Optimisation of embedded neural networks for the energy reconstruction of the LAr cells of ATLAS

IN2P3/IRFU ML workshop 2025

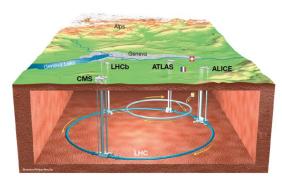
Raphaël Bertrand (CPPM)

Introduction

Experimental Context

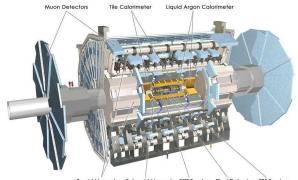
Large Hadron Collider (LHC)

- Proton-proton collider at 13.6 TeV
- Protons accelerated via superconducting magnets
- Collisions at 40 MHz



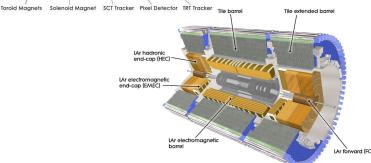
- ATLAS detector

- General-purpose experiment
- Very high data rate
 - On-the-fly event selection required



Liquid Argon (LAr) Calorimeter

- \circ ATLAS sub-detector for energy measurement (e^{-/+}, γ)
 - ➤ ~180,000 LAr calorimeter cells
 - lonization signal from particle interactions



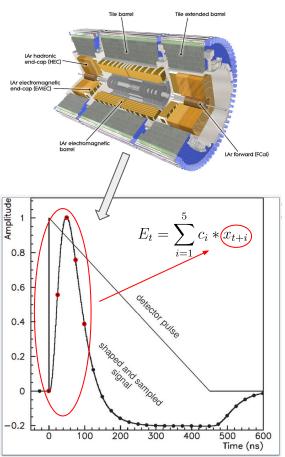
Signal processing and energy reconstruction

- Electronic signal produced

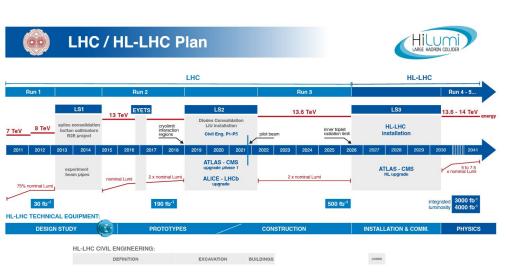
 - Spans ~625 ns (25 proton-proton Bunch Crossings)
 - Shaped, sampled and digitised at 40 MHz

- **Energy reconstruction** with optimal filtering (OF) algorithm
 - Weighted sum of samples around the pulse peak
 - Max finder/Timing cut to select the correct BC

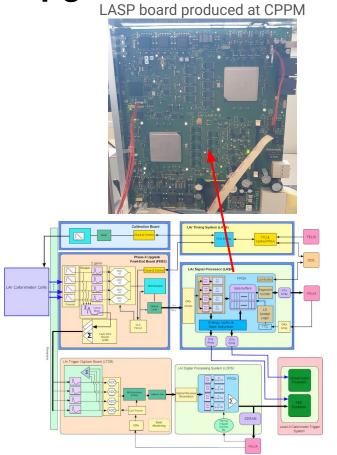
- Reconstruction algorithm requirements :
 - Online computation (per BC)
 - Max latency: ~125 ns (used in trigger system)
 - Fit in FPGAs : O(500) Multiply-Accumulate operations (MAC units)
 - > 5 MAC units required to implement OF
 - 384 channels per FPGA (many algorithm instances needed)



HL-LHC schedule and ATLAS Phase-II Upgrade



- HL-LHC ⇒ Increased luminosity
- ATLAS LAr Phase-II upgrade needed
 - Exchange of full readout electronics
- Off-detector readout board (LASP) will carry two state-of-the-art FPGAs for energy computation
 - Opportunity to embark more complex algorithms

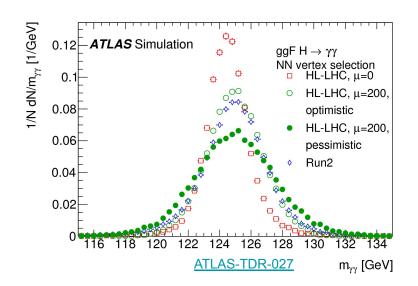


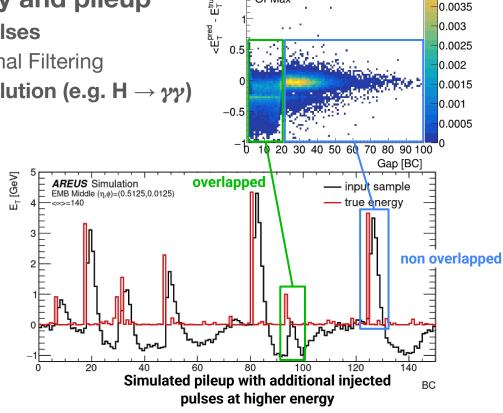
0.0045

0.004

Impact of high luminosity

- HL-LHC ⇒ Increased luminosity and pileup
 - Increased rates of overlapping pulses
 - Degraded performance of Optimal Filtering
 - Significant impact on energy resolution (e.g. $H \rightarrow \gamma \gamma$)





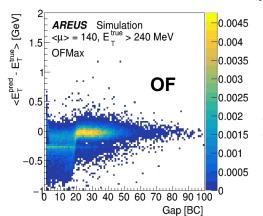
AREUS Simulation $<\mu>= 140$, $E_{-}^{true}> 240$ MeV

OFMax

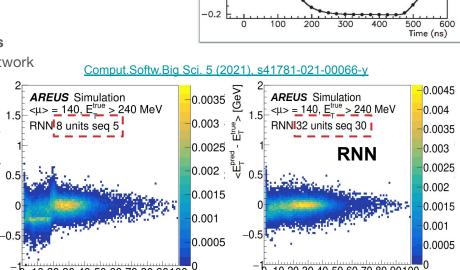
Neural network approaches as energy reconstruction algorithms

Neural networks

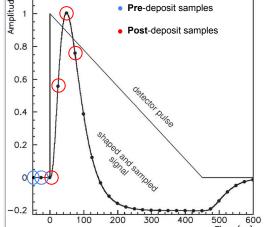
- Exploit samples before the energy deposit to correct overlapping pulses
- Several architectures tested : RNN, Dense+RNN, CNN, Dense
- Samples from before and after the energy deposit are used :
 - After the energy deposit (similar to OF inputs)
 - Capture the pulse amplitude
 - Before the energy deposit (additional inputs)
 - Correct for pulse distortions from previous deposits
- Preliminary studies done with high rate of pulse overlap
 - Neural networks can correct for overlapping pulses
 - The correction is **dependent on the size** of network



Longer sequences and higher number of units are needed



Gap [BC]

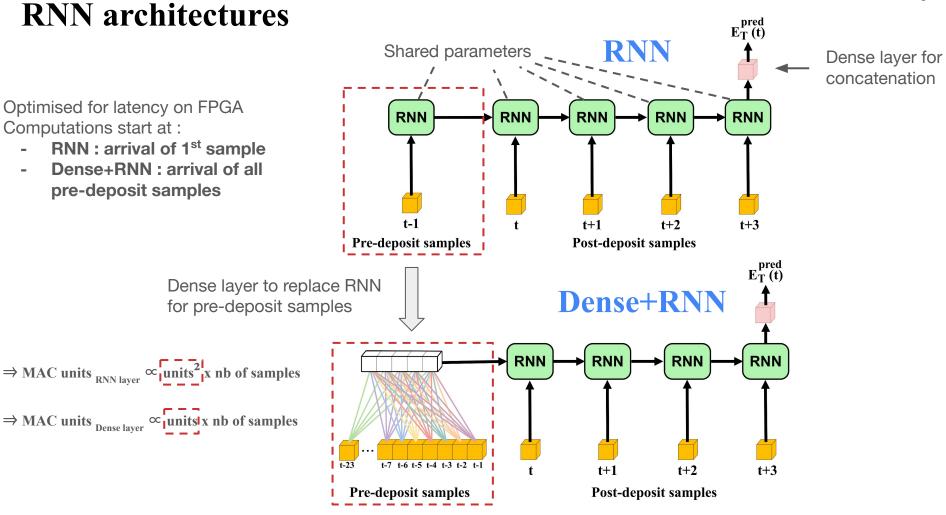


Gap [BC]

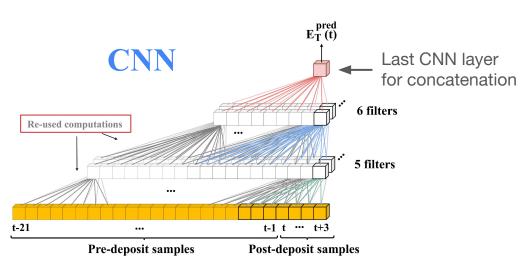
RNN architectures

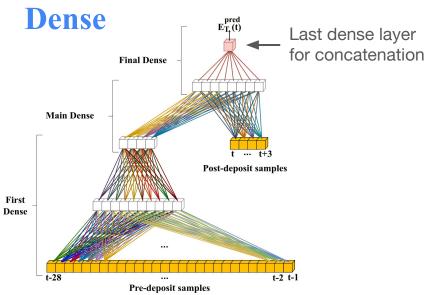
Optimised for latency on FPGA Computations start at:

- RNN: arrival of 1st sample
- Dense+RNN: arrival of all pre-deposit samples



CNN and **Dense** architectures





Computations start at the arrival of the last post-deposit sample

Computations start at the arrival of every pre-deposit samples

Neural networks architectures

unstable training for low number of units

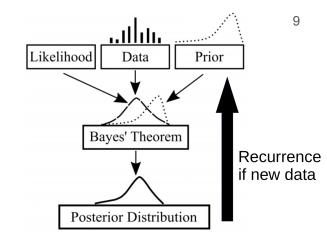
	still b	better than OF and RNN	
	Description	Latency MAC un	its \Tunability
RNN	Multiple cells sharing the same parameters	✓ ×	\[~]
Dense+RNN	Preceding dense layer before four RNN cells]
Dense	Exclusively based on dense layers	✓ ✓	~
CNN	Multiple CNN layers	~	~
	require firmware optimisation		

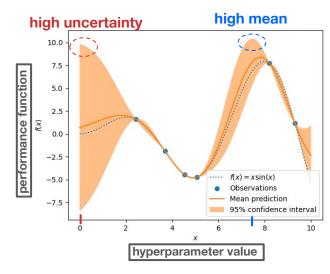
covered using Bayesian optimisation

Neural networks hyperparameter tuning

using bayesian optimization

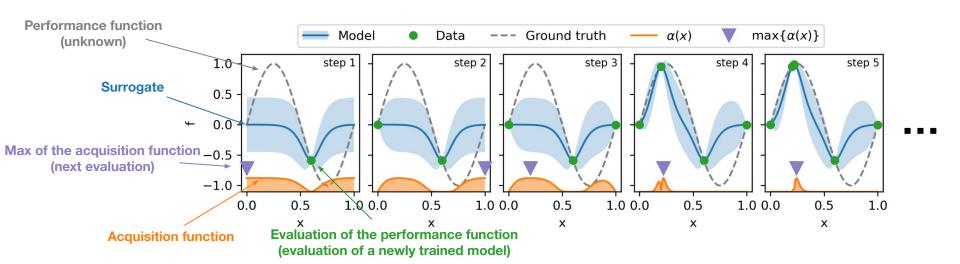
- Goal : Identify the **optimal parameters** that maximize a **performance function** while keeping the number of function **evaluations** to a **minimum**
 - Useful on **expensive** (time-consuming) performance functions
 - Provide the best parameters (in average) for a given number of evaluations of the performance function
- Initialization with several random points followed by iterations to find the best parameters space
 - Using a gaussian kernel ⇒ surrogate of the performance function
 - Using an acquisition function ⇒ decision of the next most interesting point
- Balance between **exploration** and **exploitation**
 - Exploration ⇒ favours high-uncertainty region
 - Exploitation ⇒ favours high-mean region





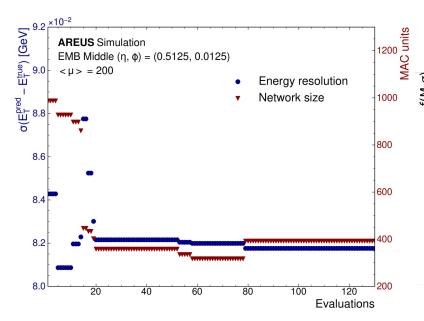
Bayesian optimisation process

- **Initialization** with several random points
- Iterations to find the best parameters space
 - Interpolation between points
 - Based on a gaussian kernel with associated uncertainty
 - Acquisition function to determine where to evaluate next
 - > Balance between **exploration** and **exploitation**
 - Evaluation of the performance function at the chosen point



Bayesian optimisation applied on energy reconstruction

- Hyperparameters to be tuned (e.g. for the Dense architecture) :
 - Number of samples (before the energy deposit)
 - o **Number of units** for the intermediate layers
- Optimisation on both performance and hardware to fit in FPGAs
 - Energy resolution (σ [MeV])
 - Number of MAC units (M)

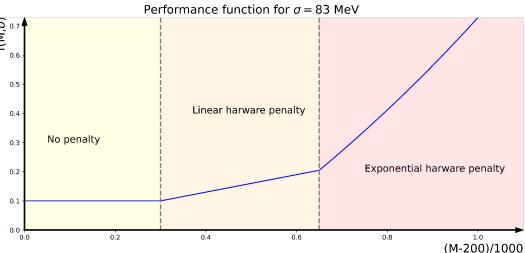


Performance function used for the bayesian optimization:

$$f(M,\sigma) = \frac{\sigma - 70}{130} \text{ for } M \leq 500$$

$$f(M, \sigma) = f(500, \sigma) + a*\frac{M - 500}{1000} \text{ for } M \in]500;850]$$

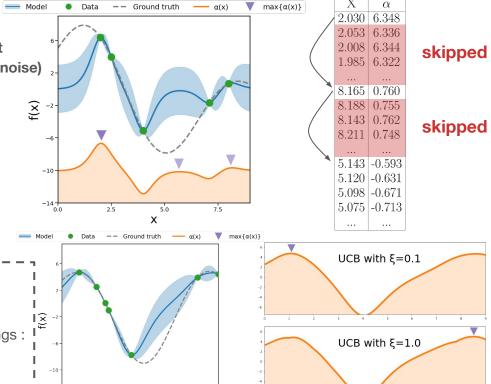
$$f(M, \sigma) = f(850, \sigma) + b * e^{\frac{M - 850}{1000}} - 1 \text{ for } M > 850$$



Bayesian optimisation code

Example with min_distance = 3 and 3 iterations in parallel

- Twice differentiable ⇒ More realistic
- Multiple neural networks trained for a given parameters set
 - Accounts for fluctuations with different initialisations (noise)
 - 1st mode ⇒ Best network with no uncertainty is used
 - 2nd mode ⇒ Average with uncertainty is used



- Parallel iterations using multiprocessing
 - Introduce minimal distance between parameters sets
 - Avoid evaluating similar parameters in parallel
- Three phases of iterations changing acquisition function settings:
 - 1st phase : focus on exploration
 - o 2nd phase: reasonable exploration
 - o 3rd phase: focus on exploitation

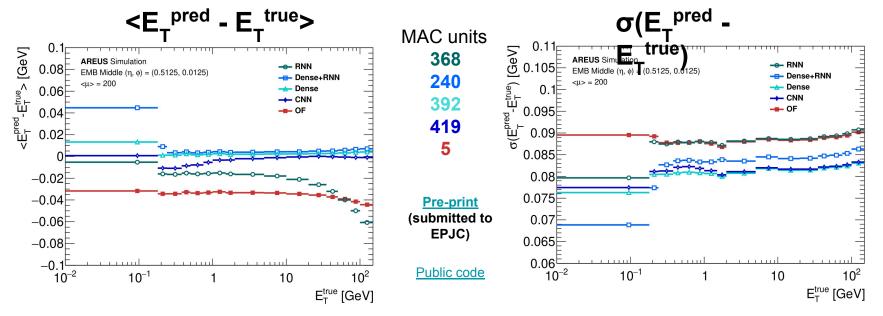
Integer optimisation ⇒ Non-integer values are excluded for search

Example using different values for exploration parameter ξ

Bayesian optimisation is still **computationally-heavy**, need for **time reduction**

Energy scale and resolution as function of true energy

- Better energy scale of E_T pred E_T true for Dense+RNN, Dense and CNN architectures compared to OF
 - RNN energy scale falling with higher E_T true
- Better energy resolution of E_T pred E_T for Dense+RNN, Dense and CNN architectures compared to OF
 - Visible for the whole energy range



Uncertainty prediction using neural network

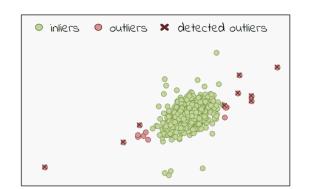
using deep evidential regression

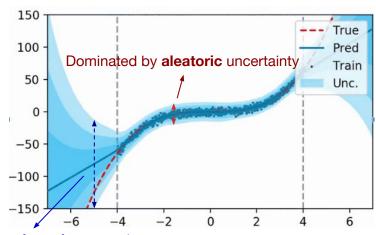
Deep evidential regression (DER)

- NNs are trained to minimize their prediction errors
 - Unknown accuracy of the model for individual predictions
 - It would be interesting to know when the model is more likely to fail (or the opposite)
- Model the energy prediction as a distribution
 - Network targeting parameters of this distribution
 - Mean of the distribution → energy prediction
 - Standard deviation of the distribution → uncertainty

Epistemic

- Model uncertainty, systematics
- Can be reduced
- Aleatoric
 - Inherent to data, data uncertainty
 - Cannot be reduced



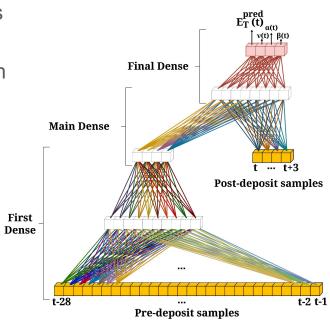


Dominated by epistemic uncertainty

Deep evidential regression (DER)

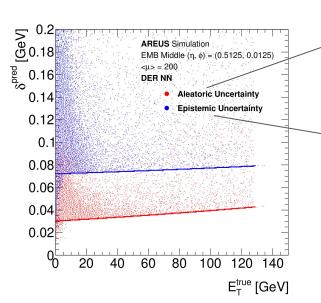
- DER applied to LAr cells energy reconstruction
 - Detect outliers due to noise bursts, instantaneous luminosity changes, or bunch train structures
- Normale-Inverse Gamma distribution to describe mean and uncertainty
 - \circ 4 parameters (γ,ν,α,β)
- Adapted to the Dense architecture
 - Still possible to implement in FPGA
 - > 416 MAC units
- Training loss function: MSE
 - Likelihood + Regularisation

Similar resolution observed to NN without DER



Uncertainty prediction

- Overall good pull distribution
 - Estimated uncertainty comparable to E_T erd E_T true
 - Uncertainty overestimated by 25%
 - Slightly biased
 - Right tails



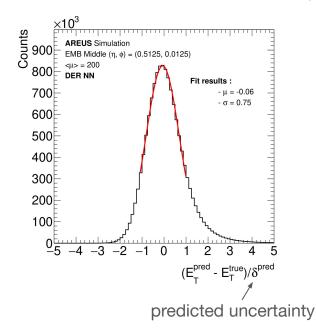
Data uncertainty

$$\mathbb{E}[\sigma^2] = \frac{\beta}{\alpha - 1}$$

Model uncertainty

$$\operatorname{Var}[E_{\mathrm{T}}^{\mathrm{pred}}] = \frac{\beta}{\nu(\alpha - 1)}$$

- Epistemic and aleatoric uncertainties are mainly constant
 - **Epistemic uncertainty is dominant**



Conclusion

- Four neural network architectures were tested and optimized
 - CNN, RNN, Dense+RNN and Dense
- Hyperparameter tuning performed using bayesian optimization
 - Balance between performance and size of the network to fit in FPGAs
 - NNs outperform OF
- **Uncertainty** on energy prediction using deep evidential regression
 - Good uncertainty prediction
 - Possible to implement on FPGAs
- Paper submitted to EPJC: pre-print on arxiv: Optimised neural networks for online processing of ATLAS calorimeter data on FPGAs
- Code available on <u>Zenedo</u>