

Habilitation à Diriger des Recherches

Physics with boson pairs

J. Manjarrés Ramos

Jury members:

Oscar ÉBOLI Gautier HAMEL de MONCHENAULT Ursula BASSLER Pierre PUJOL Jan STARK

In this seminar

With boson pairs

the main actors

Challenge the SM Look for New physics

We have our actors, and the main stage is the center of the ATLAS detector at the LHC

Meet the Speaker

supporting actor

the main actors

the stage

Challenge the SM Look for New physics

We have our actors, and the main stage is the center of the ATLAS detector at the LHC

Curriculum Vitae

2008	BSc. in Physics Universidad de Los Andes, Venezuela
2009	Internship High Energy Latin-American European Network 8 mois, CMS, CEA-Saclay, France
2010	Master en physique Nucléaire, des Particules, des Astroparticules et Cosmologie (NPAC) Université Paris-Sud, Orsay, France.
2013	Doctorat en Physique des Particules ATLAS, CEA Saclay, Université Paris-Diderot, France
2013-2016	Postdoc York University, Toronto, Canada, based at CERN
2017- 2022	Leading postdoc Technische Universität Dresden, Germany
Since 2022	Chaire de Professeur Junior L2IT, Université de Toulouse, France

Curriculum Vitae

2008	BSc. in Physics Universidad de Los Andes, Venezuela
2009	Internship High Energy Latin-American European Network 8 mois, CMS, CEA-Saclay, France
2010	Master en physique Nucléaire, des Particules, des Astroparticules et Cosmologie (NPAC) Université Paris-Sud, Orsay, France.
2013	Doctorat en Physique des Particules ATLAS, CEA Saclay, Université Paris-Diderot, France
2013-2016	Postdoc York University, Toronto, Canada, based at CERN
2017-2022	Leading postdoc Technische Universität Dresden, Germany
Since 2022	Chaire de Professeur Junior L2IT, Université de Toulouse, France

My contributions within ATLAS in a nutshell

MC simulation / modelling studies

Representing ATLAS

- LHC Electroweak Multibosons working group
- ✓ VBSCan EU COST Network
- ✓ COMETA EU COST Network

resonance search group (~ 100 persons)

Data 2012

Misid, leptons 77

W⁺Z

Other

•••••• Δg_{1}^{Z} =-0.1, $\Delta \kappa^{Z}$ =0.25, λ^{Z} =0.1

600

m^{WZ}_T [GeV]

 ∞

---- $\Delta g^{2} = 0, \Delta \kappa^{2} = -0.19, \lambda^{2} = 0$

400

✓ Convener of the ATLAS Standard Model

Electroweak Group (~ 250 persons)

Standard Model Group (14 Universities +

✓ Convener of the ATLAS-Germany

✓ Convener of the ATLAS **Diboson**

~ 10-20 persons

DESY + MPI)

Tot unc

PhD student supervision

Defence

	Year		
	2020	Carsten Bittrich *	WZ VBS <u>CERN-THESIS-2020-039</u>
den	2022	Stefanie Todt *	Same sign WW VBS EFT interpretations
D - Dres	2022	Abhishek Nag *	VBF WZ Resonance search CERN-THESIS-2022-115
	2023	Tim Herrmann *	Same sign WW VBS <u>CERN-THESIS-2023-419</u>
	2024	Jan Eric Nitschke *	WZ Polarisation CERN-THESIS-2024-044
	2026	Anna Tegetmeier	VBF HH EFT interpretations
	2026	Thiziri Amezza *	VBF HH
	2027	Alexandro Martone	VBS WWH

PhD student supervision

	Defence Year		the main actors	
	2020	Carsten Bittrich *	WZ VBS <u>CERN-THESIS-2020-039</u>	≃91.19 GeV/c² 0
en	2022	Stefanie Todt *	Same sign WW VBS EFT interpretations	¹ Z boson
0 - Dreso	2022	Abhishek Nag *	VBF WZ Resonance search CERN-THESIS-2022-115	≃80.39 GeV/c ²
TUD	2023	Tim Herrmann *	Same sign WW VBS <u>CERN-THESIS-2023-419</u>	±1 1 W
	2024	Jan Eric Nitschke *	WZ Polarisation CERN-THESIS-2024-044	Wboson
	2026	Anna Tegetmeier	VBF HH EFT interpretations	≃124.97 GeV/c² 0
	2026	Thiziri Amezza *	VBF HH	• H
	2027	Alexandro Martone	VBS WWH	niggs
Ĺ			supporting actor taking	the stage

* co-supervisions 10

With boson pairs

higgs

I. Challenge the SM 2. Look for New physics

the stage

Where the actors meet

the Electroweak symmetry breaking

Before Electroweak symmetry breaking

Electroweak symmetry breaking

Electroweak symmetry breaking

supporting actor

Electroweak symmetry breaking

The Goldstone bosons are absorbed becoming the W and Z Longitudinal polarization ($V_0 = Z_{0}, W_0$)

Goldstone boson Equivalence theorem "At high energy, longitudinal vector bosons are analogous to goldstone bosons"

Now we know that the cast is all related

Now we know that the cast is all related

The Outline

I. Challenge the SM Quartic Bosons interactions ° Longitudinal polarised bosons interactions ° Higgs Boson self interactions °

2. Look for New physics

New resonance °
 Deviations on SM predictions °

How do we explore those interactions?

- 1. Bosons collisions
- 2. Compare measurements with theory predictions

The Large Hadron Collider and ATLAS

The Large Hadron Collider and ATLAS

From proton collisions to vector boson pairs

Testing the Standard Model predictions

Detector measurement

Theory

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{AL} F^{AL} \\ &+ i F \mathcal{D} F \\ &+ F \mathcal{D}_{ij} \mathcal{F}_{j} \mathcal{P} + h.c. \\ &+ |D_{A} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$$

Measuring and calculating Crosssections!

A cross section is a measure of the probability that a specific process will take place

The Standard Model testing status

Status: June 2024 Events per

month*

The Standard Model testing status

Events per

1. Challenge the SM

Quartic Bosons interactions $^{\rm o}$

Longitudinal polarised bosons interactions °

Vector Boson Scattering at the book of the

Protons in LHC s

Vektorbosonstreuung

 $\mathcal{O}(\alpha_W^6)$ Prozess mit folgenden Feynman-Diagrammen:

h opplungen

The Large Hadron Collider and ATLAS

Run 1: Vector Boson Scattering a bit of perspective

The 8 TeV dataset gave us first analyses and with them the first evidence !

					PHYSICAL REVIEW D 93, 092004 (2016)	My S SM	
	PRL 113, 141803 (2	2014) PHYSIC	CAL REVIEW LETTERS	week ending 3 OCTOBER 2014	Measurements of $W^{\pm}Z$ production cross sections	in <i>pp</i> collisions	
	Evidence ATLAS EXPERIMENT	for Electroweak Proc wit	duction of $W^{\pm}W^{\pm}jj$ in pp Collision the ATLAS Detector G. Aad et al.* (ATLAS Collaboration)	G. Aad <i>et al.</i> * (ATLAS Collaboration) (Received 8 March 2016; published 13 May 2016)			
)1	arXiv:1906.03203 arXiv:1812.09740	(Received 23	(ATLAS Collaboration) 23 May 2014; published 3 October 2014)	4.0 0 (3.0 0)	Only upper limit on the cross see	tion reported	
	JHEP07(2017)107 PRL 114, 051801	L (2015) PHYS	ICAL REVIEW LETTERS	week ending 6 FEBRUARY 2015	Physics Letters B 770 (Measurement of the cross section for electroweak product	(2017) 380–402 tion of $Z\gamma$ in	
ate	arXiv:1905.07714 CMS Stu	dy of Vector Boson S with Two	cattering and Search for New Pl Same-Sign Leptons and Two Jet V. Khachatryan <i>et al.</i> * (CMS Collaboration)	anysics in Events s 2.0 σ (3.1 σ)	association with two jets and constraints on anomalous que couplings in proton-proton collisions at $\sqrt{s} = 8$ TeV The CMS Collaboration*	uartic gauge 3.0 σ (2.1 σ)	
l±vl±v jj	PRL 120 (2018) 081801 ei	ved 2arXiv:1906.03203vised	manuscript received 11 December 2014; publ	lished 2 February 2015)			
l±vII jj	arXiv:1901.04060	arXiv:1812.09740					
l ±v γ jj	JHEP 06 (2017) 106						
llγ jj	PLB 770 (2017) 380	JHEP07(2017)107					
IIII jj	PLB 774 (2017) 682						
l±vJ jj IIJ jj	PAS-SMP-18-006	arXiv:1905.07714					

Run 1: Vector Boson Scattering a bit of perspective

The 8 TeV dataset gave us first analyses and with them the first evidence !

	PRL 113, 141803 (20 Evidence f	014) PHYSICAL) PHYSICAL REVIEW LETTERS $_{3 \text{ OC}}^{\text{we}}$ Electroweak Production of $W^{\pm}W^{\pm}jj$ in pp Collisions at $\sqrt{s} = 8$ Te with the ATLAS Detector		k ending OBER 2014 V	Measurements of $W^{\pm}Z$ production cross sections in <i>pp</i> collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings G. Aad <i>et al.</i> *				
1	arXiv:1906.03203	G. (ATLA (Received 23 May 20	Aad <i>et al.</i> * S Collaboration) 014; published 3 October 2014)	4.5 σ (3.6 σ)		(R	(ATL) eceived 8 March Only uppe	AS Collaboration) 2016; published 13 Ma er limit on the cross	y 2016) s section rep	oorted
	JHEP07(2017)107 PRL 114, 051801	(2015) PHYSICAL	REVIEW LETTERS	6 FE	40 r			Physics Letters B	; 770 (2017) 380)–402
te	arXiv:1905.07714 CMS BBI 120 (2018) 081801 riv	dy of Vector Boson Scatteri with Two Same- V. K (CN ed 2arXiv:1906.03203vised manuscri	ng and Search for New H Sign Leptons and Two Je hachatryan <i>et al.</i> * (S Collaboration)	Physics in Events ets 2.0 σ (3.1 σ blished 2 February 2014	35 30 -	■ $VVjj$ -EW at $\sqrt{s} = 8$ ■ $VVjj$ -QCD at $\sqrt{s} =$ ■ $VVjj$ -EW at $\sqrt{s} = 13$ ■ $VVjj$ -QCD at $\sqrt{s} = 13$	TeV 8 TeV 3 TeV 13 TeV	P. /	Anger CERN-TH	ESIS-2014-105
J [±] I±vγ jj IIγ jj III jj III jj IIJ jj	arXiv:1901.04060 JHEP 06 (2017) 106 PLB 770 (2017) 380 PLB 774 (2017) 682 PARCINE20 date	arXiv:1812.09740 JHEP07(2017)107		/(25 \bigcirc 20 \bigcirc 15	×10		×10		
	 Increas But still Require First ob dataset 	ed energy → large a small signal/bac ed analysis optimis servations were e	er cross-sections ckground ratio sations to reach o xpected with the	6 (factor ~3) observation early Run-2	10 5 0	×10 W [±] W [±] W ⁺ W ⁻	$ZZ \rightarrow 2\ell$	$\times 10$ ZV $Z\gamma$	WZ	$ZZ \rightarrow 4\ell$

Analysis strategies

C. Bittrich <u>CERN-THESIS-2020-039</u> S. Todt <u>CERN-THESIS-2022-268</u>

- Small signal over a large irreducible background
- Control regions to estimate from data the main backgrounds
- Use of discriminant variables or MVA to increase the signal and background sedation

Some lessons learned

✓ Accurate MC modeling is essential — the shapes of the distributions are key!

 σ^{fid} [fb]
First observations of VBS in 2019!

I was the convener of the EWK physics group, overseeing VBS analyses during the first observations.

With Full Run-2 observations for all diboson combinations even with semi-leptonic decays!

Now with full Run-2 !

Let's have a closer look to our VBS golden channel

- We have with full run-2 ~500 events in this region (~250 ssWW signal)
- With this data we can now go differential !

Are we really testing quartic couplings and the EWSB?

A unitarity argument

"No-lose theorem" for LHC

• We need something to regularise the $W_0W_0 \rightarrow W_0W_0$ cross-section

Now that we know the Higgs exist, we can still verify if he is doing the job

S. Todt CERN-THESIS-2022-268

on for longitudies we want for the weating in the period of the second o

A unitarity argument

"No We need longitudinal bosons!

- We need something to regularise the $W_0W_0
 ightarrow W_0W_0$ cross-section
- Either we find the Higgs Boson
- Or some new physics must be there

1. Challenge the SM

Quartic Bosons interactions 🐓

Longitudinal polarised bosons interactions °

The state-of-the-art

Measurements at LEP:

- Only diboson process accessible for such measurements $e^+e^- \rightarrow W^+W^-$
- Single boson polarization measurements: L3 [arXiv:0301027], OPAL [arXiv:0312047], DELPHI [arXiv:0801.1235]
- Joint-polarization measurements: OPAL [arXiv:0009021], DELPHI [arXiv:0908.1023]
- Never reached observation level sensitivity for longitudinal-longitudinal joint-polarization

Measurements at the LHC:

Single and Joint- boson polarization measurements

■ $pp \rightarrow W^{\pm}Z$

- CMS @13TeV 137 fb⁻¹ (inclusive phase space) <u>CMS-SMP-20-014</u>
- ATLAS @13TeV 139 fb⁻¹ (inclusive phase space) Phys. Lett. B 843 (2023) 137895
- ATLAS @13TeV 139 fb⁻¹ (high p_T (Z) phase space) Phys. Rev. Lett. 133 (2024) 101802

 $\blacksquare pp \rightarrow ZZ$

• ATLAS @13TeV 140 fb-1 (inclusive phase space) JHEP 12 (2023) 107

■ $pp \rightarrow W^{\pm}W^{\pm}jj$

- CMS @13TeV 137 fb⁻¹ (VBS phase space) Phys. Lett. B 812 (2020) 136018
- ATLAS@13TeV 140 fb⁻¹ (VBS phase space) <u>Accepted by PRL (2025)</u>

Longitudinal polarised bosons interactions

The goal

• Measure longitudinal bosons interactions \rightarrow even better if it is a high energy

Goldstone boson Equivalence theorem

"At high energy, longitudinal vector bosons are analogous to goldstone bosons"

The challenges

- Simulation tools for polarised amplitudes → Madgraph [D. Buarque Franzosi et al. 2020]
- Vector Boson Scattering cross sections are tiny (~5% of it is V_0V_0)

W₀Z₀ joint polarization - 00-enhaced region

WZ joint polarization - 00-enhaced region

• We are able to measure W_0Z_0 bosons at high $p_T(Z)$!!

What can we do better?

Source	Impact on f_{00} [%]	
Experimental	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
Luminosity	0.1	0.1
Electron calibration	1.0	0.9
Muon calibration	0.6	0.6
Jet energy scale and resolution	3.1	4.8
$E_{\rm T}^{\rm miss}$ scale and resolution	0.3	0.3
Flavor-tagging inefficiency	0.0	0.0
Pileup modelling	1.0	0.7
Non-prompt background estimation	3.6	0.6
Modelling		
Background, other	0.9	0.9
Model statistical	1.6	2.2
NLO QCD effects	3.7	9.1
NLO EW effects	0.9	7.5
Effect of additive vs multiplicative QCD+EW combination	0.5	1.7
Interference impact	2.4	1.4
PDF, Scales, and shower settings	4.0	4.0
Experimental and modelling	8.1	13.9
Data statistical	11.4	31.4
Total	14.0	34.4

Some nice work has started

Monte Carlo generators

- Several generators in the market:
- PHANTOM: 2 → 6 processes @ LO+PS [A. Ballestrero et al. 2008, 2017]
- Madgraph: arbitrary processes @ LO, PS matching, multi-jet merging [D. Buarque Franzosi et al. 2020]
- POWHEG-BOX-RES: diboson processes @NLO QCD+PS [G. Pelliccioli, G. Zanderighi 2023]
- Sherpa: arbitrary processes @nLO QCD, PS matching, multi-jet merging [МН, М. Schönherr, F. Siegert 2023]

Some nice work has started

Monte Carlo generators

700

800

In the future

- Now in 2025: The same sign $W^{\pm}W^{\pm}jj$ team reached evidence 3.3σ of single boson polarization $W_L^{\pm}W^{\pm}jj$!!
- Some projection studies for polarization measurements in the HL-LHC were made back in 2018
- Updated projection results are more optimistic with evidence of $W_L^{\pm}W_L^{\pm}jj$ possible with 500 fb⁻¹ !

Exploiting polarization in hadronic decays?

Polarised interactions will keep us busy

1. Challenge the SM

Quartic Bosons interactions

2. Look for New physics

New resonances ° Deviations on SM predictions °

How to look for the unknown ?

ATL-PHYS-PUB-2023-007

Diboson resonance searches in ATLAS

*small-radius (large-radius) jets are used in resolved (boosted) events

[†]with $\ell = \mu$, e

ATL-PHYS-PUB-2023-007

Diboson resonance searches in ATLAS

What if new physics is fermiophobic?

What if new physics is fermiofobic?

The new particles couple bosons

Georgi-Machacek (GM) model

- Extends SM Higgs sector with scalar triplets
- Keeps custodial symmetry $\rightarrow \rho = 1$ at tree level
- Among the new scalars H_5^{\pm} , $H_5^{\pm\pm}$, H_5^0
- These couple directly to vector boson pairs

Charged Higgs resonance search

0.3

0.2

0.1

300

500

400

600

• An excess of 2.8σ local (1.6σ global) significance found at 375GeV

1000

900

800

700

Charged Higgs resonance search

An excess of 2.5 or global significance was found after combining WZjj and W[±]W[±]jj channels together

Charged Higgs resonance search

A small excess to follow up, but so far no clear sign of a new physics.... $_{61}$

How to look for the unknown?

The dim-8 Operators

СР	Operator
++	$O_{S,0}, O_{S,1}, O_{S,2}$
	$O_{M,0}, O_{M,1}, O_{M,7}$
	$O_{M,2}, O_{M,3}, O_{M,4}, O_{M,5}$
	$O_{T,0}, O_{T,1}, O_{T,2}$
	$O_{T,5}, O_{T,6}, O_{T,7}$
	$O_{T,8}, O_{T,9}$

* 43 considering CP violating

19 parameters*

V V_{L} н

M-Type: involving Higgs and gauge Fields

н

T-Type: involving transversally polarised gauge bosons

S-Type: affecting Longitudinal polarised bosons and Higgs

V

The dim-8 Operators

Many vertices affected by the same operator

CD	Operator	Vertices												
Cr	Operator	MMMM	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	Ζγγγ	イイイ	HHZZ	<i>ММНН</i>	$Z\gamma HH$	$\gamma\gamma HH$
	$O_{S,0}, O_{S,1}, O_{S,2}$	\checkmark	\checkmark			\checkmark					\checkmark	\checkmark		
	$O_{M,0}, O_{M,1}, O_{M,7}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
++	$O_{M,2}, O_{M,3}, O_{M,4}, O_{M,5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark
	$O_{T,0}, O_{T,1}, O_{T,2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	$O_{T,5}, O_{T,6}, O_{T,7}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	$O_{T,8}, O_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

Effort so far by the ATLAS and CMS collaborations

First results HH ! A. Tegetmeier, T. Amezza

The effect of the EFT operators Same Charge W[±]W[±]jj

BSM interactions of SM particles

The SM Effective Field Theory

			CMS ATLA	√s	
2025	CMS ATLAS	Channel	Limits		
		ss WW	[-3.0e+00, 3.2e+00]	137 fb ⁻¹	13 TeV
, ₀ /Λ ⁴		ss WW	[-4.1e+00, 4.1e+00]	139 fb ⁻¹	13 TeV
		WZ	[-5.8e+00, 5.8e+00]	137 fb ⁻¹	13 TeV
		WZ	[-5.8e+00, 5.6e+00]	140 fb ⁻¹	13 TeV
	, H	WV+ZV	[-5.4e-01, 5.3e-01]	138 fb ⁻¹	13 TeV
4		ss WW	[-4.7e+00, 4.7e+00]	137 fb ⁻¹	13 TeV
Λ		ss WW	[-6.8e+00, 7.0e+00]	139 fb ⁻¹	13 TeV
		WZ	[-8.2e+00, 8.3e+00]	137 fb ⁻¹	13 TeV
	F	WZ	[-8.6e+00, 8.5e+00]	140 fb ⁻¹	13 TeV
нн -	WV+ZV	[-1.6e+00, 1.6e+00]	138 fb ⁻¹	13 TeV	
f _{M,7} /Λ ⁴		ss WW	[-6.7e+00, 7.0e+00]	137 fb ⁻¹	13 TeV
	ss WW	[-9.3e+00, 9.5e+00]	139 fb ⁻¹	13 TeV	
	WZ	[-1.0e+01, 1.0e+01]	137 fb ⁻¹	13 TeV	
	F	WZ	[-1.1e+01, 1.1e+01]	140 fb ⁻¹	13 TeV
		WV+ZV	[-2.6e+00, 2.6e+00]	138 fb ⁻¹	13 TeV
144	⊢ −−−−1	ss WW	[-6.0e+00, 6.4e+00]	137 fb ⁻¹	13 TeV
	F	ss WW	[-5.9e+00, 5.9e+00]	139 fb ⁻¹	13 TeV
	⊢	WZ	[-5.8e+00, 5.8e+00]	137 fb ⁻¹	13 TeV
	F	WZ	[-1.0e+01, 1.0e+01]	140 fb ⁻¹	13 TeV
	⊢ -1	WV+ZV	[-2.9e+00, 3.0e+00]	138 fb ⁻¹	13 TeV
/A ⁴	H	ss WW	[-1.8e+01, 1.9e+01]	137 fb ⁻¹	13 TeV
I _{S,1} /Λ	H	ss WW	[-2.4e+01, 2.4e+01]	139 fb ⁻¹	13 TeV
	⊢	WZ	[-8.2e+00, 8.3e+00]	137 fb ⁻¹	13 TeV
		WZ	[-3.0e+01, 3.0e+01]	140 fb ⁻¹	13 TeV
		WV+ZV	[-4.0e+00, 4.1e+00]	138 fb ⁻¹	13 TeV
0	0	50)	100	
		a	QGC Limits @	95% C.L	[TeV⁻⁴

66

Huge gain by combining channels!

Ongoing work in preparation for EFT dim-8 recommendations inside ATLAS

so far there is no clear sign of a new physics.... But many ideas to test !

Polarised EFT dim-8

A. Tegetmeier PhD

■ There is correspondence between each operator, the vertices it modifies, and its polarization.

The link between polarization and EFT still needs to be explored further, especially in the context of future analyses.

Our current understanding

I. Challenge the SM Quartic Bosons interactions Longitudinal polarised bosons interactions

2. Look for New physics

New resonances 🛩 Deviations on SM predictions 🛩

3. What is next?

Di-Higgs °
 Quartic gauge Higgs couplings °
 Polarised EFT °

Outlook : More data

- Run 3 already has delivered 220 fb⁻¹ of data, we might triple the Run-2 dataset by July 2026
- HL-LHC expected to deliver ~ 3000 fb⁻¹ by 2041

Projection studies

Polarisation

- Run-3 will probably confirm interactions V_LV_LV_L
- Double longitudinal interactions will probably have to wait for the HL-LHC statistics

Di-Higgs

VL

Projection studies

Polarisation

- Run-3 will probably confirm interactions V_LV_LV_L
- Double longitudinal interactions will probably have to wait for the HL-LHC

Di-Higgs

- Crucial to describe the shape of the Higgs potential
- HH signal significance of 4.5 per experiment, above 7 after ATLAS+CMS combination.
- Imagine what we can do in 20 years!

VL

Quartic Gauge Higgs Couplings scriminating Variable DNN score

CMS just presented in EPS this results using more decay channels with κ_{2V} observed (expected) range [0.40, 1.60] ([0.34, 1.66]) \rightarrow best result on κ_{2V} !

Even further ahead

★linear e+e-

And an amazing group of people

