Latest result on di-Higgs searches at the LHC

Théo Cuisset Laboratoire Leprince-Ringuet, École Polytechnique

Congrès de la Société Française de Physique July 1st, 2025

Théo Cuisset - Laboratoire Leprince-Ringuet

The Higgs mechanism

The **Electroweak symmetry breaking** mechanism has deep implications on particle physics and cosmology.

Measuring the Higgs self-coupling would provide a **strong test** of the Higgs mechanism of the Standard Model.

The shape of the Higgs potential has strong implications on the stability of the universe.

Measuring the Higgs self-coupling with di-Higgs

The Higgs self-coupling is one of the few parameters of the SM never directly measured.

Di-Higgs production allows for measurement of the self-coupling λ ! It can probe the shape of the Higgs potential around the minimum

The EFT framework

For more model-independent interpretations, the Lagrangian is parametrised with **coupling modifiers**:

 $\kappa_\lambda = rac{\lambda}{\lambda_{
m SM}}$

Several **BSM theories** predict enhanced di-Higgs production, which would manifest as modifications in κ wrt. to their SM values

$\sigma^{H}_{ggF} = 48~{ m pb}$ The main di-Higgs production at the LHC is **gluon-gluon fusion** (ggf). It's cross-section is about 3 orders of magnitude lower than that of single-Higgs. About 4k HH events expected in the full Run2 LHC dataset Two diagrams of ggf HH production "box" "triangle" κ_t HH cross-sections as function of κ_{λ} κ_t HH production at 14 TeV LHC at (N)LO in QCD Η M_H=125 GeV, MSTW2008 (N)LO pdf (68%cl) SM K+ 10² Strong **destructive interference** between the σ_{(N)LO}[fb] 10 two diagrams, leading to very small HH cross-section. pp→ttHH 100 Exploiting the different kinematics between the triangle DD-WH and box diagrams is expected to improve the sensitivity 10^{-1} pp→ZHH to κ_λ. **BSM effects** can enhance the HH cross-section 2 -3 -2 -1 λ/λ_{SM} **=K**

Di-Higgs production at the LHC : gluon-gluon fusion

 $\sigma^{HH}_{ggF} = 31 ext{ fb}$

Di-Higgs production by Vector Boson Fusion (VBF)

Similarly to single-Higgs, HH can be produced by **fusion of vector bosons** at proton colliders:

Can measure κ_{2V} , the coupling of HH with 2 vector bosons (W/Z)

Advantages:

- tagging with two forward jets in final state
- no colour connection between VBF jets, leading to reduced central hadronic activity wrt backgrounds

Inconvenients:

• lower cross-section than gluon-fusion $\sigma_{VBF}^{HH} = 1.7 \text{ fb}$ (by about 1 order of magnitude)

Also rarer production modes :

- association with top pair
- association with W/Z

Di-Higgs searches have to strike a **compromise between purity** of final state and **branching ratio** There is no single golden channel : **combination is key!**

Matrix of di-Higgs decays with BR All circled decays are included in the CMS HH combination

Latest HH combinations

No single channel drives the sensitivity : combination of final states is important !

Signal strength of HH measured by ATLAS and CMS

Théo Cuisset - Laboratoire Leprince-Ringuet

Anomalous couplings results (combination)

The interpretation using **anomalous couplings** allows for model-independent probes of BSM effects

Théo Cuisset - Laboratoire Leprince-Ringuet

Overview of main analysis channels

HH→4b

Largest branching fraction, but very large background from QCD and tt

2 kinematic regimes : resolved & boosted

Novel analysis techniques for $HH \rightarrow 4b$ Calibrating H→bb jet taggers is crucial for HH searches, as it is often the leading systematic CMS calibration of $H \rightarrow bb$ tagger uncertainty on boosted searches. on gluon→bb events Very large background makes calibration a difficult task ATLAS calibration of $H \rightarrow bb$ tagger on Z \rightarrow bb and Z(\rightarrow bb) γ events $g \rightarrow b\bar{b}$ jets are used as **proxy** for $H \rightarrow bb$: GeV ATLAS Preliminary - Data √s = 13 TeV, 139 fb⁻¹ • $Z \rightarrow ll$ events are used proxy jets - Signal+Backgrounds 1800 Events / • Use a BDT to ---- Signal 1600 to determine the ---- Backgrounds 1400 extract $g \rightarrow b\bar{b}$ from pre-tag yield 1200 QCD multijet 800 $Z \rightarrow b\bar{b}$ events are $Z(\rightarrow b\overline{b})$ +jets calibration events 600 $\in_{X \to b\overline{b}}^{MC} = 60\%, \mu_{\text{post-tag}}$ similar used at high p, for 400 characteristics Large-R jet p_: 500-600 GeV Perform tag&probe 200 post-tag yield, with Zsignal jets to extract scale $(\rightarrow b\bar{b})\gamma$ at lower p_{\star} Pull factors ATLAS PUB-21-035 CMS DP-2022/005 120 90 100 110 130 140 Large-R jet mass [GeV] Théo Cuisset - Laboratoire Leprince-Ringuet

b(c)

 $\bar{b}(\bar{c})$

b(c)

 $\bar{b}(\bar{c})$

b(c)

 $b(\bar{c})$

sfBDT

selection

$HH \rightarrow bb\tau\tau$ Good compromise between branching ratio and purity of final state

Complex analysis targetting 3 TT pair decay modes, in both ggf and VBF production modes

ATLAS analysis flow, showing the 8 different triggers used

Multiple uses of machine learning techniques:

- b-jet identification
- hadronically decaying tau lepton identification
- ggF vs VBF classification
- final discriminant

Trigger strategy developments:

- dedicated VBF triggers
- b-tagging at trigger level
- enhanced tau identification

ATLAS : <u>HDBS-19-27</u> CMS : <u>HIG-20-010</u> HH→bbɣɣ

Very low branching ratio but mass resolution on $H \rightarrow \gamma \gamma$ is very good

Latest ATLAS result combining Run2 and early Run3 (2022 to 2024)

- **Re-analysis** of Run2 data with new analysis techniques brought a ~20% increase in sensitivity on the same dataset ! Using:
 - more advanced ML techniques for b-tagging (based on transformers architecture)
 - a new **kinematic fit** to improve the invariant masses resolution

Other analysis channels

HH→bbWW (to 1 or 2 leptons)

Many different channels to bring some additional sensitivity to the search for di-Higgs

Combinations and future

Combination of single & di-Higgs

Combining single-Higgs and di-Higgs brings **complementarity to constraints**

Anomalous couplings interpretations

Di-Higgs searches can also be used to **probe anomalous couplings** not predicted by the Standard Model, such as the c_2 coupling between two Higgses and two top quarks

Higgs effective field theory (**HEFT**) "benchmarks" are also probed : these are sets of modified couplings where **more than one coupling is varied at a time**.

Future analysis directions

New decay channels and production modes, with smaller cross-section:

Triple-Higgs production

Can **constrain the Higgs quartic coupling.** However, cannot set strong constraints at LHC due to extremly low cross-section

ATLAS HHH \rightarrow 6b search

Théo Cuisset - Laboratoire Leprince-Ringuet

HL-LHC projections

High-Lumi LHC will bring a projected **3000fb⁻¹ of integrated luminosity**.

It is expected that this will allow **evidence of di-Higgs production** when combining all the decay channels.

With significantly improved analysis techniques and combination with ATLAS, it might be possible to claim discovery of di-Higgs at the end of HL-LHC.

Théo Cuisset - Laboratoire Leprince-Ringuet

Conclusion

- Observing the **Higgs boson self-coupling** is one of the main target of the next decade at the LHC
- The upper limit on di-Higgs cross-section is currently at 2-3 times the SM expectation
- The self-coupling κ_{λ} is constrained around $-1 < \kappa_{\lambda} < 6$
- The absence of VVHH coupling is excluded ($\kappa_{2V} = 0$)

- Limits on di-Higgs are still statistically dominated, but more data is foreseen
 - analysis of the Run3 dataset is well underway, with already significantly more integrated luminosity accumulated wrt. Run2
 - High-Lumi LHC will bring an unprecedented amount of data
- Innovative analysis techniques are steadily improving the sensitivity, bringing us closer to observation of di-Higgs production

VBF results

2D scans of anomalous couplings

