending. That there’s almost no data on the northern sky is because the RAVE
instrument is on the southern hemisphere.
The structures in the density plot. . . well, who knows what made the survey designers pick
their objects – I’m sure there is a paper discussing this. On the structures in the temperature
plot: I’d guess the hot patches in the galactic plane are open clusters. The “brighter” stripes
along the Galactic plane I would attribute to something happening in the pipeline by gut feel-
ing; but of course it could also represent the target selection (“thick disk sample”?).
Also, if you go to higher HEALPix indexes, remember to raise MAXREC, which on the GAVO
server defaults to 20’000 – less than the number of level 6-HEALPixes on the sky.

Solution for Exercise 7 The somewhat tricky part is to pull in the CNS columns into your
result, because you cannot say SELECT whatever, * in SQL . There is a workaround, like this:

SELECT

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, rv, epoch, 2150) AS np, cns.* from cns5.main as cns

WHERE ra IS NOT NULL

21

You did check the units of the columns going into ivo_epoch_prop_pos, did you?
The condition on ra is necessary because the UDF refuses to operate if only one column has a
NULL position; and the CNS contains the Sun, which does not have a usable position.
There are various ways to seek out Sirius in the transformed catalogue (e.g., by looking up its
position and clicking on a sky plot). A snobbish way is to use another UDF that the GAVO
server has: gavo_simbadpoint, which returns a point from Simbad’s idea of an object’s position.
This would look like this:

SELECT

ivo_epoch_prop_pos(ra, dec, parallax,

pmra, pmdec, rv, epoch, 2150) AS np, cns.* from cns5.main as cns

WHERE DISTANCE(POINT(ra, dec), gavo_simbadpoint('Sirius'))<0.01

This will give something like 101.26339444 for Sirius A’s RA. And the “A” also tells you why
this is going to be severely off: Sirius is a binary star, and its A component wobbles quite a bit.
I was too lazy to look for an orbit of Sirius, which one would need to make a better prediction.
If you are less lazy, feel free to write in. n.

Solution for Exercise 8

SELECT ah.vrad, r.rv, r.raveid, ah.hipno

FROM rave.main AS r

JOIN arihip.main AS ah ON (

1=CONTAINS(

POINT(r.raj2000, r.dej2000),

CIRCLE(ah.raj2000, ah.dej2000, 0.001)))

Solution for Exercise 9 The central difference is that the EXISTS query will have not more
than one row per RAVE object; that’s how SELECT works: either a row is in or it is not.
The JOIN however, my produce more than one row per RAVE object if there is more than one
ARIHIP object in the close vicinity of the RAVE object – and given there are many double stars
resolved already in the Hipparcos catalogues, that’s a fairly common thing.

Solution for Exercise 11 To find out which object is missing, do Joins → Pair Match in TOP-
CAT; thanks to the UCDs, TOPCAT fills out the dialogue just fine, except that in Join Type ,
you have to choose 1 not 2 .
This results in a single-row table for a star at 316.61589, 38.67332.
Given the way the table was produced, the only plausible explanation is that the star is fast and
has a fairly large epoch difference; indeed, if you look at a histogram of epoch in matchme.vot,
you will see that it is on the larger side. To see if that explanation is right, just re-run our
original query, uploading the new difference table, and raising the initial match radius (i.e.,
adapt tap_upload.tx to the index of the match result, and write, perhaps 0.2 instead of 0.1).
This will return to the object with the Gaia DR3 source id 1872046574983497216, and indeed
this has a massive proper motion of 5.2 arcsec/yr, which over the roughly 100 years of the
epoch difference is 0.13 degrees; so, it just escaped our initial wide cone. That we missed such
an extreme star is no reason to worry; there are not that many of those on the sky (and of course
I have crafted the original query to contain one of them).
See also the next exercise.

22

Solution for Exercise 12 We have the wisdom of all astronomy at our fingertips, so go back to
Select Service , type high proper motion into Keywords and see if you can find a good source
for a statistics on fast stars.
Careful with some of the VizieR results that you get back; the table descriptions often suggest
that something is a fairly comprehensive catalogue when it actually is not.
lspm.main at the GAVO data centre says something about completeness. It’s just for the north-
ern hemisphere, but for our statistical curiosity, that is good enough; high-PM stars are nearby,
and thus we expect them to be roughly isotropically distributed.
By the Table pane, there are more than 60’000 objects in this table. Let’s not pull them all but
instead do a server-side histogram, perhaps choosing 0.1 arcsec/yr as the bin size:

SELECT

COUNT(*) AS n,

ROUND(pm*3600*10)/10 AS bin

FROM lspm.main

GROUP BY bin

Looking at the histogram, you will see that there are less than five stars faster than our runaway
on the northern sky, and hence probably less then ten on the entire sky.
As I said: It’s no accident that this one appeared in our sample. Try SAMP and Aladin’s Simbad
pointer if you want to find out that object’s name.

Solution for Exercise 13 The table metadata tell you that both pmra and pmdec are indexed.
However, you cannot use these indexes to query against total proper motion, which is a com-
plex expression over these. Instead, you have to use the index to pick out stars with large PM
components and then do your computations on that far smaller set. Perhaps:

SELECT source_id, SQRT(POWER(pmra,2)+POWER(pmdec,2)) AS pmtot

FROM gaia.dr3lite

WHERE NOT pmra BETWEEN -1000 and 1000

`AND NOT pmdec BETWEEN -1000 and 1000

Sorting this by pmtot, you will find that our friend 1872046574983497216 holds rank 7 among
the 1.8 billion stars in Gaia DR3. What, may I quip again, are the chances for such a thing
turning up in my not-so-random sample?

Solution for Exercise 14 Sorry, this exercise was really intended just to make you watch UWS
phases and go through the motions of resuming. No astronomy here. But save the table, we
will later be doing something interesting with it.
If you could not resume, you probably forgot to uncheck Delete on Exit.
Oh, but you may want to plot the spectra you selected. To do that in TOPCAT, open a Plane
Plot and then do Layers → Add XYControl . In the Position tab, select your table; modern
TOPCATs will automatically know how to plot this as a spectrum.

23

Solution for Exercise 15 The queries are fairly straightforward, except perhaps for the UCD
thing, where you want to use an ILIKE operator that does case-insensitve matching because
(stupidly) UCDs are specified to be case-insenstive. But I have not told you about this, and so
you were not supposed to know that.

SELECT COUNT(*) FROM tap_schema.tables

SELECT COUNT(*) FROM tap_schema.columns

SELECT COUNT(*) FROM tap_schema.columns

WHERE ucd ILIKE 'phot.mag%'

The results change to often to include them here.

Solution for Exercise 16 Step one is to obtain positions for the stars, i.e., turn the source_id-s
into positions. As hinted, this takes an upload join with a Gaia source table, for instance:

SELECT source_id, ra, dec

FROM gaia.dr3lite

JOIN tap_upload.t1 USING (source_id)

(as usual, modulo the TOPCAT table index).
Pro tip: before uploading, open the column metadata for the table you are going to upload and
uncheck all columns you will not need in the query (in this case, flux). TOPCAT then will not
upload it, so things will be faster and less fragile on top.
The second step is as in the lecture: change to Simbad’s TAP server and, while having the
result of the last query selected, create an Upload Join from Examples . Perhaps reduce the
match radius a bit to get something like

SELECT TOP 1000

*

FROM basic AS db

JOIN TAP_UPLOAD.t3 AS tc

ON 1=CONTAINS(POINT('ICRS', db.ra, db.dec),

CIRCLE('ICRS', tc.ra, tc.dec, 1./3600.))

You will see that basically all of these stars are late M stars, whether classified as long-period
variables, carbon stars, Mira variables, or whatever; what you are seeing in the spectra is
presumably wide molecular absorption features.
By the way, you could have tried to turn your source_id-s into identifiers that Simbad supports
and that way avoid the resolution step. To do that, you first have to figure out Simbad’s syntax
for writing these identifiers. There is probably good documentation on that somwhere, but
lazy bum that I am I made a bold guess and tried:

SELECT TOP 20 * FROM ident WHERE id LIKE 'Gaia%'

What came back contained strings like “Gaia DR2 1853339484138990848”, which suggested I
ought to prepend “Gaia DR3” to my source_id-s. Trouble is: they are long integers, so ADQL’s
concatenation operator can’t really be expected to work. But ADQL is fairly weakly typed, so I
gave it a try:

24

SELECT * FROM

basic AS b JOIN ident AS i ON (b.oid=i.oidref)

JOIN tap_upload.t2

ON (id='Gaia DR3 ' || source_id)

Sure enough, Simbad’s database engine turned source_id into a string: Success by weak typing!
This yields (for my particular result of the TOP 500 from the XP spectra, so this might be different
for you) 436 rows versus 440 for the positional crossmatch. Simbad thus seems to be essentially
complete on Gaia ids.
Doing a TOPCAT pair match on main_id (with “1 not 2”) gives six objects missing from the id-
based match. Some of them seem genuine misses (they are long-period variables), some (like
a planet candidate) are definitely false positives on the positional match.
But since six are missing from the id match, the positional match must be missing two objects,
too. Matching with “2 not 1” shows these, and both of them are high-proper motion stars.
We missed them due to our restrictive match radius (and raising it would have increased the
false positive rate, so this is not a recommendation to make it larger) and the epoch difference
between Simbad and Gaia DR3.
Hence, in this particular case id-based matching would probably have given the “better” result;
but you can almost always do positional matching, and you don’t need to do guesses on the
form of the identifiers. Consider this little excursion another reminder that you always have
noise.

This document’s DOI is 10.21938/uH0 xl5a6F7tKkXBSPnZxg.

25

http://doi.org/10.21938/uH0_xl5a6F7tKkXBSPnZxg

