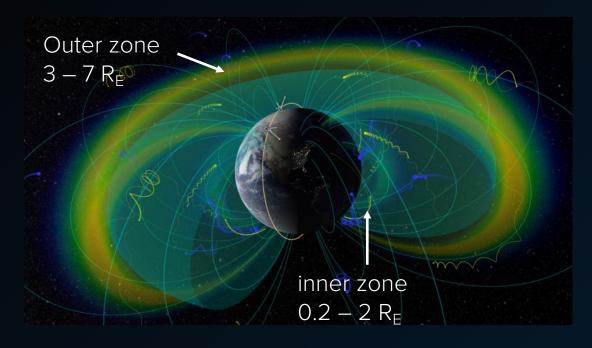
SPARTAI: Solar PArticles Radiation Tool by Al

An Al-based forecasting pipeline for energetic electrons in Earth's radiation belts

Rungployphan Om Kieokaew, Ryad Guezzi, François Ginisty

Research conducted at IRAP, UT, as part of the Augura Space project supported by Inria



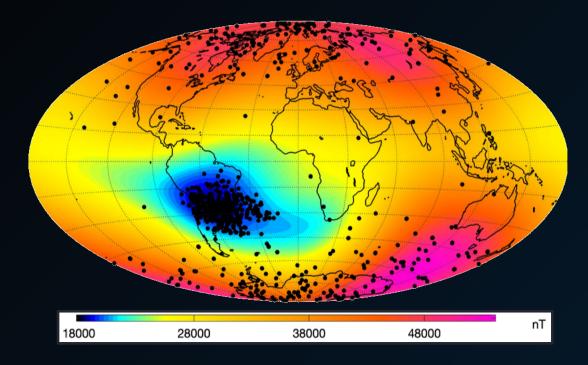
Van Allen Radiation Zone

Region of space filled with energetic charged particles (e⁻, p⁺) that are captured by Earth's magnetic field.

Its properties vary according to the solar activity.

Challenge: How the charged particles are accelerated to very high energies of several million e-volt (MeV)?

Radiation hazard for manmade space systems:


- Long-term electron dose effects
- Surface and deep-dielectric charging

As of Oct 2025 (https://orbit.ing-now.com/)
~14000 space objects in orbit including 6961
in LEO, 521 in GEO, and 191 in MEO.

Satellite operational anomalies

Black dots: spacecraft anomalies registered onboard SWARM in 2013 – 2019. Colour: magnetic field strength

South Atlantic Anomaly: weakened magnetic field region pushing radiation belt particles towards the Earth.

Software error doomed Japanese Hitomi spacecraft

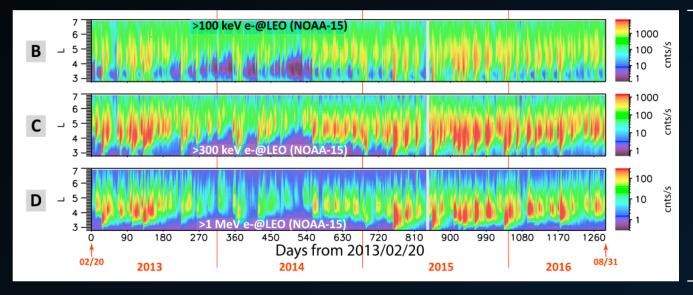
Space agency declares the astronomy satellite a loss.

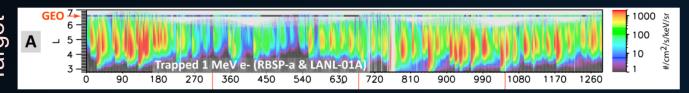
Nature, 2016

News

Orbital Blames Galaxy 15 Failure on Solar Storm Intelsat, 2010

Predicting the variations of radiation belt energetic particle fluxes are thus critical


- NOAA: Linear Prediction Filter Analysis of Relativistic Electron at GEO orbit (Baker et al. 1990)
- ESA space weather demo product: Radiation Belt
 Forecast And Nowcast (RB-FAN) by ONERA.


Predicting energetic radiation belt electrons with Al

Space Weather

RESEARCH ARTICLE 10.1029/2018SW002095 PreMevE: New Predictive Model for Megaelectron-Volt Electrons Inside Earth's Outer Radiation Belt

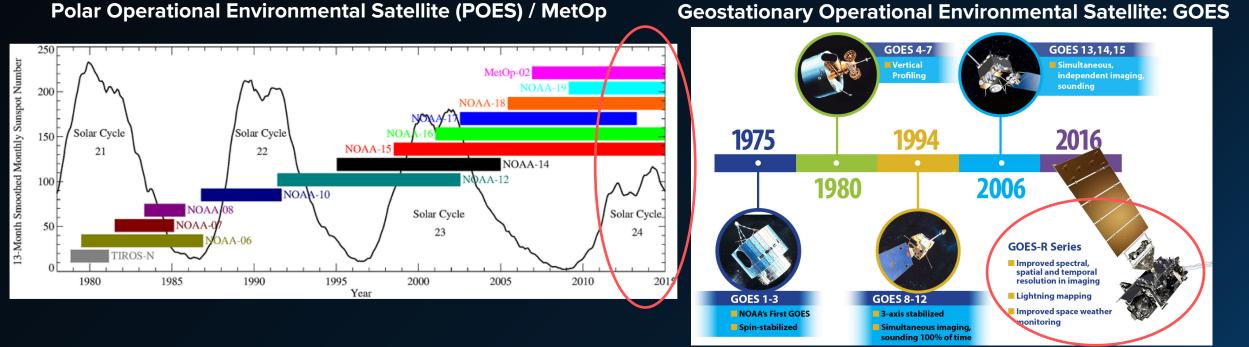
Modeling MeV electron fluxes from precipitating electrons

PreMeVE model series:

Chen+2019: linear prediction filters

- Pires de Lima+2020: linear regression;
 neural networks: FNN, 1D-CNN, LSTM.
- Feng+2024: CNN with Transformer layers

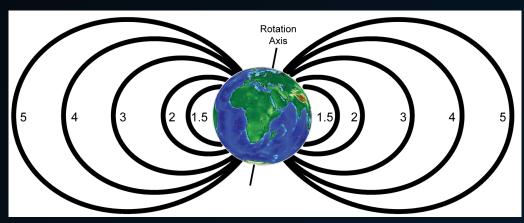
Data


- NOAA-15 Polar Operational Environmental Satellite (POES):
 - e-flux measurements
- + solar wind speed upstream of Earth

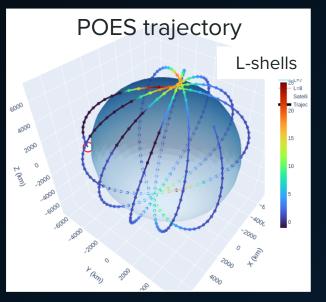
Benchmarked with the **Van Allen probe** (2013-2016) and **LANL's GEO** satellite.

SPARTAI – developing our own pipeline

> Taking advantage of large datasets from **Space Environment Monitor (SEM)** onboard weather satellites


SPARTAI – data preparation

Inputs (inspired by PreMeVE2.0):


- Solar wind speed (V)
 upstream of Earth
- GOES-15 SEM:
 - **E1** (> 0.8 MeV) e⁻ flux

- POES-15 SEM-2:
 - **E2** (> 100 keV) & **E3** (> 300 keV) e⁻ fluxes
 - P6 (> 1 MeV) flux, designed for p⁺ but mostly contaminated by 1-MeV e⁻ flux (Chen+2019).

Coordinates L-value: the set of magnetic field lines which cross the magnetic equator at a number of R_E

L-shells between 2.8 and 6.0, then at 6.6

Data processing

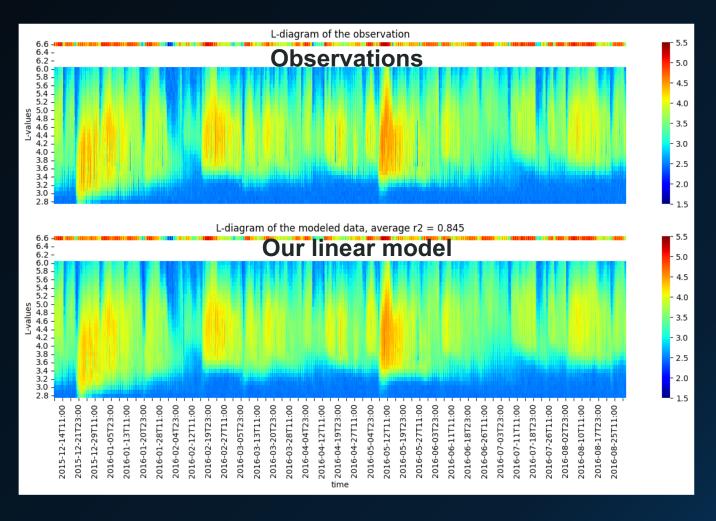
Original SEM 2s data: **F** (time, lat, lon, ..., fluxes)

Round, group by time and L-value using average

Tabular data: temporal flux variation for each L

Benchmarking against PreMeVE2.0

- ➤ Modeling 1-MeV e⁻ flux, **L** by **L**, using linear regression and neural networks
- Train Feb 2013 June 2015 (67%); Validate July –
 Dec 2015 (14%); Test: Jan Aug 2016 (19%).

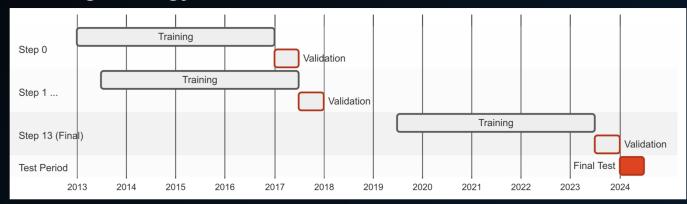

SPARTAI – benchmarking results

Average R² of the test data

Model	PreMeV-E 2.0 2.8 ≤ L ≤ 6.0	SPARTAI 2.8 ≤ L ≤ 6.0
Linear Reg	0.887	0.845
FNN-64-32-elu	0.879	0.841
LSTM-128	0.886	0.844
CNN-64-relu	0.890	0.828

Model	PreMeV-E 2.0 L = 6.6 (GEO)	SPARTAI L = 6.6 (GEO)
Linear Reg	0.587	0.861
FNN-64-32-elu	0.524	0.821
LSTM-128	0.589	0.768
CNN-64-relu	0.363	0.601

Our models are about 5% worse on average, but they are 40% better for GEO.


The 1-MeV e⁻ flux variation during geomagnetic storms (e⁻ penetration to low L) are reproduced, despite some different details.

SPARTAI – development

<u>Data</u> Train + validate: 2013 – 2023 (11 years); test: Jan – June 2024

Training strategy: Walk forward validation

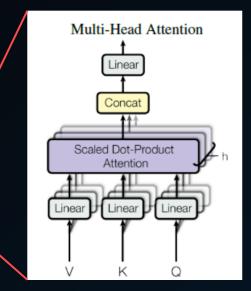
- i. A model is trained from scratch and then validated.
- ii. The training is **resumed** from previous step **with the shifted window**, and then validated with the adjacent data.
- iii. Repeat until arriving at the test data.

More solar & geomagnetic activity indicators:

SW speed (V), density (N), magnetic field (Bz), storm disturbance index (Dst), Kp

More Al models

- Ridge regression
- XGBoost
- Transformer Encoder
- Time series foundation model (decoder only).


A model is saved at every step. The best model is chosen for "test".

The Transformer – model architecture

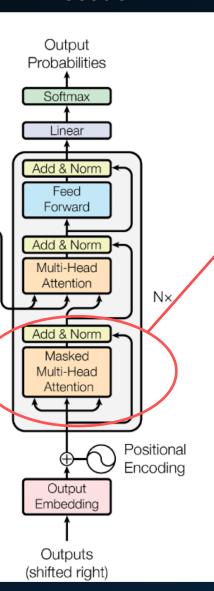
[Vaswani et al. 2017: Attention is All You Need]

Encoder maps an input sequence $(x_1, ..., x_n)$ to $(z_1, ..., z_n)$

Add & Norm Feed Forward $N \times$ Add & Norm Multi-Head Attention Positional Encoding Input Embedding Inputs

Encoder stack

Scaled dot-product attention


$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Query (Q): the element seeking info, e.g., each word

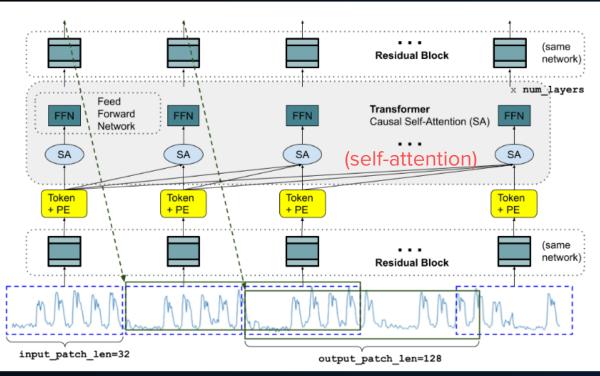
Key (K): signposts to locate important elements

Value (V): values carry the info, determining importance

Decoder

"Generation of the outputs"

This masking ensures that the predictions for position i can depend only on the known outputs at positions < i.


The output
embeddings are offset
by one position

Time series foundation model

A DECODER-ONLY FOUNDATION MODEL FOR TIME-SERIES FORECASTING

Das+2024, ArXiv

Decoder style attention model with **input patching** (similar to a token in language models)

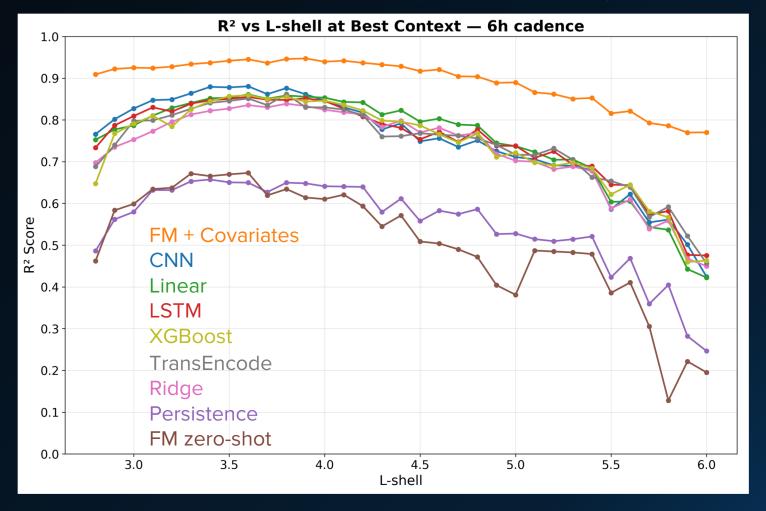
Pretrained using a large time-series corpus, e.g.,

Google Trends (https://trends.google.com), Wiki pageviews, traffic, weather, electricity, synthetic, M4, ..., with different granularities from hourly to monthly.

SPARTAI - our application (TimesFM 2.4)

- Zero-shot (default) forecast
- Linear regression on covariates (our input variables, shifted in time), then we apply the foundation model on the residual

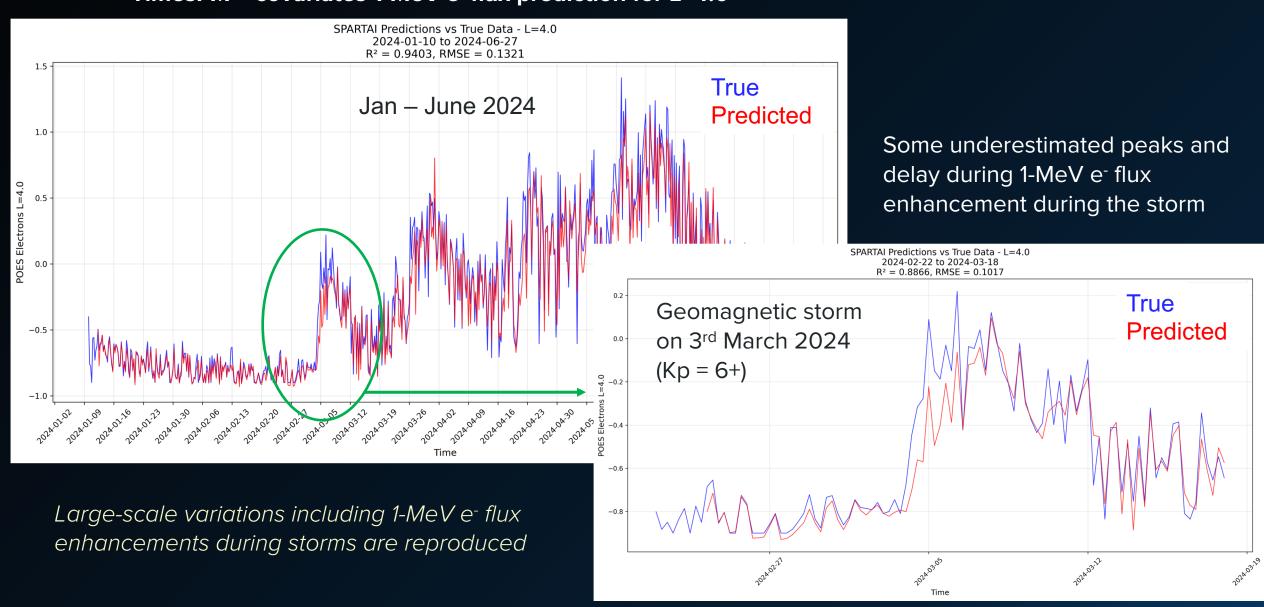
SPARTAI – our development results


Linear, CNN, LSTM are identical to the benchmarking experiment.

Persistence: use last value as prediction.

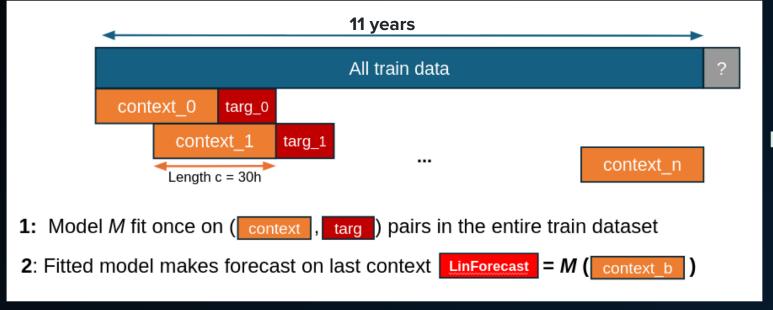
Other models: simplest working architectures with no fine-tuning.

We performed experiments to find best context length (history length used for prediction). No R² improvement for > 24 hours.


R² score for 6h forecast (Jan – June 2024)

The **TimesFM** + covariates outperforms all models for all L-shells, reaching R^2 over 0.9 for L < 4.6.

SPARTAI – inference example


TimesFM + covariates 1-MeV e⁻ flux prediction for L=4.0

Classic ML approaches vs FM application

Similar to PreMeVE, we find that the **linear regression** model is the most successful. => The relationship between dynamics of **trapped 1-MeV e**- and the **precipitation e**- is dominated by **linear components**.

Classic approach

 The training is done on the 11 years of data (with walk forward validation). Model is used with the latest context for a prediction.

Introduction of FM model

- Zero-short prediction yields very poor results
- We handle the linear part first,then compute the residuals

$$R(i) = M(context_i) - targ_i$$
 for i< b

The pretrained model is used to estimate the residuals (nonlinear).

Summary and perspectives

We develop a prototype pipeline for 1-MeV electron flux prediction for the outer radiation belt.

Benchmarking:

- We develop our own equivalent models (Linear, FNN, CNN, LSTM) to PreMeVE 2.0.
- We train, validate, and test with our defined (equivalent) dataset
 - Slightly poorer results to PreMeVE 2.0 (poorer data quality?)
 - Linear regression works best.

<u>Development:</u>

- We add more models (Ridge, XGBoost, Transformer Encoder), as well as apply TimesFM.
- We train and validate with more data (1 solar cycle), and test in Jan June 2024 (solar max)
- ✓ Linear fitting on latest context + nonlinear fitting with TimesFM works best

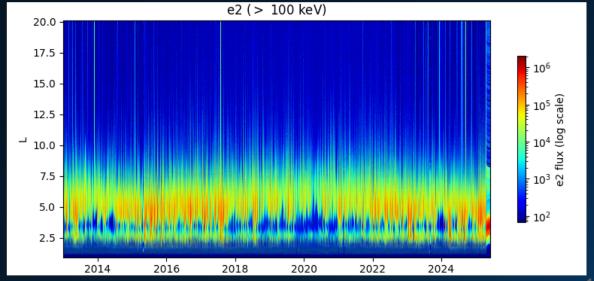
How do we explain this physically?

<u>Perspectives:</u> improve time cadence and forecast horizons, produce derived products.

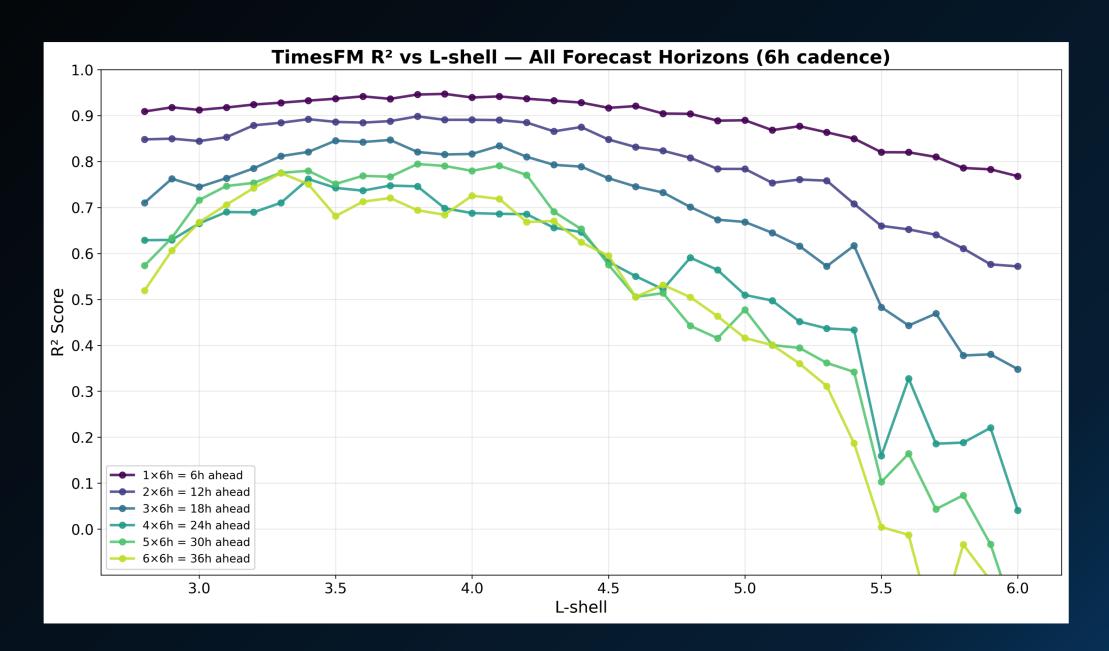
Back-up slides

Data processing

Original POES data (2s): geographical coordinates (lat, lon, alt), L-value, magnetic local time, flux measurements


shape: (118_953_997, 9)								
time	lat	lon	L	MLT	alt	e2	e3	p6
str	f64	 f64	f64	f64	f64	f64	f64	f64
2013-01-01 00:02:39	48.373	80.639	2.07	5.34	819.2	69.44444	null	487.80487
2013-01-01 00:02:43	48.142	80.541	2.05	5.33	819.1	69.44444	null	731.70734
2013-01-01 00:02:45	48.027	80.493	2.05	5.33	819.1	69.44444	null	null
2013-01-01 00:02:53	47.564	80.301	2.01	5.31	818.9	69.44444	null	243.90244
2013-01-01 00:02:55	47.448	80.254	2.01	5.31	818.9	138.88889	133.33333	null
 2025-06-03 07:22:39	 81.07	 105.081	 18.78	 14.12	 811.7	 486.11108	 533.3333	 null
2025-06-03 07:22:41	81.106	104.344	18.87	14.09	811.7	694.4444	533.3333	243.90244
2025-06-03 07:22:43	81.14	103.601	18.96	14.06	811.7	416.66666	400.0	null
2025-06-03 07:22:45	81.173	102.852	19.06	14.03	811.7	763.88885	1066.6666	null
2025-06-03 07:22:47	81.205	102.098	19.15	14.0	811.7	694.4444	1066.6666	null

- > Round from 2s to 1h; round L-value to one decimal place
- \blacktriangleright Limit 1.0 \le L \le 20. Group by time and L using mean

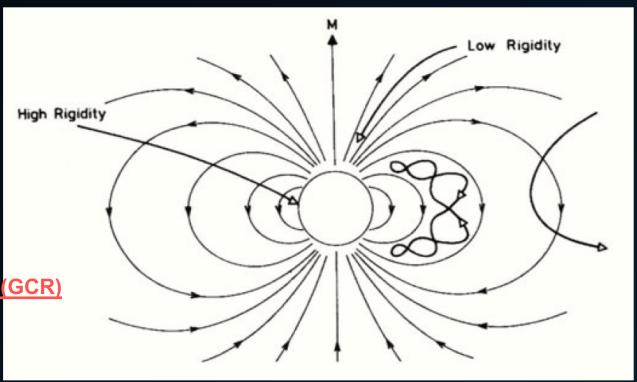

Processed POES data: hourly averaged flux at each L for each energy channel (191 * 3 = 573 columns)

S	shape: (107_063, 574)										
	time datetime[µs]	e2_2.1 f64	e2_2.0 f64	e2_1.9 f64		p6_19.9 f64	p6_20.0 f64	p6_18.8 f64	p6_19.3 f64		
	2013-01-01 00:00:00 2013-01-01 01:00:00 2013-01-01 02:00:00 2013-01-01 03:00:00 2013-01-01 04:00:00	77.16049 1192.63282 3780.864051 154.671713 146.604934	89.285711 515.232953 3671.874833 120.192305 138.888885	92.59259 261.99494 1436.965754 217.803024 123.456789	 	null null null null null	null null null null null	null null null null null	null null null null null		
	 2025-06-03 03:00:00 2025-06-03 04:00:00 2025-06-03 05:00:00 2025-06-03 06:00:00 2025-06-03 07:00:00	 47611.349072 7165.798437 32385.543852 102150.460167 17253.924391	 48069.055736 3281.249985 28527.92126 156109.7208 9978.718239	 50791.01229 86.805553 10938.977039 191520.826 7723.765115	 	 null null null 325.20325 null	 null null null null	 null 487.80489 null 243.90244 null	 null 243.90244 null 243.90244 null		

Visualization of L-time diagram of e2 flux

Performance of model forecasting with TimesFM + covariates

Rigidity measures momentum of the particle. It refers to the fact that a higher momentum particle will have a higher resistance to deflection by a magnetic field.


High-rigidity particles

- able to traverse the magnetosphere
- no long-lived trapped
 particle components with
 high rigidities exists

Galactic cosmic rays (GCR)

Depending on their direction of incidence, they either

- penetrate deep into the magnetosphere and interact with the upper atmosphere
- deflected back into space.

Low-rigidity particles

Only at the polar cusps can these particles penetrate into the magnetosphere

Particles hitting the low-latitude magnetosphere from the outside perform half a gyro-orbit inside the magnetosphere and then are reflected back into space.

Long-lived component: particles are trapped inside the radiation belts. Their motion is regulated by the adiabatic invariants.