

First conservative assessment of the sensitivity of direct CP-Violation for the decay $D^0 \rightarrow \pi^0 \pi^0$ at FCC-ee

Willy Weber^{1,2}, Kevin Kröninger¹, Romain Madar² and Stéphane Monteil²

¹TU Dortmund University, Department of Physics, Dortmund ²Université Clermont-Auvergne, Laboratoire de Physique de Clermont, Clermont-Ferrand

Jamboree FCC - France, July 4

1. Motivations

- 1.1 Physics motivations
- 1.2 Detector motivations

2. Reconstruction of $D^0 \rightarrow \pi^0 \pi^0$ at FCC-ee

- 2.1 Reconstruction strategy
- 2.2 Reconstruction results for signal samples

3. Assessment of the sensitivity of A_{CP}

- 3.1 Reconstruction of $D^{*+} \rightarrow D^0 (\rightarrow \pi^0 \pi^0) \pi^+$ for inclusive $Z \rightarrow c\bar{c}$ samples
- 3.2 First conservative sensitivity computation of A_{CP}

• LHCb has measured CP-Violation in D^0 decays [$D^0 o \pi^+\pi^-$, $D^0 o K^+K^-$]

 D^0 CP-Violating asymmetry difference measured by LHCb

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = -0.00154 \pm 0.00029$

- Value is in agreement with the predictions of the Standard Model, but is situated in the upper limit of the predicted range of 10^{-4} to 10^{-3}
- Our comprehension of this CP-Violation can be enhanced through new perceptions for the decay mode $D^0\to\pi^0\pi^0$

 $D^0 \rightarrow \pi^0 \pi^0$ *CP*-Violating decay-rate asymmetry measured by Belle $A_{CP}(D^0 \rightarrow \pi^0 \pi^0) = 0.000 \pm 0.006$

Detector motivations

- The electromagnetic calorimeter is essential for some of the precision measurements of electroweak physics at FCC-ee, especially in the flavour sector
- Neutral pions π^0 decay rapidly into two photons assessing requirements about energy and angular resolution
- The decay $D^0 o \pi^0 \pi^0 o 4\gamma$ can set constraints on these resolutions

Questions to answer:

- Is FCC-ee able to improve on the $D^0 \rightarrow \pi^0 \pi^0$ precision anticipated at the end of Belle II?
- Which influence has the energy resolution of the electromagnetic calorimeter (EMC)?

Presented studies

The branching fraction of $D^0 o \pi^0 \pi^0$ is small [8.26 \cdot 10⁻⁴]

Step 1: D^0 reconstruction at FCC-ee

- Produce $D^0 \to \pi^0 \pi^0$ signal samples using the IDEA detector card with different energy resolutions for the EMC
- Reconstruct the D^0 from the photons in the final state

Step 2: Assessment of A_{CP}

- Use the inclusive $Z \rightarrow c\bar{c}$ samples produced for the IDEA detector system with $\frac{3\%}{\sqrt{E}}$ EMC resolution
- Reconstruct $D^0 \to \pi^0 \pi^0$ decays that have been produced by pythia in some events

Name		Number of events	Sum of weights
p8_ee_Zcc_ecm91		499 786 495	4.99786e+8
Cross-section	K-factor	Matching efficiency	
5215.46 pb	1	1	

Simulation:

- Use FCCAnalyses framework to simulate collision events and detector response
 - Pythia8: ISR, FSR and hadronization process
 - EvtGen: hadronic decays (forced channel)
 - IDEA detector system (different EMC resolutions)
- Analysis starts with the collection of all detected photons

Analysis concept for D^0 reconstruction

- Collection of all detected photons
- Calculate invariant mass of each pair of γ
 - Signal events: $\pi^0 \rightarrow \gamma \gamma$
 - Combinatorical background
- Use cuts to reduce combinatorical background in π^0 collection
- Fit resulting peak to determine $\sigma_{(m_{\pi^0})}$

• Reconstruction of the D^0 works in a similiar way

Analysis concept for D^0 reconstruction

Results of the $D^0 \rightarrow \pi^0 \pi^0$ reconstruction in signal samples

$$D^0$$
 reconstruction with $\frac{3\%}{\sqrt{E}}$ and $\frac{10\%}{\sqrt{E}}$

- Reconstruction of $D^0 \to \pi^0 \pi^0$ is possible with different energy resolutions
- The signal/background ratio improved with enhanced resolution
- Reconstruction effeciences with $\frac{3\%}{\sqrt{E}}$ (IDEA):
 - $\approx 96\%$ for neutral pions
 - \approx 74% for D^0 -mesons
- The high momentum π^0 from boosted D^0 decays would deserve a dedicated reconstruction algorithm

1. Motivations

- 1.1 Physics motivations
- 1.2 Detector motivations

2. Reconstruction of $D^0 \rightarrow \pi^0 \pi^0$ at FCC-ee

- 2.1 Reconstruction strategy
- 2.2 Reconstruction results for signal samples

3. Assessment of the sensitivity of A_{CP}

- 3.1 Reconstruction of $D^{*+} \rightarrow D^0 (\rightarrow \pi^0 \pi^0) \pi^+$ for inclusive $Z \rightarrow c\bar{c}$ samples
- 3.2 First conservative sensitivity computation of A_{CP}

Reconstruction of $D^{*+} o D^0 (o \pi^0 \pi^0) \pi^+$ for inclusive Z o c ar c samples

How to see *CP*-Violation in D^0 decays:

- Goal: Consideration of CP violation
- **Problem**: Need to know if reconstructed D⁰ was particle or anti-particle
- Solution: Focusing on the D^0 produced from $D^{*+}
 ightarrow D^0 \pi^+$
 - In an inclusive $e^+e^-
 ightarrow car{c}$ sample: pprox 24%
- Higher level of combinatorics for the inclusive $Z \rightarrow c\bar{c}$ sample
- Use selection rules per event to reduce combinatorical background for $D^{\ast +}$ reconstruction
 - Select the D^0 candidate with highest momentum
 - Select the $\pi^{+/-}$ candidate with the closest angle to this D^0

- Using 100 Mil. $Z \rightarrow c\bar{c}$ events
- Our target variable is the mass difference $\Delta m = m(D^{*+}) m(D^0)$ of the reconstructed decay $D^{*+} \rightarrow D^0 \pi^+$
- Lead to improved signal/background ratio
- Still a lot of background after using the selection rules

MVA approach

Train a DNN to do a signal-background-classification for the D^0 candidates

Utilized features:

- Energy of γ_1
- Energy of γ_2
- Angle between γ_1, γ_2
- Energy of π_1
- Energy of γ_3
- Energy of γ_4
- Angle between γ_3, γ_4
- Energy of π_2
- Angle between π_1, π_2
- Momentum of D⁰

- Use only kinematic variables of the decay chain $D^0 \to \pi^0 \pi^0 \to 4 \gamma$
- Photons and pions are ordered by their energy
- There is space for future improvements

$D^{*+} \rightarrow D^0 (\rightarrow \pi^0 \pi^0) \pi^+$ reconstruction result

Our goal is to target A_{CP} for the decay chain $D^{*+/-} \rightarrow D^0 (\rightarrow \pi^0 \pi^0 (\rightarrow 4\gamma)) \pi^{+/-}$

A_{CP} precision prediction

$$A_{C\!P} = rac{N_{D^+,\;(ext{data-bg})} - N_{D^-,\;(ext{data-bg})}}{N_{D^+,\;(ext{data-bg})} + N_{D^-,\;(ext{data-bg})}}$$

 $D^0 \rightarrow \pi^0 \pi^0$ *CP*-Violating decay-rate asymmetry (Belle) $A_{CP}(D^0 \rightarrow \pi^0 \pi^0) = 0.000 \pm 0.006 = 0.0 \pm 0.6\%$

• Already with 1700 Mil. $Z \rightarrow c\bar{c}$ events one achieves a higher sensitivity than the one of Belle (≈ 2 days of operation)

Upscaled to $7.24 \cdot 10^{11} \ Z \rightarrow c\bar{c}$ events expected at FCC-ee

 $\sigma_{A_{C\!P}}(D^0 o \pi^0 \pi^0) = 0.028\%$

• This analysis (which is still to be optimised) improves by a factor 3-4 the anticipated precision at the end of Belle II

Conclusion

At FCC-ee, we are sensitive to direct *CP* violation in $D^0 \to \pi^0 \pi^0$ with $\frac{3\%}{\sqrt{E}}$ EMC resolution

Next steps:

• Consider the effect of the calorimeter resolution on the assessment of A_{CP}

Suggested improvements for a less conservative analysis:

- Merged π^0 are disregarded reconstruction can lead to statistical improvement
- Background rejection can be improved by the use of global hemisphere variables
 - Signal should contain 0 leptons, 0 displaced tracks and 0 missing energy
 - Use of c-tagger in opposite hemisphere

Thanks for listening!

