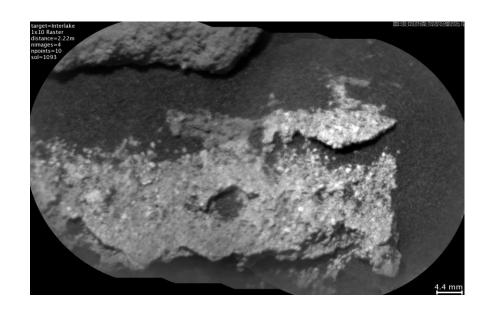




# RMI Analyst



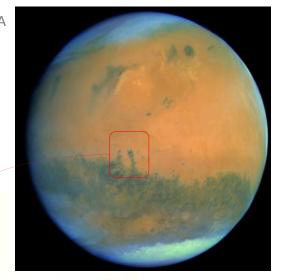




F. Arrignon, W. Rapin, O. Gasnault

IA@IRAP, 15/10/2025

#### Gale crater, **Mars** Curiosity rover

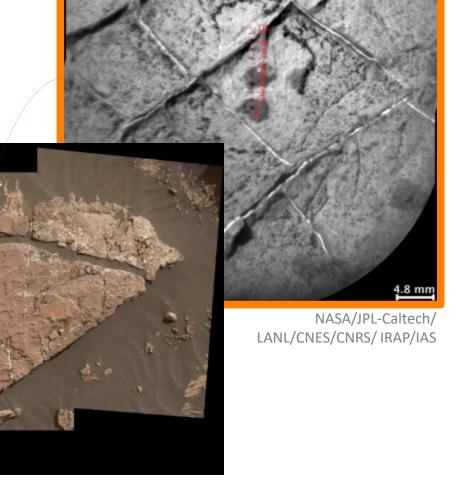


Chem Cam →

and its Remote Micro-Imager (RMI) camera







NASA/JPL-Caltech/MSSS



# RMI Analyst



## main goal:

Create a tool able to propose similar images encountered in the past secondary:

Propose a geological unsupervised classification of rocks encountered by Curiosity

#### methods:

unsupervised approaches test the whole computer vision methods portfolio mix of « classic » and Deep Learning methods

Project launched early 2025

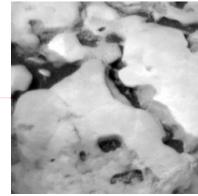


## Data available





From a regular mosaic to a standardized input

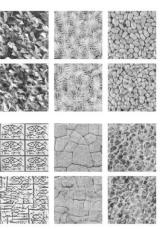


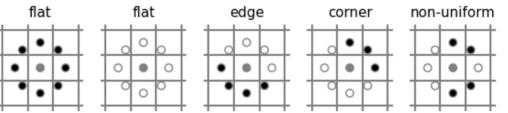
- RMI Mosaics, scaled to the same physical resolution, sliced into 640x640 and centered-normalized on themselves.
- 3002 mosaics pre-laser & 3002 post-laser mosaics
- No redundancy between data, each mosaic being one site (before or after laser shot)
- Geological expertise on part of the dataset:
  - Sulfur blocks (11 images)
  - Iron meteorites (13 images)
  - Wave-ripples rocks (26 images)
  - Broad classification: bedrock, mixed-bedrock, mixed-soil, soil (1825 images)



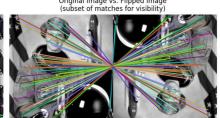
## Computer Vision: methods 1/2

- Portilla-Simoncelli Statistics = Steerable Pyramid Decomposition and Reconstruction
  - applying several filters at different scales to different parts of the grayscale spectrum
  - projecting the resulting statistical constraints into a white gaussian noise
- **Local Binary Pattern** = looks for differences in the neighborhood and compute the resulting histogram
- **SSIM** and derivatives = looks for statistics (subset of PSS) in slices of the image
- **SIFT**, **ORB** and derivatives = search for « key features » in the image
  - search for common forms in the dataset
  - find similarities in the distribution and nature of key features
- Histogram of Oriented Gradients (HOG)











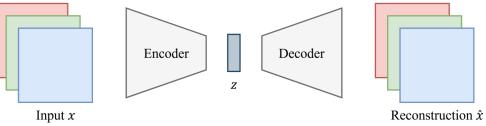
Histogram of Oriented Gradients



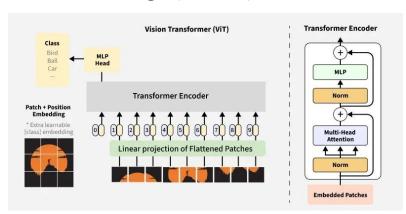
## Deep Learning: methods 2/2



- CNN = explore Region of Interest in a CNN already fitted (transfer learning) without classifier part
  - fitted with terrestrial data in RGB
  - provides a synthetic feature map in 2D
- AutoEncoders = reconstruction of input image with an encoded representation (1-D latent vector)
  - convolutional and/or variational
  - specific to RMI dataset
  - similarity computation using the latent vector
  - search for links between gradients and latent vector?



VisionTransformer = same encoding process but with slices of image (tokens) and attention mechanism



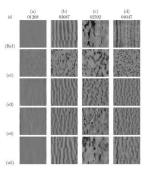


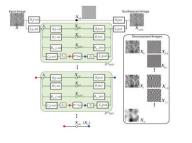
# **Exploration philosophy**



Hamano et al., 2023, Exploring the role of texture in deep-CNN: Insights from PS statistics, Neural

Networks, 168, 300-312





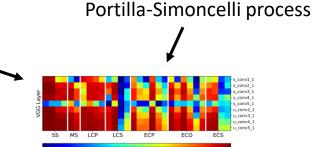
Number of features for each group of PSS and minPS. The second and third columns, espectively shows the original number of features and the number after dimensionality reduction.

Group Original PSS minPS
Spectral statistics (SS) 18 4

| Group                          | Original PSS | minPS |
|--------------------------------|--------------|-------|
| Spectral statistics (SS)       | 18           | 4     |
| Marginal statistics (MS)       | 13           | 2     |
| Linear cross position (LCP)    | 125          | 4     |
| Linear cross scale (LCS)       | 96           | 4     |
| Energy cross position (ECP)    | 400          | 6     |
| Energy cross orientation (ECO) | 40           | 6     |
| Energy cross scale (ECS)       | 48           | 4     |
| Total                          | 740          | 30    |

Deep CNN (Vgg19) trained to mimic input image

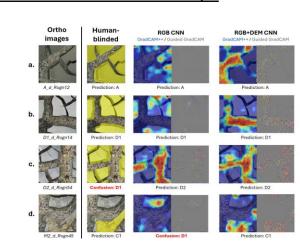
### No black box!



Correlation between PSS simplified and CNN feature maps

**Arrignon et al., 2025,** Artificial Intelligence-Enhanced Detection of Biogenicity Using... Experimental MISS, Astrobiology, 6, 414-436

Class Activation Maps to explore feature maps and gradients in CNN





## **Assessment & metrics**



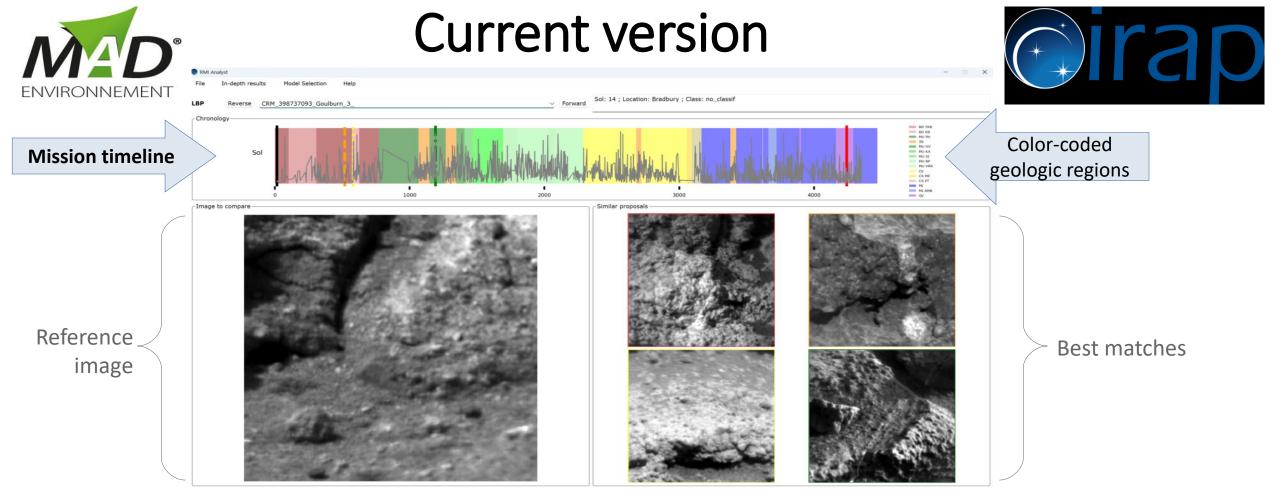
- visual assessment when models allow it
- assessment by mean ranking of similarity obtained with the feature vectors :
  - Absolute (all images of each type are classified):
    - Iron meteorites
    - Sulfur blocks
    - Wave ripples
    - etc...
  - Relative (only a subset is documented):
    - Rough classification: rock / rock+sand / sand
- use of features vectors in unsupervised clustering:
  - measurement of accuracy after projecting real labels
  - explore the mistakes of each method
- results differ if clustering maths are different from similarity computation maths = different insights



# Software specs



- able to explore all images with regular IDs, before and after laser
- propose a customized experience to navigate in the data
- can integrate many computer vision & DL models
- provide global stats and graphs for the different methods
- expose the models results as much as possible, especially for DL models



#### Methods implemented with full similarity computation:

- Local Binary Pattern (LBP)
- Structural Textural Similarity index (STSIM)
- Histogram of Oriented Gradients
- Autoencoders (simple convolutional architecture)
- LBP on Autoencoders output

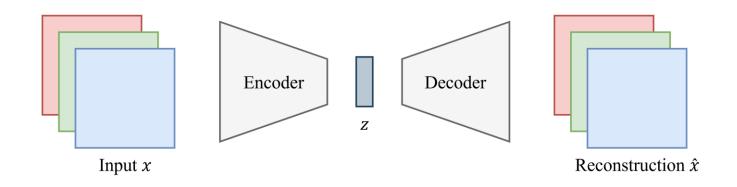
#### Methods yet to implement:

- ORB
- · CNN
- Variational Autoencoders
- Vision Transformers



## Autoencoders





First attempts with very simple convolutional architecture:

- 10 or 14 convolutional layers with 5- or 7-dimensions reductions
- 100, 250- or 1000-variables latent spaces
- sigmoid as activation function
- trained from scratch
- assessment at 130 epochs

Best trade-off « visual performance / computation time » with 14 layers and 250 latents

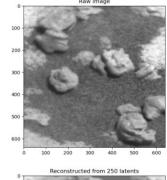


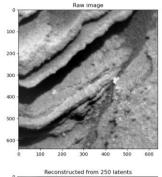
# Results autoencoders

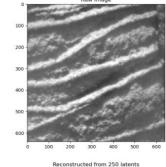


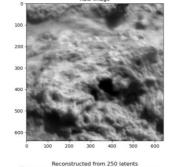


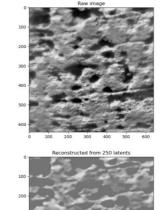


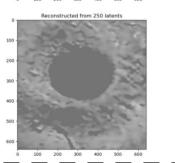


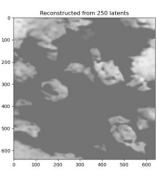


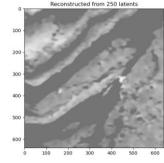


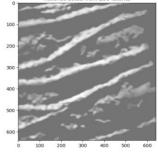


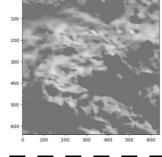


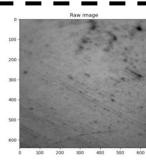


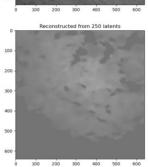


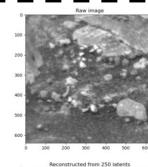


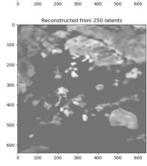


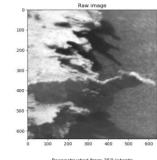


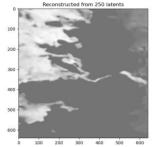


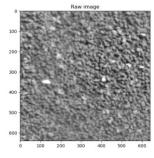


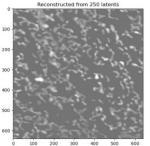


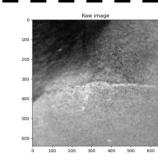


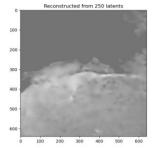


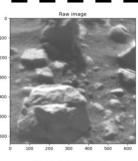


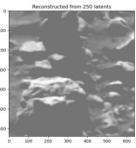






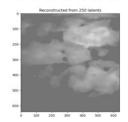


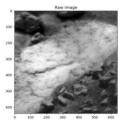


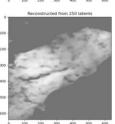


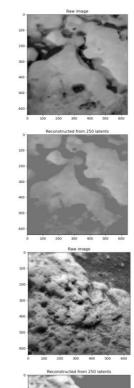


# 0 Raw image 110 200 300 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 -



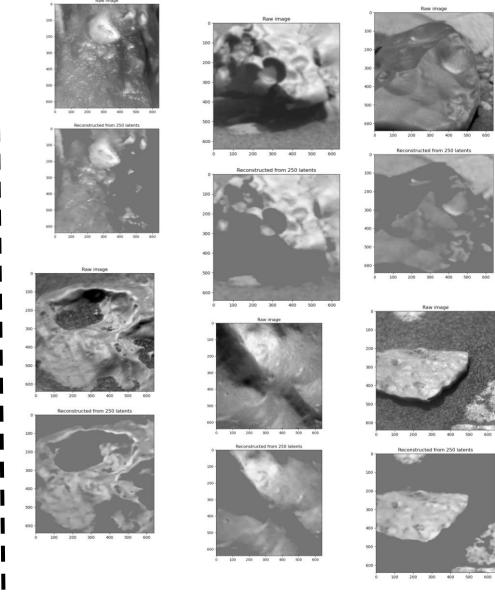


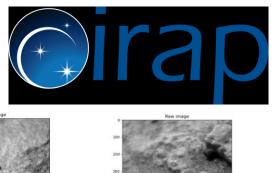


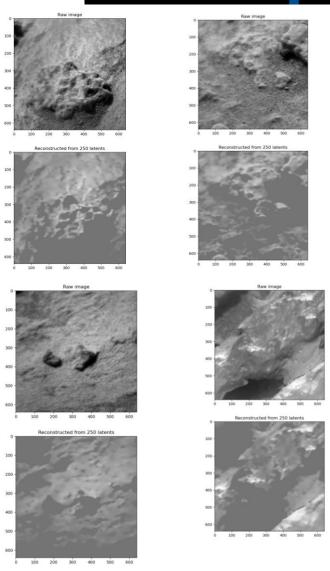


sulfur blocks

# Results autoencoders







Wave ripples

Iron meteorites



# Mean Ranking Metric results



| Sulfur    | mean  | variance |
|-----------|-------|----------|
| STSIM-M   | 0,518 | 0,005    |
| LBP       | 0,497 | 0,029    |
| HOG       | 0,587 | 0,002    |
| AE        | 0,745 | 0,003    |
| LBP_on_AE | 0,817 | 0,018    |

| ean <i>variance</i> |
|---------------------|
|                     |
| 0,026               |
| 0,013               |
| 78 0,009            |
| 0,001               |
| 0,014               |
|                     |

| WavesRipple | mean  | variance |
|-------------|-------|----------|
| STSIM-M     | 0,392 | 0,002    |
| LBP         | 0,437 | 0,003    |
| HOG         | 0,339 | 0,001    |
| AE          | 0,538 | 0,001    |
| LBP_on_AE   | 0,592 | 0,002    |

N = 11 N = 13 N=26

\_\_\_\_\_\_

| Bedrock   | mean  | variance |
|-----------|-------|----------|
| STSIM-M   | 0,475 | 0,001    |
| LBP       | 0,467 | 0,004    |
| HOG       | 0,407 | 0,001    |
| AE        | 0,438 | 0,001    |
| LBP_on_AE | 0,549 | 0,001    |

| Mixed_bedrock | mean  | variance |
|---------------|-------|----------|
| STSIM-M       | 0,430 | 0,001    |
| LBP           | 0,423 | 0,006    |
| HOG           | 0,641 | 0,001    |
| AE            | 0,586 | 0,001    |
| LBP_on_AE     | 0,442 | 0,001    |

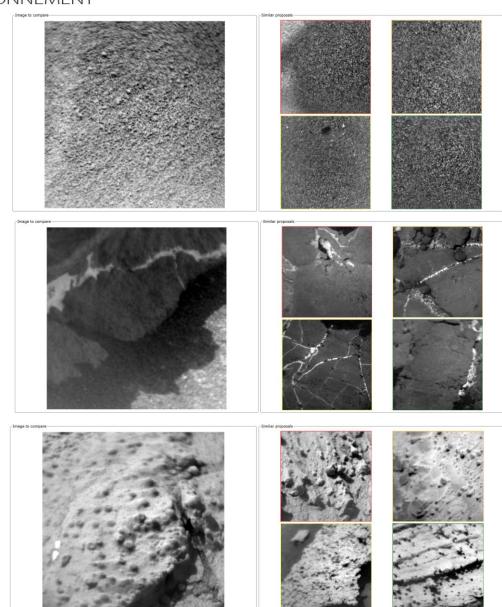
| Mixed_soil | mean  | variance |
|------------|-------|----------|
| STSIM-M    | 0,437 | 0,005    |
| LBP        | 0,422 | 0,021    |
| HOG        | 0,378 | 0,001    |
| AE         | 0,682 | 0,001    |
| LBP_on_AE  | 0,563 | 0,006    |

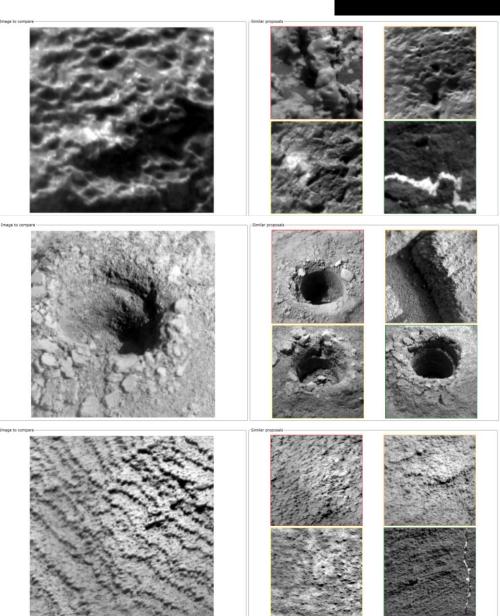
| Soil      | mean  | variance |
|-----------|-------|----------|
| STSIM-M   | 0,647 | 0,007    |
| LBP       | 0,371 | 0,060    |
| HOG       | 0,406 | 0,069    |
| AE        | 0,419 | 0,040    |
| LBP_on_AE | 0,451 | 0,004    |



# Results LBP, good matches...



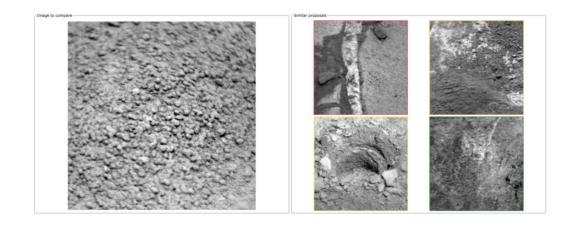


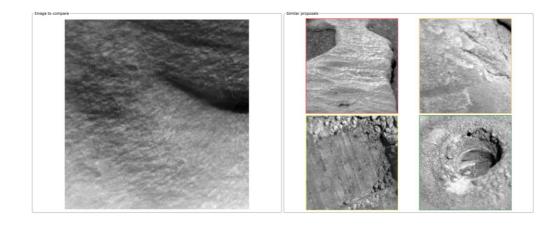


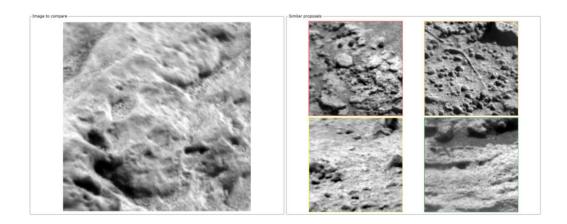


# Results LBP, bad cases...









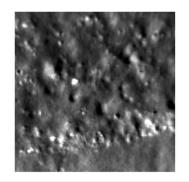


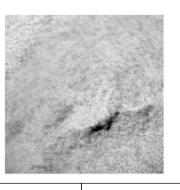


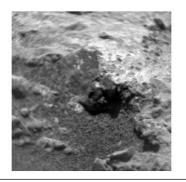
# Results summary



- Not great overall statistics until now, but some trends are emerging.
- Local Binary Pattern is consistent both visually & metrically.
- Auto-Encoders provide decent reconstructs, but are not the best at finding similarities.
- Classifications can be too fuzzy depending on what the models take into account.







bedrock



## Further developments 2026



#### Two parallel workflows



#### Models improvement

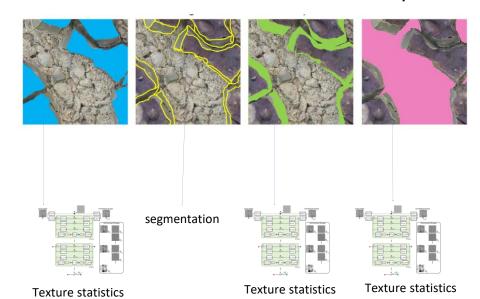
- Autoencoders architectures
- Vision Transformers (DINO, Mars ViT-mae)
- LBP & HOG adjustments
- Unsupervised clustering of feature vectors
- Similarity computation





#### mixed AI approach

- using expertise to build decision rules & define global patterns
- sequential model with AutoEncoders then HOGs / LBPs







# Thank you for your attention!