

Differentiable ray-tracer used for coded hyperspectral systems co-design

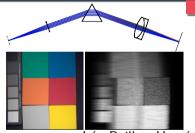
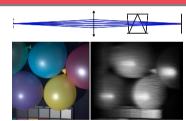


PHOTO LAAS-CNRS, SISU IRAP



Léo Paillet, Hervé Carfantan, Simon Lacroix and Antoine Monmayrant

1 Context

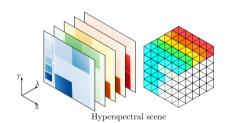
2 CASSI Differentiable Simulator

3 Simulations to evaluate CASSI designs: Unrolling learning

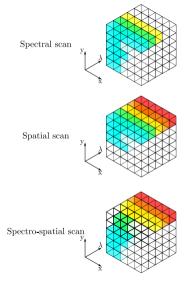
Context

Classical hyperspectral imaging

Classical hyperspectral imaging



- → High data volume
- \longrightarrow High acquisition time / noise
- Redundant information



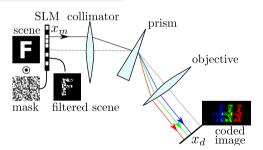
Coded hyperspectral imaging

Principles

- Inspired by compressed sensing
- Non-traditional method : CASSI
- Based on a coded aperture named «mask» (blocks certain rays)

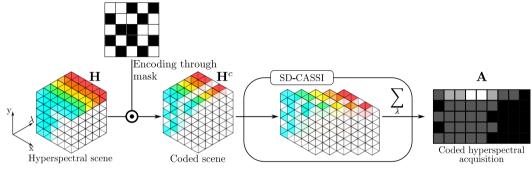
Features

- No spatial/spectral resolution sacrifice
- Spatio-spectral mix
- Less acquisitions, noise



SD-CASSI : Single Disperser Coded Aperture Snapshot Spectral Imager

Hyperspectral coded (HSC) imaging with SD-CASSI



Simple model SD-CASSI: Single Disperser Coded Aperture Snapshot Spectral Imager

- Simple model : $\mathbf{A}(x,y) = \sum_{\lambda} \mathbf{H}^c(x-s(\lambda),y,\lambda)$ with often $s(\lambda) = k\lambda$ and no impulse response
- Acquisitions depend on optics and mask parameters

[Wagadarikar et al., 2008, 10.1364/AO.47.000B44]

CASSI Differentiable Simulator

Our simulator : DiffCassiSim

- Accurate modelling of any optics based on dO (github DiffOptics)
 - Differentiable (PyTorch), fast, RAM-light ray tracing (~several millions), made for lenses
 - Images rendering
- Modifications
 - Added prisms, mirrors, thin lenses, can import .zmx models

[Wang et al., 2022, 10.1109/TCI.2022.3212837]

Our simulator : DiffCassiSim

- Accurate modelling of any optics based on dO (github DiffOptics)
 - Differentiable (PyTorch), fast, RAM-light ray tracing (~several millions), made for lenses
 - Images rendering
- Modifications
 - Added prisms, mirrors, thin lenses, can import .zmx models
 - Axial symmetry break thanks to rotations and translations between elements

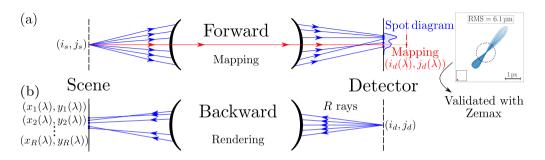
[Wang et al., 2022, 10.1109/TCI.2022.3212837]

Our simulator : DiffCassiSim

- Accurate modelling of any optics based on dO (github DiffOptics)
 - Differentiable (PyTorch), fast, RAM-light ray tracing (~several millions), made for lenses
 - Images rendering
- Modifications
 - Added prisms, mirrors, thin lenses, can import .zmx models
 - Axial symmetry break thanks to rotations and translations between elements
- CASSI systems co-design
- Usable for other systems than CASSI

[Wang et al., 2022, 10.1109/TCI.2022.3212837]

Forward and backward modes



- Mapping : forward : from scene to detector
 - Describes image formation model
- Rendering : backward : from detector to scene (classical method)

Image formation model

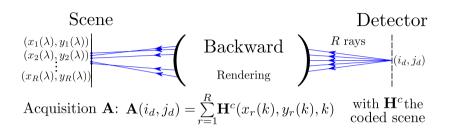
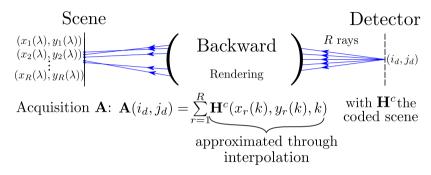
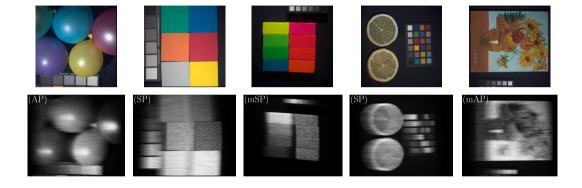


Image formation model



⇒ Accounts for any data arrangement

Examples of simulated acquisitions

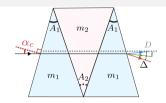


Dataset : CAVE/KAIST

Simulations to evaluate CASSI designs: Unrolling learning

What is a good CASSI system?

Use of AMICI prisms to reduce distortions



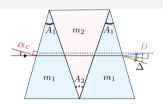
What is a good CASSI system?

- Use of AMICI prisms to reduce distortions
 - Is it necessary and optimal?



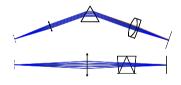
What is a good CASSI system?

- Use of AMICI prisms to reduce distortions
 - Is it necessary and optimal?



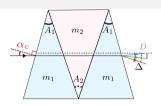
The question : Do distortions matter?

- Compare different CASSI systems
 - Different distortions
 - Different alignments
 - Similar dispersions



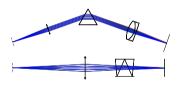
What is a good CASSI system?

- Use of AMICI prisms to reduce distortions
 - Is it necessary and optimal?

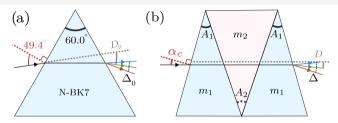


The question : Do distortions matter?

- Compare different CASSI systems
 - Different distortions
 - Different alignments
 - Similar dispersions
- Task : reconstruction
- SoTA Unrolling Algorithm accounting for the model

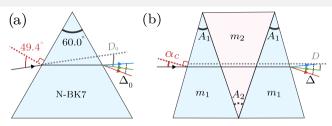


Two comparable prisms



■ Single prism : smile distortions | Amici prism : negligible distortions

Two comparable prisms



- Single prism : smile distortions | Amici prism : negligible distortions
- Optimization of Amici prism to be comparable to single prism
 - Same dispersion ($\Delta \simeq \Delta_0$), optical properties
- Small distortions (~30 times lower), no deviation, compact

[Wagadarikar et al., 2008, 10.1364/AO.47.000B44; Wagadarikar et al., 2009, 10.1364/OE.17.006368]

 $[\mathsf{Wang}\ \mathsf{et}\ \mathsf{al.},\ 2015,\ 10.1109/\mathsf{CVPR}.2015.7299128]$

Goal

Optimization of materials and apex angles

Goal

Optimization of materials and apex angles

Process: Trace rays from scene to detector to compute losses

- Differentiable materials optimization : Continuous (n_d, V_d) for Cauchy's law
 - Validity loss by comparing to catalog (SCHOTT, CDGM, ...) n_d 's and V_d 's

Goal

Optimization of materials and apex angles

Process: Trace rays from scene to detector to compute losses

- \blacksquare Differentiable materials optimization : Continuous (n_d,V_d) for Cauchy's law
 - \blacksquare Validity loss by comparing to catalog (SCHOTT, CDGM, ...) n_d 's and V_d 's
- From grid of points for distortions
- From center of FOV for dispersions and deviation
 - Comparison of dispersion to reference single prism

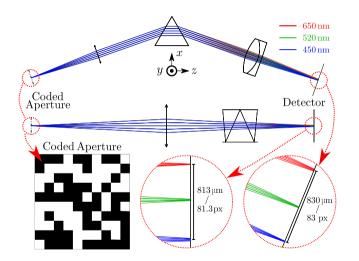
Goal

Optimization of materials and apex angles

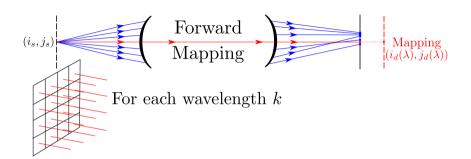
Process: Trace rays from scene to detector to compute losses

- $\hfill \blacksquare$ Differentiable materials optimization : Continuous (n_d,V_d) for Cauchy's law
 - \blacksquare Validity loss by comparing to catalog (SCHOTT, CDGM, ...) n_d 's and V_d 's
- From grid of points for distortions
- From center of FOV for dispersions and deviation
 - Comparison of dispersion to reference single prism
- Second round : fixed, existing materials
 - Focus only on angles optimization

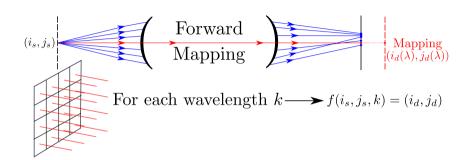
Modelled systems with DiffCassiSim



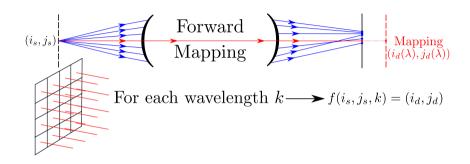
Mapping function to account for optical model



Mapping function to account for optical model

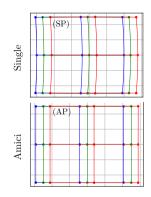


Mapping function to account for optical model

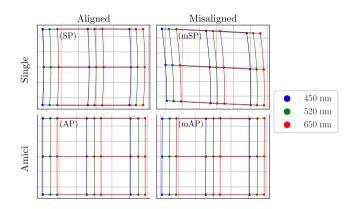


- Exploit the optical model during reconstruction
- lacktriangle Represents adjoint operator in the algorithm \implies Ensure co-design accounting for the image formation model

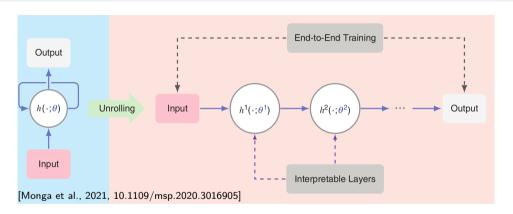
Distortions



Distortions

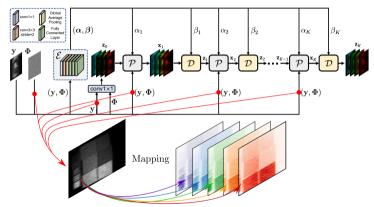


Unrolling algorithms



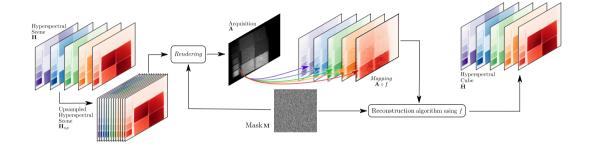
- Learns iterative algorithm parameters
- More interpretable

Unrolling hyperspectral reconstruction using optical model



Algorithm: DAUHST^[Cai et al., 2022] (DGSMP, MST, PADUT, RDLUF)

Hyperspectral reconstruction: Complete workflow



■ Same mask during all training : opening ratio (ROM) of 50%

Results with DGSMP, MST, DAUHST, RDLUF, PADUT

		(AP)	(SP)
RMSE ↓ (×10 ⁻³)	D.GGLID	. ,	. ,
	DGSMP	31.3	32.8
	MST	27.3	26.5
	DAUHST	20.7	19.6
	RDLUF	22.6	24.1
	PADUT	21.4	19.6
PSNR ↑	DGSMP	30.6	30.3
	MST	31.9	32.2
	DAUHST	34.4	34.7
	RDLUF	33.5	32.9
	PADUT	34.1	34.7
SSIM ↑ [0 − 1]	DGSMP	0.892	0.883
	MST	0.910	0.914
	DAUHST	0.942	0.945
	RDLUF	0.930	0.922
	PADUT	0.937	0.943
SAM ↓ [0 − 1]	DGSMP	0.058	0.062
	MST	0.055	0.052
	DAUHST	0.048	0.048
	RDLUF	0.053	0.055
	PADUT	0.048	0.048

- Similar performances across all four configurations
- No best configuration
- Each configuration reaches the best metric at least once

[Huang et al., 2021, 10.1109/CVPR46437.2021.01595; Cai et al., 2022, 10.1109/CVPR52688.2022.01698]

[Cai et al., 2022; Dong et al., 2023, 10.1109/CVPR52729.2023.02132; Li et al., 2023, 10.1109/ICCV51070.2023.01191]

Results with DGSMP, MST, DAUHST, RDLUF, PADUT

		(AP)	(SP)	(mAP)	(mSP)
RMSE ↓ (×10 ⁻³)	DGSMP	31.3	32.8	31.8	34.4
	MST	27.3	26.5	26.5	27.0
	DAUHST	20.7	19.6	19.5	20.3
	RDLUF	22.6	24.1	23.8	23.7
	PADUT	21.4	19.6	21.6	21.8
PSNR ↑	DGSMP	30.6	30.3	30.5	29.9
	MST	31.9	32.2	32.1	32.0
	DAUHST	34.4	34.7	34.9	34.4
	RDLUF	33.5	32.9	33.0	33.0
	PADUT	34.1	34.7	34.0	33.8
SSIM ↑ [0 − 1]	DGSMP	0.892	0.883	0.886	0.879
	MST	0.910	0.914	0.912	0.911
	DAUHST	0.942	0.945	0.945	0.939
	RDLUF	0.930	0.922	0.926	0.926
	PADUT	0.937	0.943	0.936	0.935
SAM ↓ [0 − 1]	DGSMP	0.058	0.062	0.059	0.065
	MST	0.055	0.052	0.055	0.055
	DAUHST	0.048	0.048	0.047	0.050
	RDLUF	0.053	0.055	0.054	0.053
	PADUT	0.048	0.048	0.049	0.048

- Similar performances across all four configurations
- No best configuration
- Each configuration reaches the best metric at least once

[Huang et al., 2021, 10.1109/CVPR46437.2021.01595; Cai et al., 2022, 10.1109/CVPR52688.2022.01698]

[Cai et al., 2022; Dong et al., 2023, 10.1109/CVPR52729.2023.02132; Li et al., 2023, 10.1109/ICCV51070.2023.01191]

Results with DGSMP, MST, DAUHST, RDLUF, PADUT

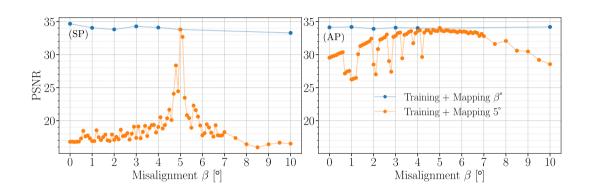
		(AP)	(SP)	(mAP)	(mSP)
RMSE ↓ (×10 ⁻³)	DGSMP	31.3	32.8	31.8	34.4
	MST	27.3	26.5	26.5	27.0
	DAUHST	20.7	19.6	19.5	20.3
	RDLUF	22.6	24.1	23.8	23.7
	PADUT	21.4	19.6	21.6	21.8
PSNR ↑	DGSMP	30.6	30.3	30.5	29.9
	MST	31.9	32.2	32.1	32.0
	DAUHST	34.4	34.7	34.9	34.4
	RDLUF	33.5	32.9	33.0	33.0
	PADUT	34.1	34.7	34.0	33.8
SSIM ↑ [0 − 1]	DGSMP	0.892	0.883	0.886	0.879
	MST	0.910	0.914	0.912	0.911
	DAUHST	0.942	0.945	0.945	0.939
	RDLUF	0.930	0.922	0.926	0.926
	PADUT	0.937	0.943	0.936	0.935
$\mathbf{SAM} \downarrow \\ [0-1]$	DGSMP	0.058	0.062	0.059	0.065
	MST	0.055	0.052	0.055	0.055
	DAUHST	0.048	0.048	0.047	0.050
	RDLUF	0.053	0.055	0.054	0.053
	PADUT	0.048	0.048	0.049	0.048

- Similar performances across all four configurations
- No best configuration
- Each configuration reaches the best metric at least once

[Huang et al., 2021, 10.1109/CVPR46437.2021.01595; Cai et al., 2022, 10.1109/CVPR52688.2022.01698]

[Cai et al., 2022; Dong et al., 2023, 10.1109/CVPR52729.2023.02132; Li et al., 2023, 10.1109/ICCV51070.2023.01191]

When misalignment is unknown



Conclusion

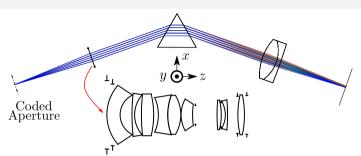
- Differentiable simulations are great to model physics while allowing for optimization and gradient flow
 - Useful for design, processing, co-design
- Best systems might not be what we think
- Distortions and misalignments have a marginal impact on processing as long as we know them and account for them

Prospects

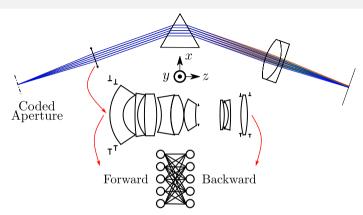
Limits and prospects

- lacksquare No lens design (e.g. blackbox files) \Longrightarrow can't simulate \Longrightarrow proxy model
 - Hence the perfect lenses
- For complete co-design, optimizing from loss after processing is computationally heavy ⇒ co-design from acquisitions

Proxy to unknown lens designs



Proxy to unknown lens designs



- Predict positions, angles, validity of rays
 - Currently < 5µm error (14cm FOV), about 0.04° direction error, 99.8% correct classification, across 3 wavelengths
- Doesn't violate reversibility of light

Reduce computational strain

Optimization from a loss on the acquisitions

Reduce computational strain

- Optimization from a loss on the acquisitions
 - Information gain

Reduce computational strain

- Optimization from a loss on the acquisitions
 - Information gain
 - Mask optimization without post-processing

Reduce computational strain

- Optimization from a loss on the acquisitions
 - Information gain
 - Mask optimization without post-processing
 - Behaves like losses on reconstruction (?)

Reduce computational strain

- Optimization from a loss on the acquisitions
 - Information gain
 - Mask optimization without post-processing
 - Behaves like losses on reconstruction (?)
- Mutual Information metric -> problems in high dimension

Reduce computational strain

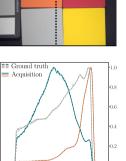
- Optimization from a loss on the acquisitions
 - Information gain
 - Mask optimization without post-processing
 - Behaves like losses on reconstruction (?)
- Mutual Information metric -> problems in high dimension
- Vendi Score -> samples only

Thank you for your attention!

All the code is open source on github : DiffCassiSim

Annexe

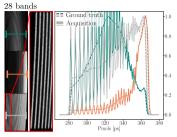
Upsampling necessity

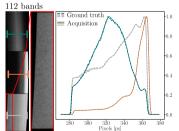


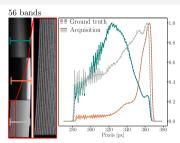
320 340 Pixels [px]

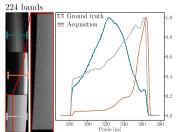
280

360



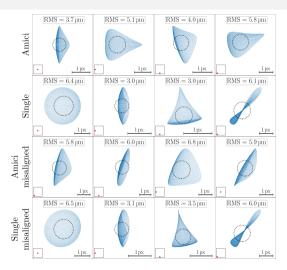






84 bands

Spot diagrams at 650nm



Mutual Information

$$\begin{split} I(X,Y) &= H(X) + H(Y) - H(X,Y) = H(Y) - H(Y|X) \\ H(Y) &= -\sum_{y \in Y} p(y) \log_2 p(y) \end{split}$$

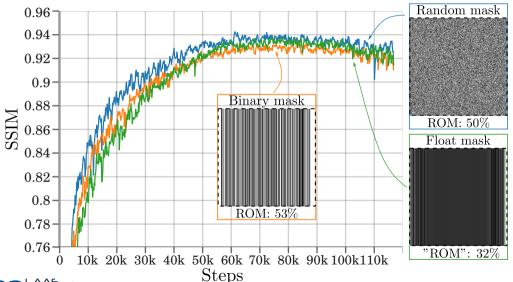
Vendi Score

- \blacksquare Based on 2 hyperparameters : a similarity kernel k and q
 - $\blacksquare \ k$ such that k(x,x)=1 and $k(x,y)\in [0,1]$ measures similarity between x and y

$$VS_q(D;q) = \exp(\frac{1}{1-q}\log(\sum_{i=1}^n (\bar{\lambda_i})^q))$$

with $D = \{x_1, ..., x_n\}$ dataset and $\bar{\lambda}_i$ eigenvalues of $K = (k(x_i, x_i))_{1 \le i, i \le n}$

Example optimization with Vendi Score



References

- [1] A. Wagadarikar, R. John, R. Willett, D. Brady, Appl. Opt. 2008, 47, B44, 10.1364/AO.47.000B44. [2] C. Wang, N. Chen, W. Heidrich, IEEE Transactions on Computational Imaging
- [3] L. Paillet, A. Rouxel, H. Carfantan, S. Lacroix, A. Monmayrant, 2025.

2022, 8, 905, 10.1109/TCI.2022.3212837.

- [4] A. Wagadarikar, N. P. Pitsianis, X. Sun, D. J. Brady, Opt. Express 2009, 17, 6368.
- 10.1364/OE.17.006368.
- [5] L. Wang, Z. Xiong, D. Gao, G. Shi, W. Zeng, F. Wu, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, p. 4942-4950. [6] V. Monga, Y. Li, Y. C. Eldar, IEEE Signal Processing Magazine 2021, 38, 18,
- 10.1109/msp.2020.3016905. AAS J. Lin, H. Wang, X. Yuan, H. Ding, Y. Zhang, R. Timofte, L. V. Gool, in CITS

 Tryyauces in Neural Information Processing Systems (Ed. S. Kovelo, S. Monamegns