

CMS pixel detector operations in LHC Run 3

Grace Haza, University of Nebraska Lincoln IPHC Strasbourg | Séminaires de Physique des Hautes Energies 07 July 2025

Large Hadron Collider

- Large Hadron Collider accelerates two beams of protons and collides them at four points around the ring with √s = 13.6 TeV
- Compact Muon Solenoid is one of the large general purpose detectors

The CMS experiment

A particle's journey through CMS

Tracking detectors of CMS

Pixel tracker

Barrel Pixels and Forward Pixels

Strip tracker

➡ Tracker Inner Barrel, Tracker Inner Disk, Tracker Outer Barrel, Tracker Endcap

Pixel detector

Barrel pixels (BPix)

- 4 layers
- 1184 total modules

Forward pixels (FPix)

- 3 disks * 2 rings on each end
- 672 total modules

Module design

Signal and power cables

Token bit manager (TBM) chip

- Receives clock, level 1 trigger accept, configuration data
- Orchestrates readout
- 2 TBM/module in layer 1

Silicon sensor

- (150x100) µm²
- 280 µm n-in-n

Read out chips

PSI46dig

- Digital readout
- Double column drain
- > 90% efficiency up to 200MHz/cm² hit rate

PROC600

- Specialized for layer 1
- > 90% efficiency up to 600MHz/cm² hit rate

Base strip

Signal path

FEC = Front-end Controller FED = Front-end Driver USC = Underground Service Cavern UXC = Underground Experimental Cavern

Detector with service cylinder

Modules

Portcards/ electronics with delay chips

DCDC converters

Hardware connections

an old version of the LHC schedule!

2021 2022	2023	2024	2025	2026	2027	2028	2029
J FMAMJ J ASOND J FMAMJ J ASO	DJFMAMJJASOND	JFMAMJJASOND	J FMAM J J A SOND	J FMAM J J A SOND	JFMAMJJASOND	JFMAMJJASOND	J FMAMJ J ASOND
	Run	3			Long	Shutdown 3 (L	S3)

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

Beginning of Run 3

- Pixels refurbished and reinstalled in June 2021
- **Completely new layer 1** has significant improvements
 - ➡Readout chip decreased dynamic inefficiency and reduced crosstalk
 - ➡New TBM with additional delay option
 - ➡New high density interconnect for more robust HV operation
- Some layer 2 modules replaced
- New DCDC converters
- Improved FPix cooling connections
- ➡Excellent performance in start of Run 3 in 2022

Run 3 luminosity

- 124 fb⁻¹ delivered in 2024
- Projecting up to 120 fb⁻¹ in 2025

Luminosity since 2016

Pile up

- Number of interactions per crossing during pp collisions
- CMS is becoming more ambitious over the years

Performance

Active detector fraction: BPix

Total active fraction now: 96.0%

Active detector fraction: FPix

Grace Haza | University of Nebraska, Lincoln

Hit efficiency

- Hit efficiency affected by gain calibration, HV setting, and annealing during technical stops
- ➡ High hit efficiencies for all layers and disks

Resolution

Great position resolution

- Performance consistent with expected evolution
- Comparable to performance seen in previous years

Cluster charge measurement

Cluster charge measured as function of bias voltage to determine when settings should be adjusted Current settings

- Layer 1: 600 V
- Layer 2: 450 V
- Layer 3: 350 V
- Layer 4: 300 V
- Ring 1: 450 V
- Ring 2: 350 V

BPix Layer 1 bias scans

Layer 1 evolving rapidly

- HV bias scans performed regularly to monitor performance
- ➡ Layer 1 began Run 3 with HV bias of 150 V, now at 600 V
- Maximum setting of power supplies is 800 V

Operational challenges

Grace Haza | University of Nebraska, Lincoln

Automasked channels

- Channels masked during data-taking due to readout errors
 - ➡ Layer 1: operational problem sometimes mitigated by changing timing settings on TBM
 - ➡ Layer 2-4: unrecoverable SEUs accumulate over a fill, recovered by powercycling via DCDC between LHC fills
- Recovery action at certain pile up for Layer 1

BPix QPLL issue

- Quartz controlled PLL circuit does not lock to LHC clock
- Layers 3 and 4 of one sector of barrel pixels affected
- Modules are not currently read out
 - Fixing the issue would require extracting and reinstalling pixel detector

Pixel hardware connections

BPix issue on electronics line

- Group of 16 modules in BPix Layer 4 that are functional only sporadically
- Implemented software change to minimize the number of times the modules are reprogrammed

Another issue that would require extracting and re-installing the detector

Pixel hardware connections

FPix portcard issue

- FPix portcard stopped working in July 2024
- Corresponds to a group of 14 modules
- Receives clock but no triggers

Intervention on FPix this year

- The CMS detector was opened during the 2024/2025 Technical Stop of the LHC
- We took the opportunity to try to clean our fiber connection of the malfunctioning portcard!

Pixel hardware connections

Cleaning pixel fiber assoc. with problematic FPix portcard

Optical fiber connection inspected and cleaned
Intervention did not recover these modules

Pixel hardware connections

Pixel hardware connections

What's next?

Decommissioning activities for 2026

- Run 3 ends 30 June 2026
- UXC (experimental cavern)
 - Pixel detector and beampipe
 - Cooling and power systems
 - Strip tracker and its services
- USC (service cavern)
 - Services and DAQ racks

Transition to Phase 2

- CMS will be getting a brand new tracking system for HL-LHC (aka CMS Phase 2)
- IPHC will play an extremely important role!

Summary

- The CMS pixel detector is performing well with continuous monitoring and calibrations
- High amount of integrated luminosity during LHC Run 3 has presented challenges
 - ➡ Radiation damage degrades performance over time
 - ➡ A few problems with electronics located on the service cylinders have led to losses of small groups of modules
 - Readout errors at high pile up create a challenge for BPix Layer 1
- Run 3 will conclude next year and the tracking system of CMS will be upgraded

Thank you!

Backup

Radiation levels

BPix Layer 1

End Of Luminosity[fb-1] Dose[Mrad] Fluence[10^14] Voltage

51	19.	4.0	350
117	45	9.3	450
41	16	3.2	400
73	28	5.8	450
197	75	16	550
	51 117 41 73 197	5119.117454116732819775	5119.4.0117459.341163.273285.81977516

Comparison among BPix and FPix

	Dose[Mra	d] Fluence[N-e	eq/cm2]		
Layer 1	75	16E14	121/25	143/30	
Layer 2	31	6E14	42/8.3	48/9.4	
Layer 3	15	3E14	20/4.1	23/4.7	
Layer 4	8	1.8E14	11/2.5	12.5/2.9	
FPix inner FPix middle	83 17	17E14 3.2E14	<u>115/23</u> 23/4.4	<u>131/26</u> 26/5.0	from Danek
FPix outer	9	1.8E14	12/2.4	14/2.8	

Cluster size and hit efficiency

Hit efficiency and cluster size in x and y also used to evaluate performance

Grace Haza | University of Nebraska, Lincoln

UXC vs. USC

- Important distinction between activities in the experimental cavern (UXC) and service cavern (USC)
- Especially at the beginning of LS3, there will be restrictions in UXC based on the radiation zone classification
 - More trainings required
 - Active dosimeter to be worn
 - Limit time in this zone
 - Will be closely monitored by Radiation Protection team

USC

Powering

- DC-DC converters used in detector
- 1216 total DC-DC converters convert input of 10 V and converts this to 2.4 - 3.5 V for the ROC and TBM
- One pair of DC-DC converter delivers the analog and digital voltage
- Placed about 1 m away from detector modules
- Connected to power supply channel

Туре	Required	_
2.4 V (= Analog)	608	
3.3 V (=Digital, BPix)	320	
3.5 V (=Digital, FPix & BPix L2)	288	

Powering system

Auxiliary hardware

CCU uses

- 12C channels to program readout electronics on service half-cylinders
- PIA registers to enable/disable DCDC converters and generate reset signals

Hit efficiency and residuals measurement

Hit efficiency is the probability to find any cluster within 1mm around an expected hit independent of the cluster quality

- Measured using muon tracks with pT > 2 GeV
- Bad components of the pixel detector are excluded from the measurement

Hit residuals measurement:

- Triplet method
 - \circ p_T > 12 (4) GeV tracks with hits in 3 layers (disks) are selected and refitted using hits in two of three layers (disks) for the BPIX (FPIX).
 - Trajectory is extrapolated to remaining layer (disk) and residuals with the actual hit are calculated for the BPIX (FPIX)
 - Residual distribution fitted with the Student-t function to obtain the mean offset (μ) and resolution (σ)
 - Residual offset (mean) and resolution are obtained from the fit
 - Triplets considered:
 - Layer 3: propagate from hits on Layer 2 and 4
 - Disk 2: propagate from hits on Disks 1 and 3
- Reconstruction:
 - Generic:
 - Simple algorithm based on track position and angle
 - Used in our High Level Triggers (HLT) and early track iterations offline
 - Template:
 - Algorithm based on detailed cluster shape simulations
 - Used in the final fit of each track in the offline reconstruction

DCDC damaged modules

DCDC damaged modules not correctly powered

- Sensor leakage current cannot be drained efficiently if the ROC is not powered
- Bias voltage (HV) ON and module power (LV) OFF leads to bad grounding
- Leakage current is drained through the pre-amplifier, damaging the pre-amplifier and the module
- Damage seems to accumulate with radiation and distance from beamline
- 6 (accessible) Layer 1 modules replaced during 2017-18 YETS out of total 8 damaged modules in Layer 1

32

• Accessible DCDC-damaged modules in Layer 2 were replaced during LS2

Damages due to HV on and LV off

