A Linear Collider Facility as Higgs Factory and Beyond

Dirk Zerwas CNRS Helmholtz Dark Matter Lab (DMLab) SFP MC24 July 4, 2025

Linear Collider Vision

e-Print: 2503.24049 [hep-ex]

- Introduction
- Collider
- Physics
- Summary/Outlook

Introduction

Collider: SCRF

SCRF: euXFEL

- 5% demonstrator :)
- SCRF cavities
- 1.7 km accelerating structure
- a key question: stability?
 - >90% uptime

SCRF:

- 31.4MV/m needed
- 32-36MV/m demonstrated at KEK and Fermilab
- Single cell cavities in vertical tests >35MV/m tested

SCRF Improvements:

- quality factor x2
 - 10Hz operation
 - at cost 50% power increase instead of 100%
 - Klystron efficiency improved

Collider: Luminosity and Power

	LCF 250 (LP)	LCF 550 (FP)	CLIC 380	CLIC 1500
Power (MW)	144	320	166	287
Energy annually (TWh)	0.8	1.8	0.8	1.4

Linear Collider Higgs Factory

- increases luminosity with \sqrt{s}
- no free lunch: higher \sqrt{s} higher power
- Translation: 0.8 1.8 TWh
- Typical CERN year: 1.2 TWh

Collider: Running Scenarios

[[tb⁻¹]

nosity

Running Scenario baseline with energy and luminosity upgrades

Quantity	Symbol	Unit	Initial-250	Upgr	ades	Initial-550	Upgrade
Name		LCF	250 LP	250 FP	550 FP	550 LP	550 FP
Centre-of-mass energy	\sqrt{s}	GeV	250	250	550	550	550
Inst. luminosity	$\mathscr{L}(10^{34})$	$cm^{-2}s^{-1}$)	2.7	5.4	7.7	3.9	7.7
Polarisation	P(e ⁻) / F	P(e ⁺) (%)	80/30	80/30	80 / 60	80/30	80 / 60
Repetition frequency	frep	Hz	10	10	10	10	10
Bunches per pulse	nbunch	1	1312	2625	2625	1312	2625
Bunch population	Ne	10 ¹⁰	2	2	2	2	2
Linac bunch interval	$\Delta t_{\rm b}$	ns	554	366	366	554	366
Beam current in pulse	I pulse	mA	5.8	8.8	8.8	5.8	8.8
Beam pulse duration	tpulse	μs	727	897	897	727	897
Average beam power	Pave	MW	10.5	21	46	23	46
Norm. hor. emitt. at IP	$\gamma \epsilon_x$	μm	5	5	10	10	10
Norm. vert. emitt. at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35
RMS hor. beam size at IP	σ_x^*	nm	516	516	452	452	452
RMS vert. beam size at IP	σ_y^*	nm	7.7	7.7	5.6	5.6	5.6
Lumi frac. in top 1 %	Lo.01/L	%	73	73	58	58	58
Lumi in top 1 %	$\mathcal{L}_{0.01}$ (10 ³	⁴ cm ⁻² s ⁻¹)	2.0	4.0	4.5	2.2	4.5
Site AC power	Psite	MW	143	182	322	250	322
Annual energy consumption		TWh	0.8	1.0	1.8	1.4	1.8
Site length	Lsite	km	33.5	33.5	33.5	33.5	33.5
Average gradient	g	MV/m	31.5	31.5	31.5	31.5	31.5
Quality factor	Q_0	10 ¹⁰	2	2	2	2	2
Construction cost		BCHF	8.29	+0.77	+5.46	13.13	+1.40
Construction labour		kFTE y	10.12		+3.65	13.77	
Operation and maintenance		MCHF/y	156	182	322	273	322
Electricity		MCHF/y	66	77	142	115	142
Operating personnel		FTE	640	640	850	850	850

Table 1: Summary table of the LCF accelerator parameters in the initial 250 GeV configuration and possible upgrades, as well as in an initial 550 GeV configuration and its luminosity upgrade.

Main Energy Points:

- 250 GeV: single Higgs properties
- 550 GeV: single Higgs and double Higgs properties

Further Energy Points:

- 350 GeV: top pair production
- 91 GeV: Z boson

Duration:

• multi decade program

Collider: More Energy with RF

Upgrade SCRF

- 5 years: 40-60MV/m
 - bulk niobium, standing wave cavities, baking
- 10 years: 60-70 MV/m
 - traveling wave, longer structures
- >10 years: 100MV/m
 - Nb3Sn or multi-layer, 4K instead of 2K
 - \circ so far only 24MV/m reached

Parameter	Unit	Value	Value	Value
Centre-of-Mass Energy	GeV	1000	2000	3000
Site Length	km	20	20	33
Main Linac Length (per side)	km	7.5	7	10.5
Accel. Grad.	MeV/m	75	155	155
Flat-Top Pulse Length	ns	500	195	195
Cryogenic Load at 77 K	MW	14	20	30
Est. AC Power for RF Sources	MW	68	65	100
Est. Electrical Power for Cryogenic Cooling	MW	81	116	175
Est. Site Power	MW	200	230	320
RF Pulse Compression		N/A	3X	ЗX
RF Source efficiency (AC line to linac)	%	50	80	80
Luminosity	x10 ³⁴ cm ⁻² s ⁻¹	~4.5	~9	~14
Single Beam Power	MW	5	9	14
Injection Energy Main Linac	GeV	10	10	10
Train Rep. Rate	Hz	60	60	60
Bunch Charge	nC	1	1	1
Bunch Spacing	ns	3	1.2	1.2

C^3: Cool Copper Collider

- Temperature: 80K (LN₂)
- Gradient: 155 MV/m
- \sqrt{s} up to 3TeV in 33 km
- **R&D** and system design

Collider: More Energy with Plasma

Collider: More luminosity with ERL and Further Ideas

dark photons, ALP, super-SHIP

Ο

Physics: Higgs

Central messages:

- Luminosity != Luminosity (polarisation)
- \sqrt{s} is \sqrt{s}
 - to first order: ISR
 - Beamstrahlung (part of simulation for more than 10 years)

Accelerator	LCF	CLIC	CLIC	CLIC	CLIC	
\sqrt{s}	250 GeV	350 GeV	350 GeV	1.4 TeV	3 TeV	
L	2.7ab ⁻¹	2.2ab ⁻¹	4.3ab-1	$4ab^{-1}$	5ab ⁻¹	
Δm _H	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]	
HZ Recoil	12	52	38			
$v_e \overline{v}_e H \rightarrow v_e \overline{v}_e b \overline{b}$				29	28	
 The Higgs: ZH recoil mass n total cross section absolute coupling can be done "at ta and at 380 GeV (incoming CERN) 	neasureme n yields g threshold" (courtesy o DG)	nt 100 f	a)		ICdp $\sqrt{s} = 350$ Ge I; Z $\rightarrow \mu^+\mu^-$ simulated data fitted total fitted signal fitted background 200 m _{rec} [C	₩

Physics: Higgs

Higgs couplings:

- improvement over the excellent results from the HL-LHC
- fuller picture of the Higgs
- W fusion for width determination
- percent and better precision
- polarization provides different information
- Exciting prospects for BSM (EFT or your preferred physics model)

Collider	LCF	LCF	CLIC	CLIC	LCF	LCF	CLIC	CLIC
\sqrt{s}	250 GeV	350 GeV	350 GeV	350 GeV	500	1 TeV	1.4 TeV	3 TeV
L	2.7ab ⁻¹	0.135ab ⁻¹	2.2ab ⁻¹	4.3ab ⁻¹	6.4ab ⁻¹	6.4ab-1	$4ab^{-1}$	5ab ⁻¹
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	
σ_{HZ}	0.62	2.5	0.79	0.56	0.8		2.0	4.3
$\sigma_{HZ} \cdot BR_{b\overline{b}}$	0.41	2.1	0.41	0.29	0.5			2
$\sigma_{HZ} \cdot BR_{c\overline{c}}$	2.5	15	7	5	3.6			
$\sigma_{HZ} \cdot BR_{gg}$	2.1	11.4	2.9	2.1	3.0			
$\sigma_{\rm HZ} \cdot {\rm BR}_{\tau\tau}$	0.98	5.5	3.0	2.1	1.2			
$\sigma_{HZ} \cdot BR_{ZZ}$	5.5	34			6.9			
$\sigma_{HZ} \cdot BR_{WW}$	1.4	7.6	2.4	1.7	1.6			
$\sigma_{HZ} \cdot BR_{\gamma\gamma}$	10				10			
$\sigma_{HZ} \cdot BR_{inv}$	0.19	1.2	0.3	0.2	0.42			
$\sigma_{v_e \overline{v_e} H} \cdot BR_{b\overline{b}}$	2.5	2.5	0.9	0.6	0.30	0.30	0.2	0.2
$\sigma_{v_e \overline{v}_e H} \cdot BR_{c\overline{c}}$		26	12	9	2.5	1.6	3.7	4.4
$\sigma_{v_e \overline{v_e} H} \cdot BR_{gg}$		11	4.8	3.4	1.6	1.3	3.6	2.7
$\sigma_{v_e \overline{v_e} H} \cdot BR_{\tau \tau}$		22			2.8	1.5	2.6	2.8
$\sigma_{ve\overline{v}eH} \cdot BR_{\mu\mu}$					28	16	23	16
$\sigma_{v_e \overline{v}_e H} \cdot BR_{ZZ}$	6	27			3.4	2.2	3.4	2.5
$\sigma_{v_e \overline{v_e} H} \cdot BR_{WW}$		7.8			0.96	0.88	0.6	0.4
$\sigma_{v_e \overline{v}_e H} \cdot BR_{\gamma \gamma}$					7.6	4.6	9	6
$\sigma_{e^+e^-H} \cdot BR_{b\overline{b}}$							1.1	1.5

Physics: Higgs Self-coupling

The Higgs potential:

• Is it Standard?

How to get a complete picture:

- precision measurements single Higgs (quantum corrections)
- direct measurement HH production (needs \sqrt{s} ZHH fusionHH)

Standard or not:

- sensitivity depends on the production mechanism
- complementarity of proton and electron machines

Physics: Top

Top quark measurements:

- Mass measurement (threshold or above)
- detailed measurement of couplings

EFT fit:

- improvement on HL-LHC expectations
- further couplings probed

Couplings:

• precise couplings could point to concrete physics models

Physics: Electroweak

Measuring Electroweak Properties:

- Z pole: Giga Z production •
- Polarization sin²9_w (SLC/LEP)

Studying bbar pairs:

- A_{FB}
- **Polarization leads to different** • sensitivities (full simulation)

	Quantity	SM Value	Current Precision	Snowmass		Prospect ESPPU 2026		
			δ <mark>[10⁻⁴]</mark>	$\delta_{stat.}[10^{-4}]$	δ _{sys.} [10 ⁻⁴]	δ _{stat.} [10 ⁻⁴]	δ _{sys.} [10 ⁻⁴]	
	M _W [GeV]	80.379	1.5			0.08	0.2	
	M _W [GeV] [†]						0.09	
	M _Z [GeV]	91.1876	0.23	0.006	0.022	(0.002)‡	0.022	
	Γ ₇ [GeV]	2.4952	9.4	0.2	0.5	(0.07) [‡]	0.5	
	1/Re	0.0482	24.	2.	5.	0.9	0.9	
	Ae	0.1513	139.	1.5	1.2	1.5(0.8)‡	1.2	
	1/ <i>R</i> _µ	0.0482	16.	2.	2.	0.9	0.9	
	$1/R_{\tau}$	0.0482	22.	2.	2.	0.9	0.9	
	A _µ	0.1515	991.	2.	5.	7.	2.7 (1.3)*	
	A _τ	0.1515	271.	2.	5.	8.	2.7 (1.3)*	
	Rb	0.2163	31.	0.4	7.	0.7	0.6	
	Ab	0.935	214.	1.	5.	0.9	2.7 (1.3)*	
	R _c	0.1721	174.	2.	30.	1.4	2.5	
	Ac	0.668	404.	3.	5.	4.	2.7(1.3)*	
	Rs	$\approx R_{\rm b}$	N.A.			1.6	0.3	
	As	0.895	1011.			6.	2.7(1.3)*	
8 0.2 10 ⁶ 1 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.1	1 1 1 1	40 entrie 35	Whizard 2.8.5 LO	Į.		+ P _{e'e'} (-0.8,+0.3) + P _{e'e'} (+0.8,-0.3)		
0.14 Reconstructed an	d corrected	30	Reconstructed and correct	ected -	0.7	MC cheat	1	
	• 7	25		Į.	0.6			
0.1	- F	20		1.	0.5			
0.08	F	15		<i>t</i> -	0.4			
0.06	AFB ^R	10	AFB		0.3			
0.04	AFB ^{fit} _{LO} =99.5± 0.2 (stat	.)%	AFB	R = 99.2± 0.7 (Stat.)%	0.2			
0.02	$\frac{AFB_{reco}^{tid.}}{AFB_{LO}^{tid.}} = 100.0\pm 0.2 \text{ (states)}$	at.)%	AFB AFB	900 fid.=100.3± 0.7 (stat.)% LO	0.1			
0 -1 -0.8 -0.6 -0.4 -0.2	0 0.2 0.4 0.6	0.8 1	-1 -0.8 -0.6 -0.4 -0.2 0 (0.2 0.4 0.6 0.8	ں۔ ۱ 0 <u>6 سا</u>	1 0.2 0.3 0.4 0.5	5 0.6 0.7 0.8 0.9	
$e^{\cdot}e^{\star} ightarrow b\overline{b}$ $P_{e^{\cdot}e^{-z}}$ -=(-0.8,+0.3) Lum = 900 fb ⁻¹		cos θ	e* → bb _{e`e`} =(+0.8,-0.3) Lum = 900 fb ⁻¹	cos	Θ $e^{i}e^{+} \rightarrow b\bar{b}$	5.	cos	

Physics: New Physics in real models (kind of)

Do not give up hope:

- Search for exotic scalars recoiling against the Z
- Many channels
- improve on the coupling strength limits

Direct searches: supersymmetry (or course)

- motivated by DM
- difficult regions can be excluded extending LEP and LHC limits

Summary/Outlook

Summary:

- A linear collider is an attractive option for a Higgs Factory and beyond:
 - Copious production of Higgs bosons
 - access to polarized beams
 - flexibility and exciting energy and luminosity upgrade perspectives

Outlook:

• The CERN Council Decision on the next flagship project