

Christophe Yèche CEA-Saclay

Colloque national du WG Dark Energy - 9ème edition Montpellier, November 5-7 2025

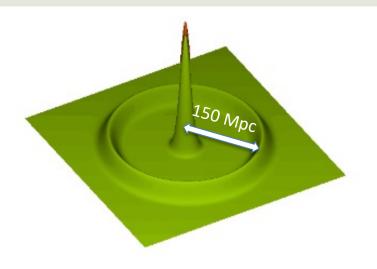
DARK ENERGY SPECTROSCOPIC INSTRUMENT

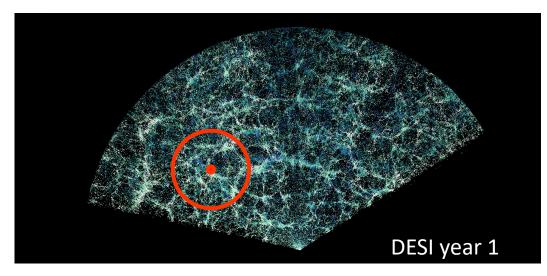
U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 Participating Institutions!

ADE, Montpellier, November 6, 2025

Baryonic Acoustic Oscillations (BAO)


Dark Energy
Spectroscopic Instrument
(DESI)

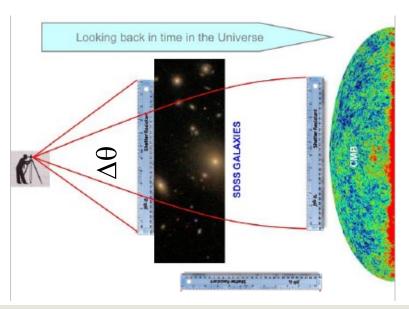


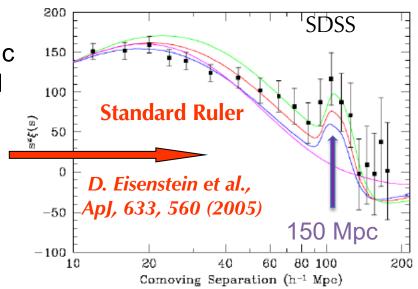
ADE, Montpellier, November 6, 2025

BAO, a standard ruler

A special distance

- Sound waves propagate through relativistic plasma (baryons, electrons, photons) with a speed $\sim c/\sqrt{3}$
- They freeze at recombination (z~1100 i.e 380,000 years)
- Galaxies form in the overdense shells about r_d ~ 150 Mpc in radius from initial overdensities.
- ⇒ Standard Ruler: r_d ~ 150 Mpc in comoving distance





Observation of baryonic acoustic peak

First observation

- In 2005: First observations of baryonic oscillations by 2 teams (2dFGRS and SDSS)
- SDSS observe a peak at ~150 Mpc
- SDSS: ~50 000 LRGs, <z> ~ 0.35 "Luminous Red Galaxies"

A 3D measurements

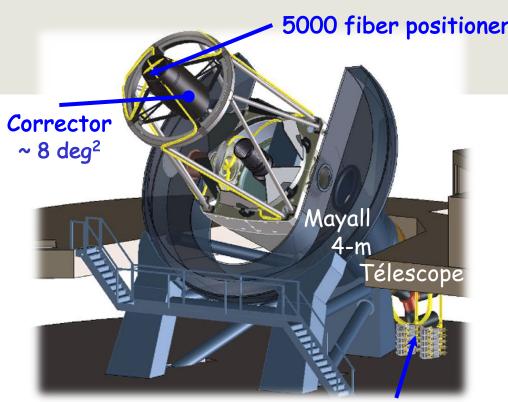
- Radial direction (along the line of sight):

$$\Delta z = r_d \cdot H(z)/c$$

- \Rightarrow Sensitive to Hubble parameter H(z).
- Transverse direction:

$$\Delta\theta = r_d/(1+z)/D_A(z) = r_d/D_M(z)$$

- \Rightarrow Sensitive to angular distance $D_A(z)$
- $\Rightarrow \sim \int 1/H(z)$



DESI Project

Scientific project

- 3D map for 0<z<4
- Footprint ~14000 deg² (1/3 sky)
- International collaboration
- 72 institutions (46 non-US)
- ~900 members

10 spectrographs

Instrument

- 4-m telescope at Kitt Peak (Arizona)
- Wide FoV (~ 8 deg²)
- Robotic positioner with 5000 fibers
- 10 spectrographs x 3 bands (blue, visible, red-NIR) →360-1020 nm

DESI tracers of the Matter

~40 million redshifts

in 5 years

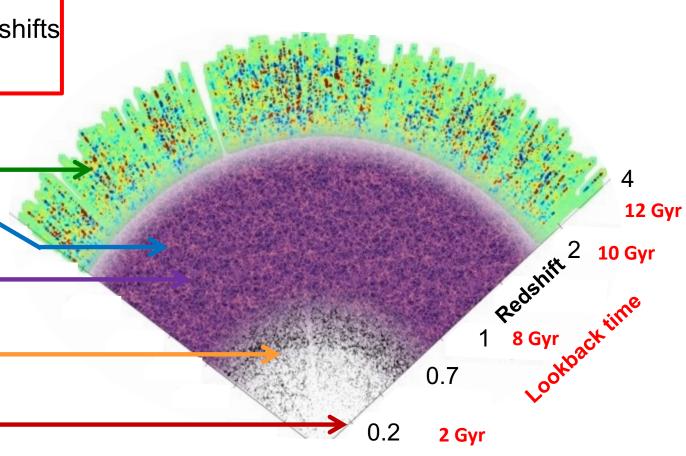
Dark Energy Spectroscopic Instrument

3 million QSOs

Ly- α z > 2.1

Tracers 0.9 < z < 2.1

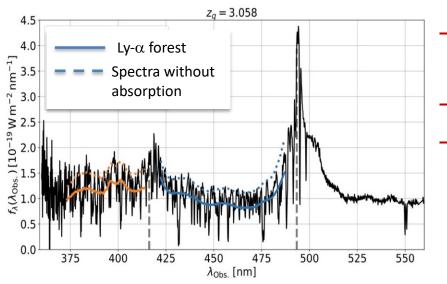
16 million ELGs

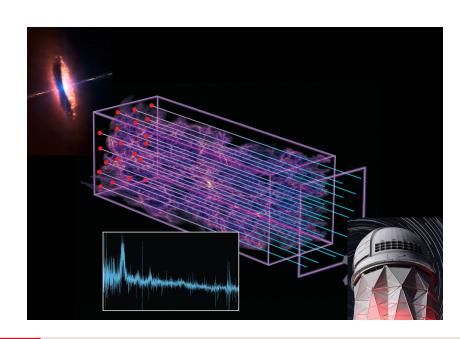

0.6 < z < 1.6

8 million LRGs

0.4 < z < 1.0

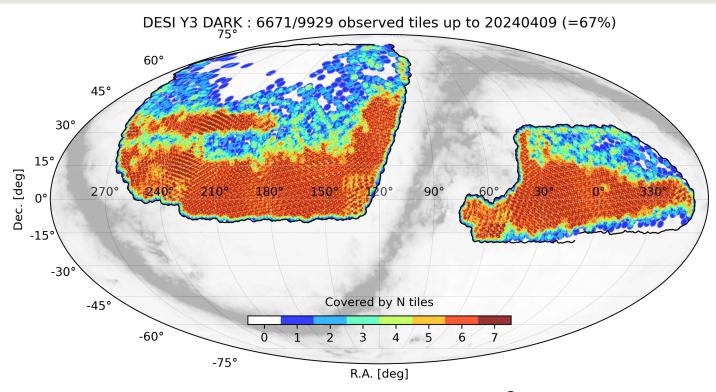
13.5 million
Brightest galaxies


0.0 < z < 0.4

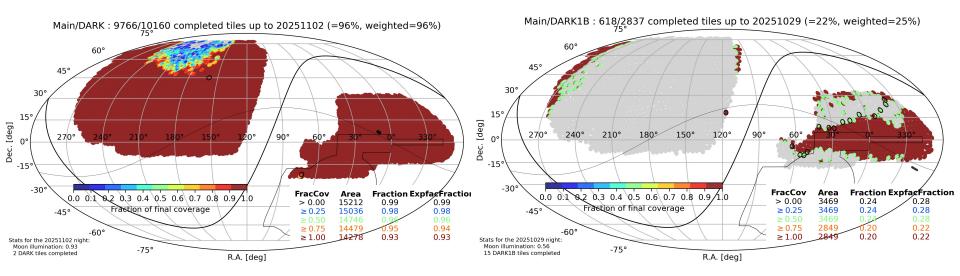


Another Tracer of Matter: Ly- α forest of quasars

- We expect low density gas (IGM) to follow the dark matter density
- Compute correlation function between HI 'clouds'
- Measure the location of BAO


- For z>2, no discrete tracer (galaxy)
 observable with DESI
- Use Ly- α forests of quasars (2.0<z<3.5)
- HI absorption in intergalactic medium (IGM) along the line of sight of quasars

DESI DR2 footprint



- DESI footprint over 5 years ~14000 deg²
- DR2 (3 years) ~70% of final footprint
- Increase of V_{eff} by a 2.3 factor from DR1 to DR2
- 14.3M discrete tracers (galaxies and quasars), 800k Ly- α forests

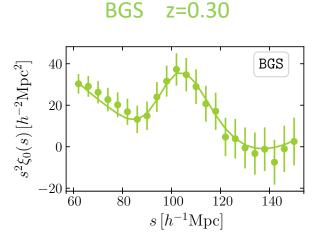
Status of DESI observations

DESI-I additional passes

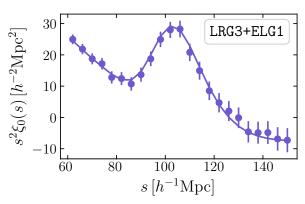
DESI-I ~96% is already done

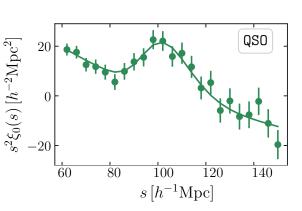
DESI-I footprint

- Two additional passes over DESI-I footprint (already started)
- Extension of the footprint to the South (14000 deg² → 17000 deg²) will start by the end of 2026



BAO Measurements




Results: a few examples

QSO z=1.48

Precision: 0.93%

Significance: 14.7σ

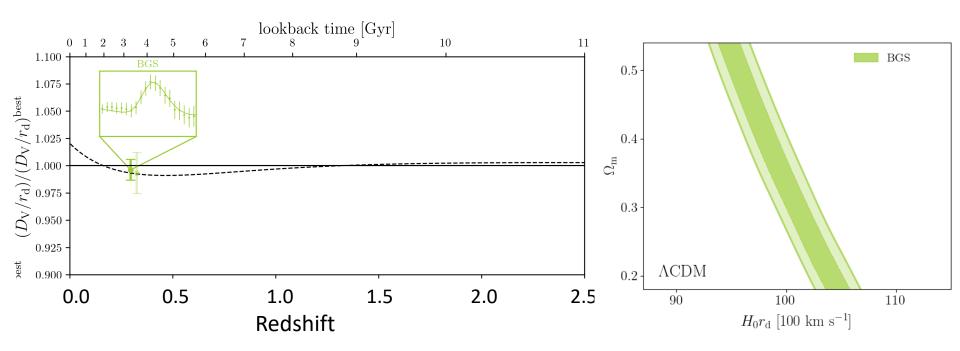
Precision: 0.45%

Significance: 5.6σ

Precision: 1.5%

Dilation compared to a fiducial cosmology

- Perpendicular or parallel to the line of sight, α_{\perp} and $\alpha_{||}$
- Combined through $\alpha_{iso} = (\alpha_{\perp}^2 \alpha_{||})^{1/3}$
- 6 bins in redshifts covering the redshift range, 0.1<z<2.1
- Bin with lowest significance: 5.6σ

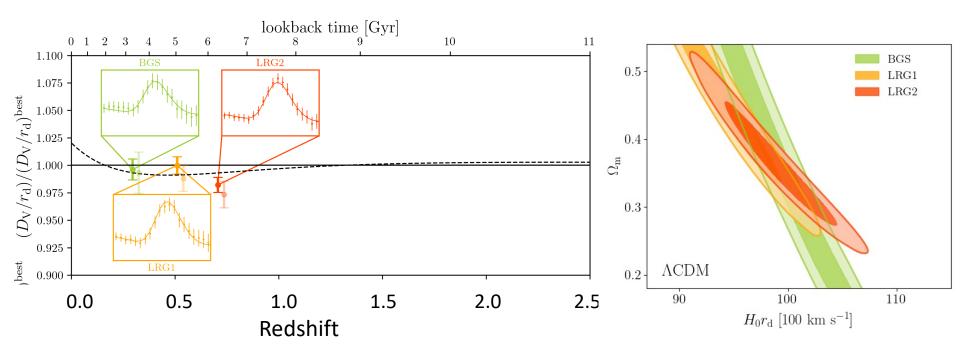


DESI DR2: BGS

$$\alpha_{\perp} = \frac{D_{\rm M}}{r_{\rm d}} \frac{r_{\rm d}^{\rm fid}}{D_{\rm M}^{\rm fid}}$$

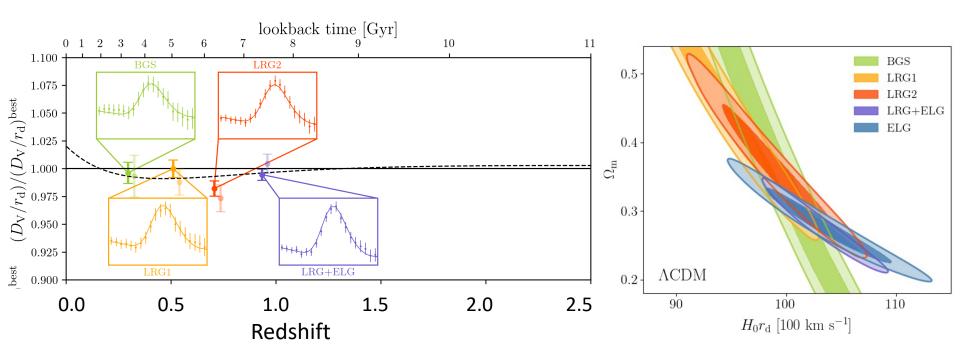
$$\alpha_{||} = \frac{H^{fid} r_d^{fid}}{H r_d}$$

$$\alpha_{\perp} = \frac{D_{\rm M}}{r_{\rm d}} \frac{r_{\rm d}^{\rm fid}}{D_{\rm M}^{\rm fid}} \qquad \alpha_{||} = \frac{H^{fid} r_{\rm d}^{fid}}{H r_{\rm d}} \qquad \alpha_{\rm iso} = \left(\alpha_{\perp}^2 \alpha_{||}\right)^{1/3} \; \text{In ΛCDM, the α parameters depend on $H_0 r_{\rm d}$ and $\Omega_{\rm m}$}$$



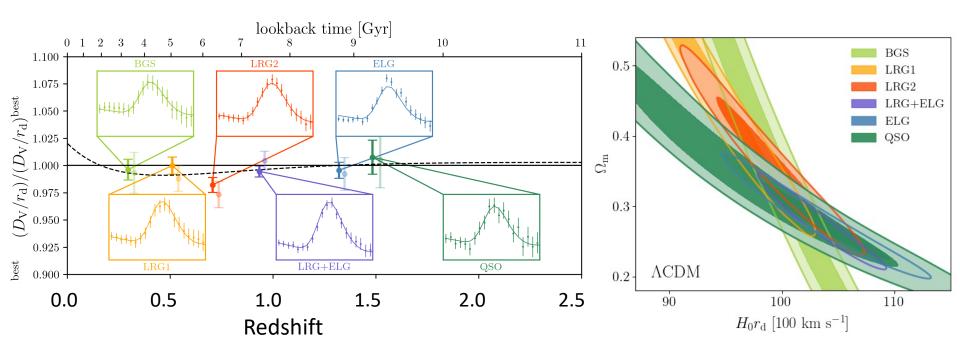
- Friedman equation for Λ CDM $H(z) \equiv H_0 \sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}$
- Limitation due the cosmic variance (small part of the visible Universe)

DESI DR2: BGS + LRG


LRG: Main tracer in SDSS, precise measurement in DESI

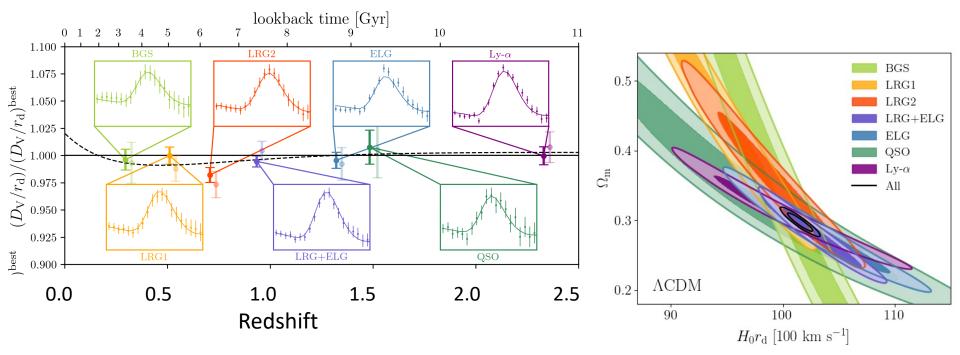
ADE, Montpellier, November 6, 2025

DESI DR2: BGS + LRG + ELG



- ELG: Main tracer in DESI, precise measurement
- x 2.7 with DR2 compared to DR1

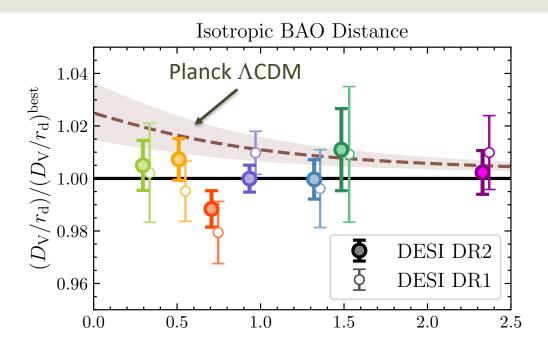
DESI DR2: BGS + LRG + ELG + QSO


QSO: huge volume but small density (shot noise limitation)

ADE, Montpellier, November 6, 2025

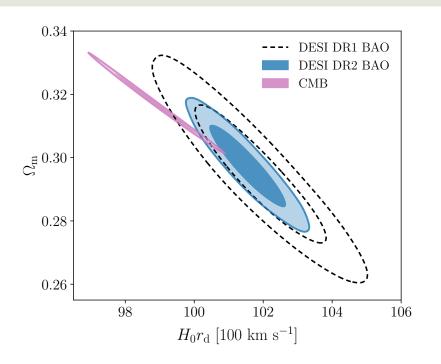
DESI DR2: BGS + LRG + ELG + QSO + Ly- α

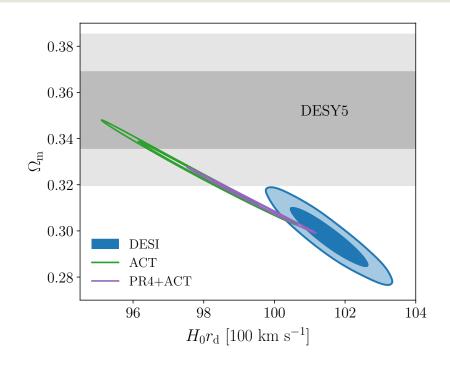
- Different dependence as a function of redshift (Ω_m, H_0, r_d)
- Break the degeneracy without knowing r_d


Dark Energy Spectroscopic Instrument

Cosmological Interpretation

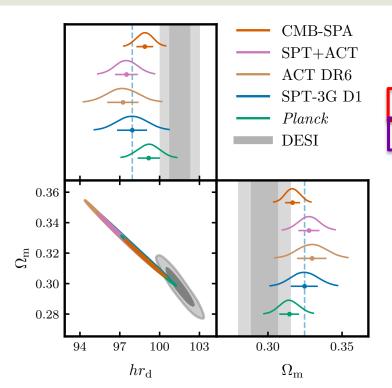
DESI - Hubble diagram


- ~14M discrete tracers with 0.1<z<2.1 in 6 redshift bins
- Precision on BAO: from 1.5% (QSO) to 0.45% (LRG3+ELG1)
- With Ly- α forest of QSOs at z~2.3 : precision on BAO 0.7%
- Excellent agreement between DESI DR1 and DR2
- Consistent with Λ CDM but **tension with Planck \LambdaCDM** : **2.3** σ



ADE, Montpellier, November 6, 2025

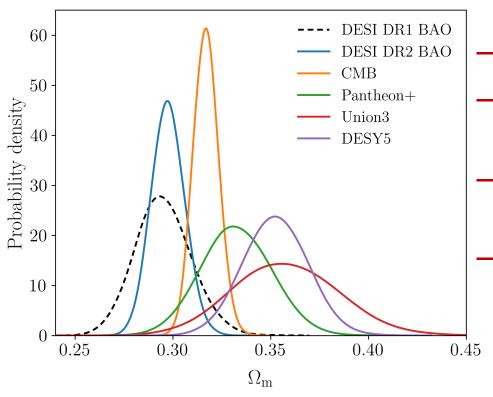
$\Omega_{\rm m}$ – H₀r_d Comparison ACT/BAO


- Consistent results DR1/DR2
- ACT+DESI (DESI Paper), arXiv:2504.18464
- 2.3σ discrepancy between CMB (PR4) and DESI
- 2.0σ discrepancy between CMB (PR4+ACT) and DESI
- 2.7σ discrepancy between CMB (ACT-alone) and DESI

ADE, Montpellier, November 6, 2025

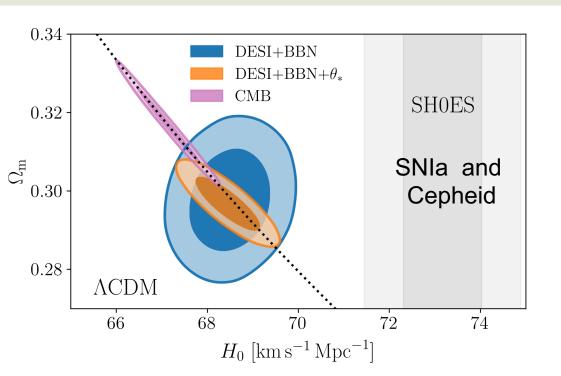
Tension between CMB and BAO?

	$100\Omega_{ m m}$	$hr_{ m d} [{ m Mpc}]$	Distance to DESI
CMB-SPA	31.66 ± 0.50	98.89 ± 0.63	2.8σ
$\operatorname{SPT+ACT}$	32.77 ± 0.72	97.51 ± 0.87	3.7σ
$\operatorname{SPT}+Planck$	31.89 ± 0.54	98.63 ± 0.67	3.0σ
ACTDR6	33.0 ± 1.0	97.2 ± 1.2	3.1σ
SPT-3G D1	32.47 ± 0.91	97.9 ± 1.1	2.5σ
Planck	31.45 ± 0.67	99.18 ± 0.84	2.0σ
DESI	29.76 ± 0.87	101.52 ± 0.73	


SPT-3G, arXiv:2506.20707

- SPT-3G is consistent results with ACT and DESI papers
- Discrepancy from 2.0σ to 3.7σ between CMB and DESI
- 2.8σ discrepancy between CMB (Planck+ACT+SPT) and DESI

$\Omega_{\rm m}$ - Tensions in Λ CDM – BAO, CMB and SNIa

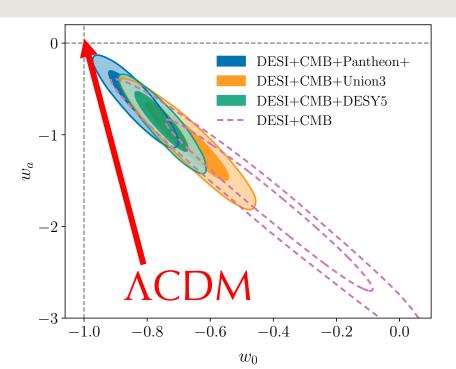


- Consistent results DR1/DR2
- Comparable precision on $\Omega_{\rm m}$ for DESI and CMB
- 2.3_o discrepancy between CMB and DESI
- Discrepancies with SNIa samples
 - Pantheon+: 1.7σ
 - Union3: 2.1σ
 - DESY5: 2.9σ

Hubble constant in ACDM

$$H_0 = (68.51 \pm 0.58) \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$$
 DESI $+ \, \mathrm{BBN}$

$$H_0 = (68.45 \pm 0.47) \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$$
 $0.47 \, \mathrm{DESI} + \theta_* + \mathrm{BBN}$


 θ_* : CMB angular scale

- Main tension in cosmology: 5σ discrepancy between CMB and late measurements (SNIa)
- Big Bang Nucleosynthesis (BBN) can be used to measure r_d
- DESI + BBN (without CMB), tension with SNIa (SH0ES): 4.5σ

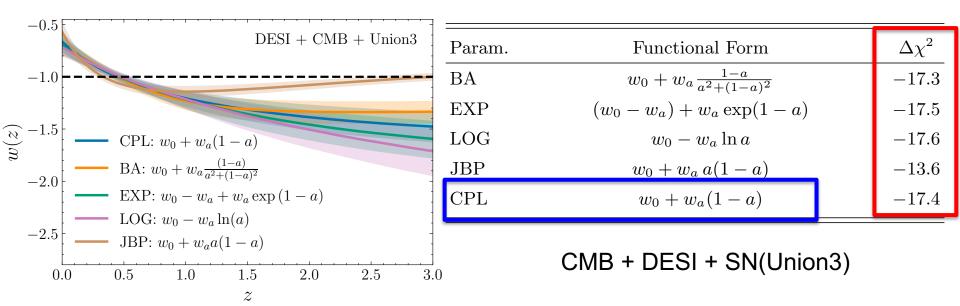
Beyond ACDM: Dark Energy - Equation of State

Extensions of ACDM

Equation of state of Dark Energy

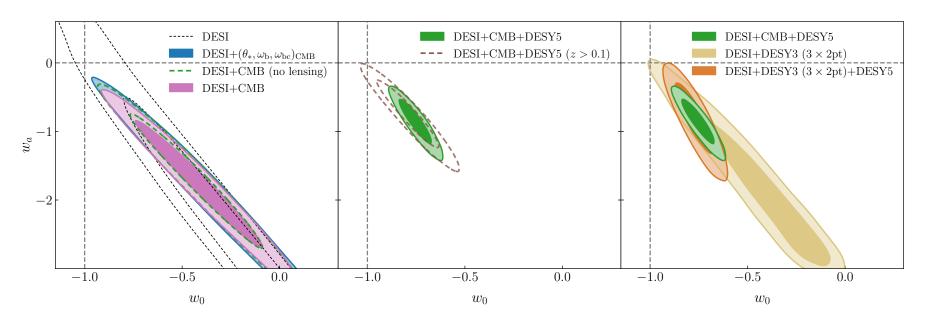
$$w(z) = \frac{p(z)}{\rho(z)}$$

Time evolving Dark Energy


$$w(z) = w_0 + \frac{z}{1+z}w_a$$

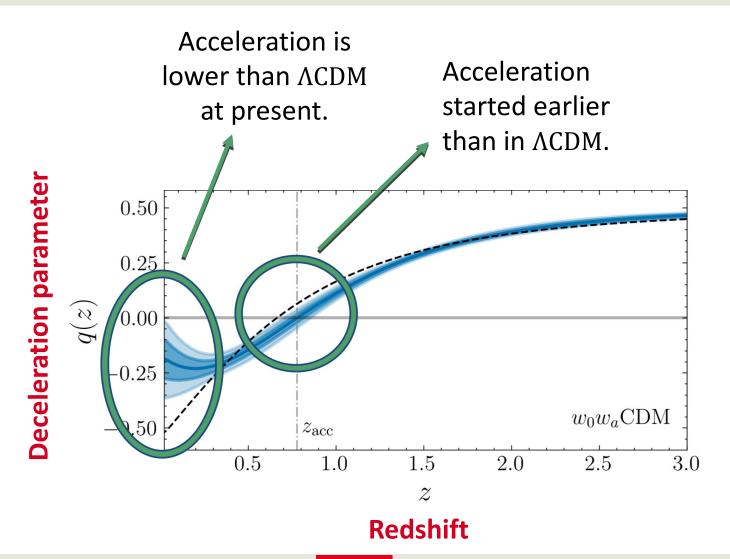
- For Λ CDM, we expect w=-1, i.e. w_0 =-1 and w_a =0
- Combining DESI+CMB: 3.1σ effect
- Combining DESI+CMB+SN: 2.8σ to 4.2σ effect depending on the SN sample
- Stronger Indications of dynamical dark energy with DR2

Dynamical Dark Energy – Parametrization

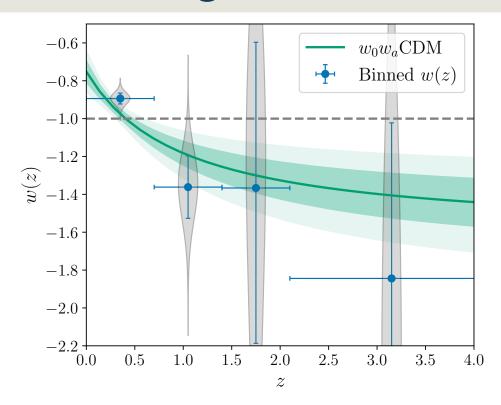


Significance does not depend on parametrizations

Dynamical Dark Energy – Robustness

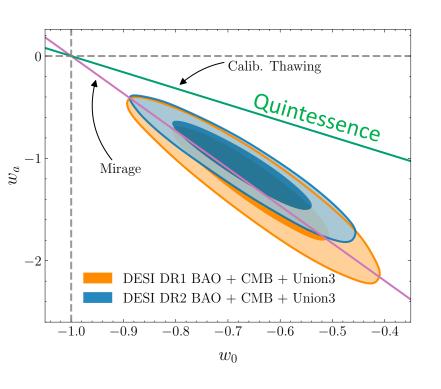


- Combining with early-Universe prior on $(\theta_*, \omega_b, \omega_{bc})$ from CMB shows preference for evolving DE.
- Excluding z<0.1 SNIa reduces the tension but the best fit is far for ∧CDM
- Replacing CMB with DES 3x2pt continues to show a preference for evolving DE


Dynamical Dark Energy

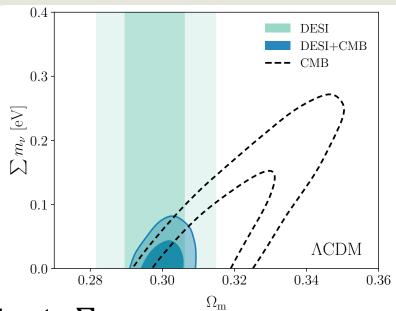
Phantom Crossing

- w<-1 (phantom regime), possible with multiple fields...
- Phantom crossing at z~0.4


Dark Energy Spectroscopic Instrument

Binned approach (blue dots) consistent with CPL parametrization

Dynamical Dark Energy - Models


DESI+CMB:	+PantheonPlus	+U	nion3	+D	ESY5
DE classes		$\Delta { m DIC}$	$(\Delta \chi^2)$		
Thaw. (Cal.)	+0.4 (-1.6)	-0.6	(-2.5)	-5.8	(-7.1)
Thaw. (Alg.)	$-1.0 \ (-2.9)$	-4.6	(-6.9)	-10.1	(-13.2)
Emergent	$+2.1 \ (-0.05)$	+1.8	(-0.1)	+0.2	(-1.5)
Mirage	$-9.1 \ (-10.5)$	-13.8	(-16.2)	-18.7	(-20.7)
w_0w_a	$-6.8 \ (-10.7)$	-13.5	(-17.4)	-17.2	(-21.0)

- Mirage Dark Energy is preferred to Thawing (Quintessence) models
- "Mirage" models mimic ∧CDM and <w> ~ -1 whereas there is a real time evolving Dark Energy

Sum of neutrino masses - Bayesian

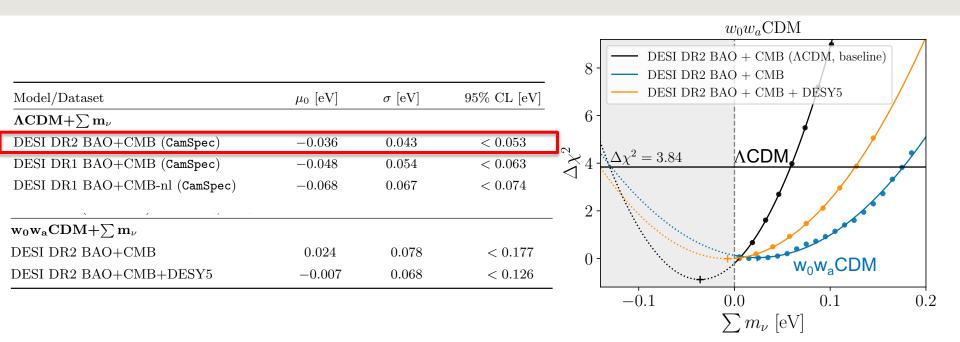
- CMB is sensitive to $\sum m_{\mu}$
- BAO measures Ω_m and breaks the degeneracies

Limits at 95% CL:

- For ΛCDM with CMB alone:
- For ΛCDM with CMB + DESI:
- For w₀w_aCDM with CMB + DESI + SN

 $\Sigma m_{\nu} < 210 \ meV$

 $\Sigma m_{\nu} < 64 \ meV$


 $\Sigma m_{\nu} < 130 \ meV$

Ch. Yèche

Sum of neutrino masses - Frequentist

- Our "real" sensitivity on $\sum m_{\nu}$ is σ ~ 40 meV with Λ CDM
- Because of the tension on Ω_m the limits artificially are too stringent

Limits at 95% CL with Feldman-Cousins:

- For ΛCDM with CMB + DESI:
- For w₀w_aCDM with CMB + DESI + SN

$$\Sigma m_{\nu} < 53 \ meV$$

 $\Sigma m_{\nu} < 126 \, meV$

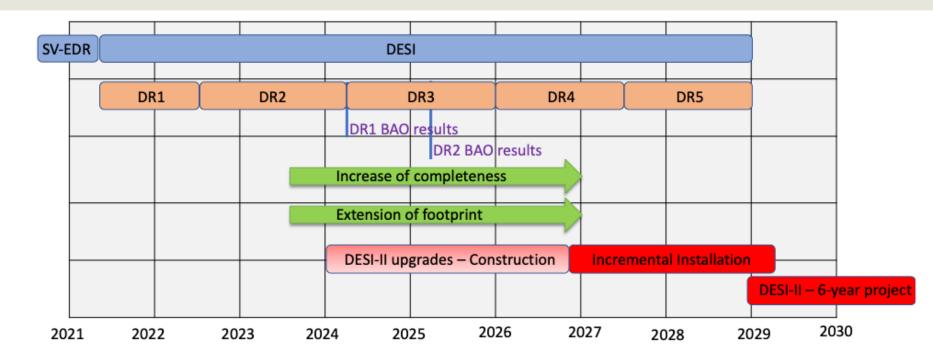
Conclusions

Summary: Results from DESI BAO DR2

BAO results with DR2

- With three years (DR2), DESI provides the most precise measurement of BAO over 0<z<3.5
- DR2 results confirm DR1 results
- In Λ CDM, DESI is in tension with CMB (~2.8 σ) and DESI prefers lower Ω_m
- Stronger indications of time-varying Dark Energy equation of state with DR2, especially when SNIa are added
 - \Rightarrow a 2.8 σ to 4.2 σ effect, not 5 σ yet!

– What next?


BAO: Full dataset for DESI in early 2027 (+ Full shape analysis)

- SNIa: ZTF and LSST homogeneous sample at z<0.1
- CMB: ACT, SPT and in the long term SO and CMB-S4

DESI and **DESI-II** Timelines

- DESI (DR1-DR3) should finish in March 2026, even earlier.
- Continuation of DESI (DR4-DR5) to end of 2028 with an extension of the footprint and an increase of the completeness
- DESI-II (2029): Dark Matter, high-density and high-z programs

ADE, Montpellier, November 6, 2025

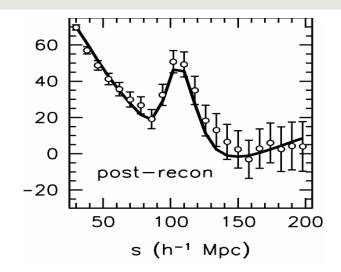
Additional Slides

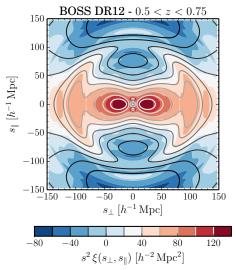
Main science with DESI-I

Baryonic Acoustic Oscillations (BAO)

- $\sigma(BAO) \sim 0.2 \%$ for 0.0 < z < 1.1
- $\sigma(BAO) \sim 0.3\%$ for 1.1<z<1.9
- $\sigma(BAO) \sim 0.5\%$ for 1.9<z<3.5
- SDSS(BOSS+eBOSS) few % measurements

Redshift Space Distorsion (RSD)

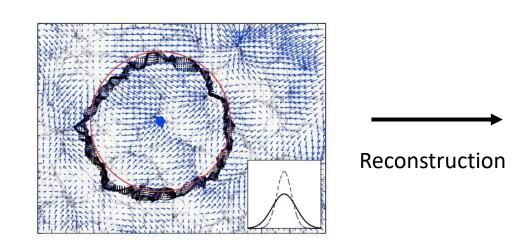

- Multiple few % measurements over wide redshift range (z<2)
- ~10x better compared to SDSS

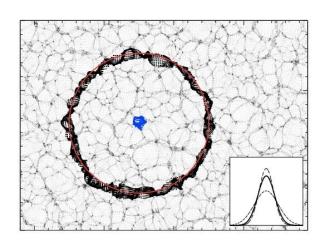

Neutrino masses

- − $\sigma(\Sigma m_v)$ ~20 meV
- Current limit : $\Sigma m_{\nu} < \sim 100 \text{ meV}$, @ 95 CL

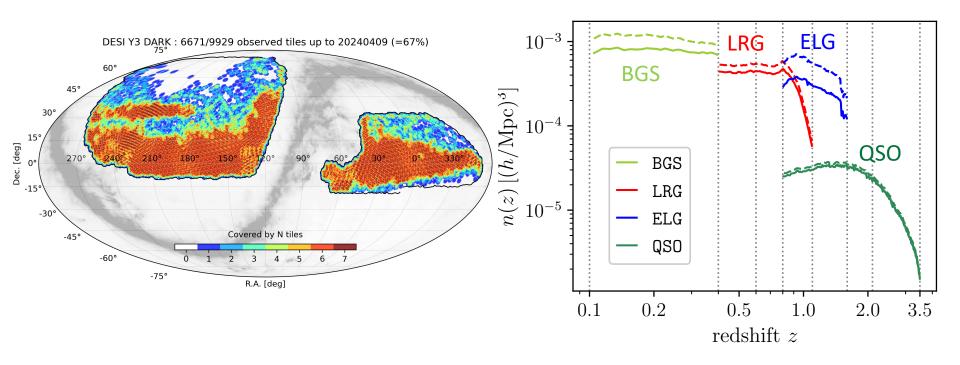
Non-Gaussianity (f_{NL})

- $\sigma(f_{NL})\sim 4$ with k dependence of bias
- As precise as Planck with a different technique





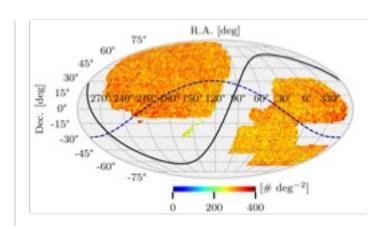
Density Field Reconstruction

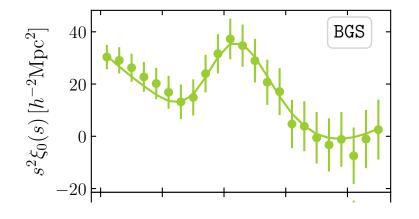


- BAO peak distorted by movements of tracers due to density field
- Estimation of the Zeldovich displacement from the observed field
- Reconstruction: correction of the displacements
- Improve both precision and accuracy

DESI DR2 dataset

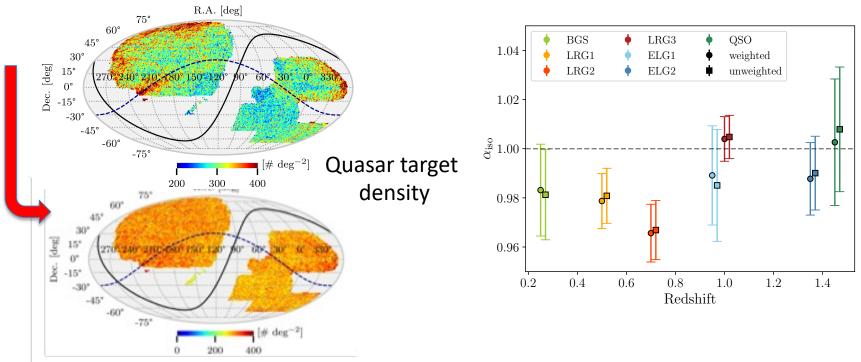
- Biggest ever BAO dataset (both in N_{tracer} and volume)
 - 14.3 M discrete tracers (BG, LRG, ELG and QSO)
 - Effective cosmic volume V_{eff}= 42 Gpc³
 - Increase of V_{eff} by a 2.3 factor from DR1 to DR2




Systematics Error Budget

- Observational effects in data (imaging, fiber assignment,...)
- Reconstruction algorithm
- Covariance matrix construction

- Choice of fiducial cosmology
- Galaxy-halo (HOD) model uncertainties



Example of systematics: Imaging

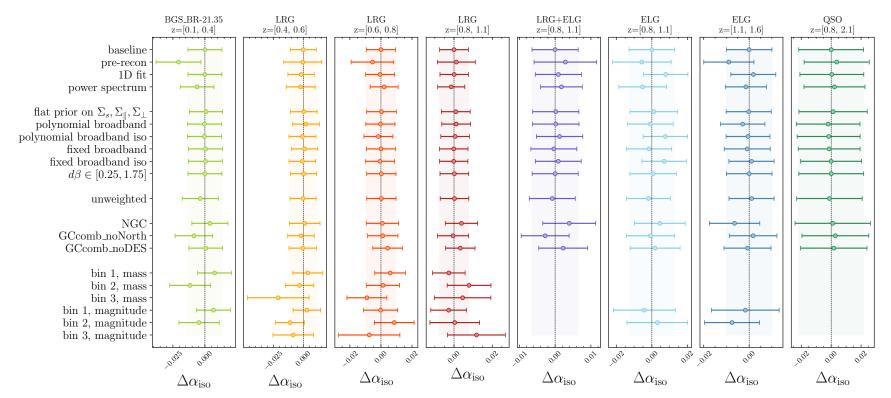
- Non-homogeneity in target selection due variations of imaging catalogs (depth, dust contaminants,...)
- Regression methods developed to correct those effect
- Same measurements of BAO with/without corrections
- BAO almost insensitive to imaging effects

Systematics Error Budget

- Observational effects in data (imaging, fiber assignment,...)
- Reconstruction algorithm
- Covariance matrix construction

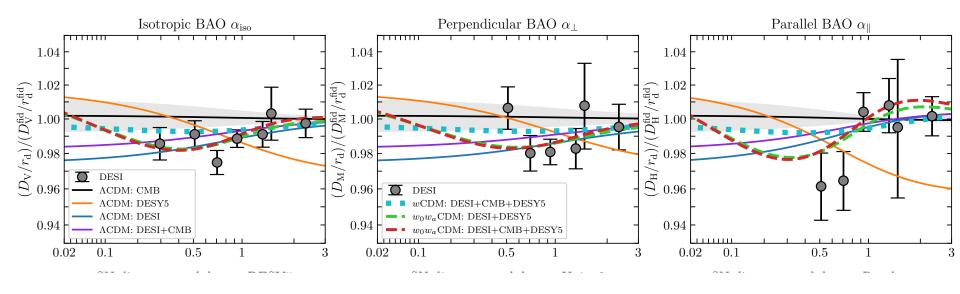
No effect on BAO

- Incomplete theory modelling $\sigma_{theo} = 0.1\%$
- Choice of fiducial cosmology $\sigma_{fid} = 0.1\%$
- Galaxy-halo (HOD) model $\sigma_{HOD} = 0 0.17\%$ (depending on tracers)


All systematics much smaller than statistical errors

$$\sigma_{total} = 1.01\sigma_{stat.}$$
 (BGS) - $\sigma_{total} = 1.09\sigma_{stat.}$ (LRG3+ELG1)

Stability of the results



- Comparison with the baseline analysis for different configurations (with/without reconstruction, power-spectrum, broadband modeling priors damping parameters, imaging weights, footprint, mag mass)
- Extremely stable results

Dark Energy – Hubble Diagram

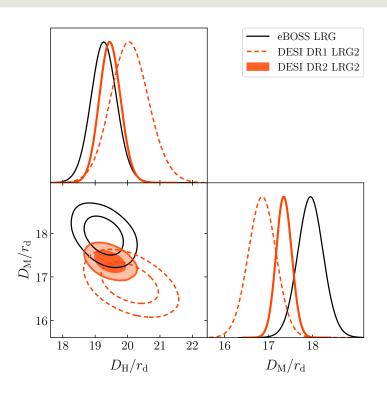
- Combining DESI+CMB+SN: 2.8σ to 4.2σ effect depending on the SN sample
- Better agreement with w₀w_aCDM model

ADE, Montpellier, November 6, 2025

Dark Energy – Significance

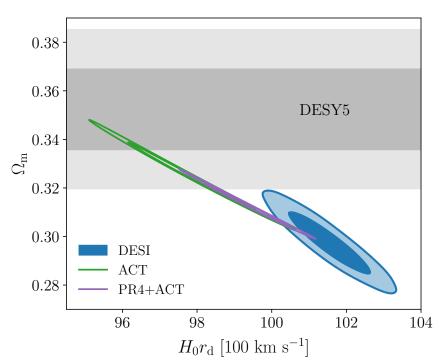
Datasets	$\Delta\chi^2_{ m MAP}$	Significanc	e $\Delta(DIC)$
DESI	-4.7	1.7σ	-0.8
$\mathrm{DESI}+(heta_*,\omega_\mathrm{b},\omega_\mathrm{bc})_\mathrm{CMB}$	-8.0	2.4σ	-4.4
DESI+CMB (no lensing)	-9.7	2.7σ	-5.9
DESI+CMB	-12.5	3.1σ	-8.7
DESI+Pantheon+	-4.9	1.7σ	-0.7
DESI+Union3	-10.1	2.7σ	-6.0
DESI+DESY5	-13.6	3.3σ	-9.3
DESI+DESY3 $(3\times2pt)$	-7.3	2.2σ	-2.8
DESI+DESY3 $(3\times2pt)$ +DESY5	-13.8	3.3σ	-9.1
DESI+CMB+Pantheon+	-10.7	2.8σ	-6.8
DESI+CMB+Union3	-17.4	3.8σ	-13.5
DESI+CMB+DESY5	-21.0	4.2σ	-17.2

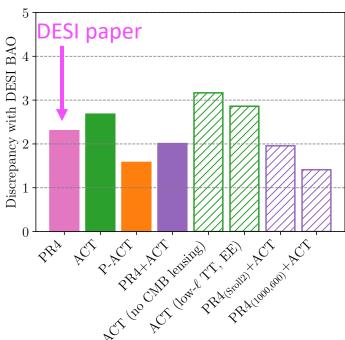
CMB (including lensing)


Three SNIa sample

Ch. Yèche

Comparison DESI/SDSS at z~0.7




- 1.5
 o to 2.3
 o discrepancy depending on the correlations between the two samples at z~0.7
- Much better agreement with DR1 than with DR2

Comparison DESI/ACT

ACT+DESI (DESI Paper), arXiv:2504.18464

- 2.3σ discrepancy with CMB (DESI paper)
- − Adding ACT to PR4 2.3σ → 2.0σ
- Adding recent ACT results, it varies from 1.4σ to 3.2σ

Comparison DESI/ACT

3. CMB standalone likelihoods (including CMB lensing) low- ℓ TT Planck 2018 PR3 low- ℓ Commander likelihood for TT in the range $2 \le \ell < 30$ [37, 38]. low-ℓ EE SimAll Planck 2018 PR3 low- ℓ SimAll likelihood for EE in the range $2 \le \ell < 30$ [37, 38]. Alternative low- ℓ likelihood for EE based on the SRoll2 code in the range $2 \le \ell < 30$ [39]. low-ℓ EE SRoll2 high- ℓ PR3 Planck PR3 Plik_lite likelihood for the high- ℓ CMB TT, TE, EE spectra from $\ell = 30$ up to $\ell = 2500$ [37, 38]. high- ℓ PR4 Planck PR4 high-\ell temperature and polarization likelihood using NPIPE maps. The high-\ell TT, TE, EE spectra from Planck extends from $\ell = 30$ up to $\ell = 2500 \, [40, \, 41]$. ACT DR6 Power spectra from the anisotropies in the temperature and polarization CMB maps from the 6th data release of the Atacama Cosmology Telescope. The CMB power spectra extends from $\ell = 600$ up to $\ell = 8500$ [31]. CMB lensing Combination of the CMB lensing measurements from the reconstruction of the CMB lensing potential using Planck PR4 NPIPE

4. Main CMB combinations

ACT	low- ℓ EE SRoll2 + ACT DR6 + CMB lensing	LACT nanor
P-ACT	low- ℓ EE SRo112 + ACT DRo + CMB lensing low- ℓ TT + low- ℓ EE SRo112 + high- ℓ PR3 (ℓ < 1000 TT, ℓ < 600 TE, EE) + ACT DR6 + CMB lensing	F ACT paper
PR4+ACT	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	\geq 1000 TE, EE) +
	CMB lensing ACT+DESI paper - Baseline	

temperature and polarization observations, with 67% of sky fraction overlap with *Planck* [21, 43].

maps [42], and the CMB lensing measurements from the ACT Data Release 6 (DR6), which consists of five seasons of CMB

5. Additional CMB combinations studied		
ACT (no CMB lensing)	low- ℓ EE SRo112 + ACT DR6 (same as ACT base in [31])	
, , ,	$low-\ell TT + low-\ell EE SimAll + ACT DR6 + CMB lensing$	
PR4	low-ℓ TT + low-ℓ EE SimAll + high-ℓ PR4 + CMB lensing (same as baseline CMB in [16]) → DESI paper	
$PR4_{(1000,600)} + ACT$	$low-\ell \ TT + low-\ell \ EE \ SimAll + high-\ell \ PR4 \ (\ell < 1000 \ TT, \ \ell < 600 \ TE, \ EE) + ACT \ DR6 + CMB \ lensing$	
$PR4_{(SRoll2)} + ACT$	low- ℓ TT + low- ℓ EE SRoll2 + high- ℓ PR4 (ℓ < 2000 TT, ℓ < 1000 TE, EE) + ACT DR6 (ℓ \geq 2000 TT, ℓ \geq 1000 TE, EE) + CMB lensing	

ACT+DESI (DESI Paper), arXiv:2504.18464

Several comparisons were tested

<u>cea</u> irfu