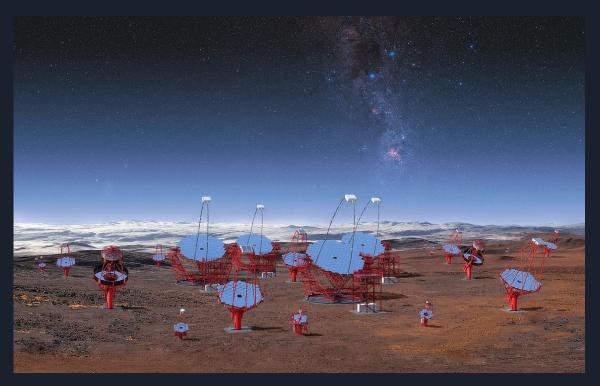


CONTEXT

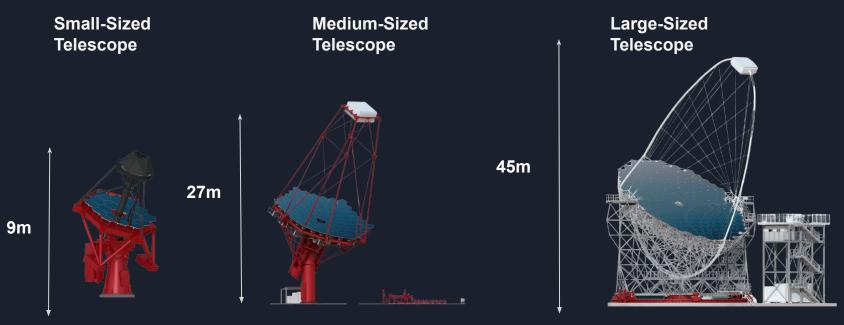
- **Gamma Learn:** launched in 2017 through a collaboration between LAPP and LISTIC.
- **Goal**: to improve CTAO monoscopic event reconstruction using Al methods, deep learning
- Stereograph
- **Objective**: to explore stereoscopic reconstruction of gamma events using graph neural networks

Contents

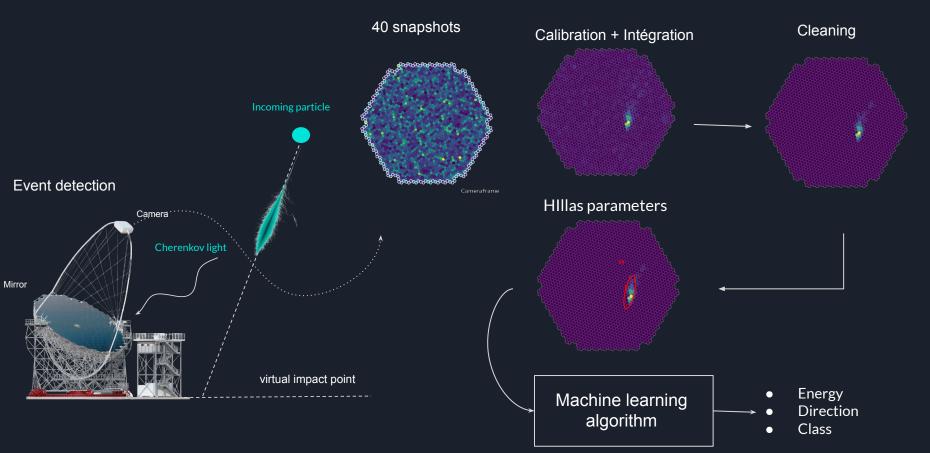

- **01** Cherenkov Telescope Array Observatory
- **02** Stereoscopic reconstruction of gamma events
- **03** Standard method
- **04** Fully connected network
- O5 The application of GNN's to the Stereoscopic Reconstruction of gamma events
- 06 Results
- **07** Conclusion

Introduction

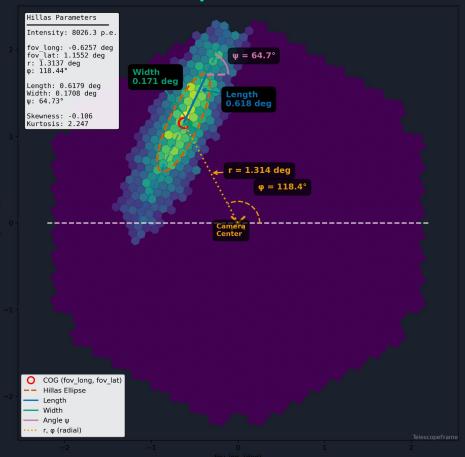
The Cherenkov Telescope Array Observatory


- The project : about sixty telescopes of various sizes.
- Installed in the Northern
 Hemisphere on the island of La
 Palma and in the Southern
 Hemisphere in Chile.
- Energy range : [20, 300] TeV.

Artist's view of the three types of telescopes that will be deployed in Chile


3 TYPES OF TELESCOPES

- Ongoing project under construction
- Currently, only one telescope is in operation (LST-1).

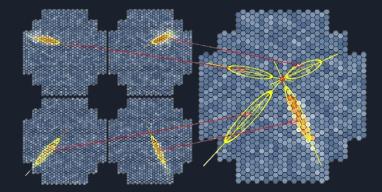


https://www.ctao.org/emission-to-discovery/telescopes/

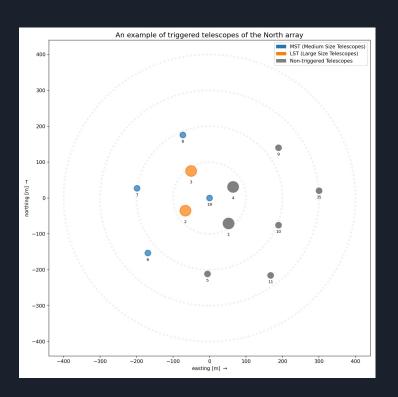
Event reconstruction

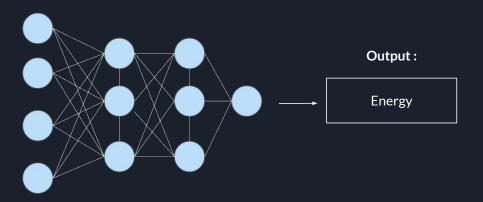
Hillas parameters

Standard Method:


Random Forests + Hillas

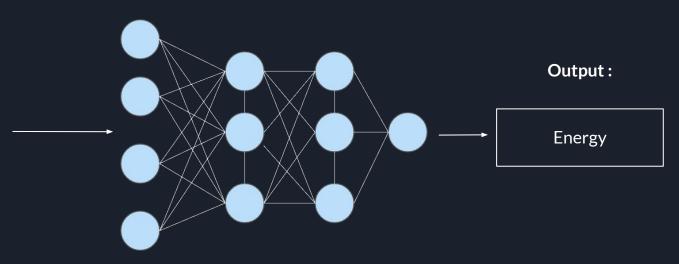
Step 1 – Monoscopic Reconstruction


- Predicts energy and particle class with a Random Forest algorithm
- We use observations from a single telescope.
- → We train one RF per telescope and per task (energy, class)

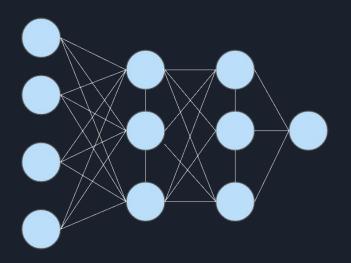

Step 2 – Stereoscopic Reconstruction

- Energy and gammaness: Weighted average across telescopes weight=Intensity*(length/width)
- Direction: We combine the observations of all telescopes to give a common estimation of the recorded shower
- → The intersection of the major-axis of the ellipses gives the position of the source.

Fully connected network


Array display (North site-La Palma): An example of triggered telescopes

Fully connected network

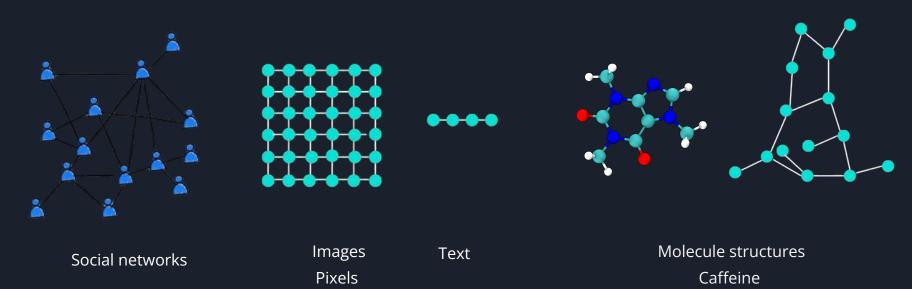

Input: A sparse feature vector

→ contains all hillas parameters

tel_id	intensity	time	width	length	
	12.3	5.6	1.2	3.4	
	8.9	4.5	0.8	2.1	
4					
	10.5	6.2	1.1	3.0	
	7.8	3.9	0.9	2.3	
8	9.2	5.1	1.0	2.8	
10					
11					
19	11.0	5.8	1.3	3.2	
35					

Fully connected network

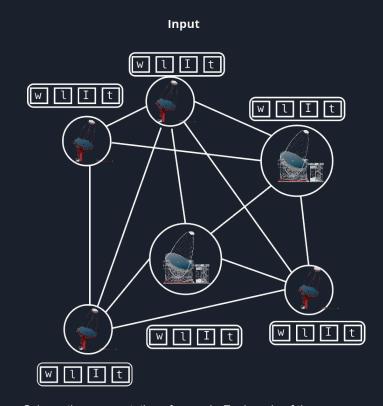
Pros:


• Simple and easy to implement

Cons:

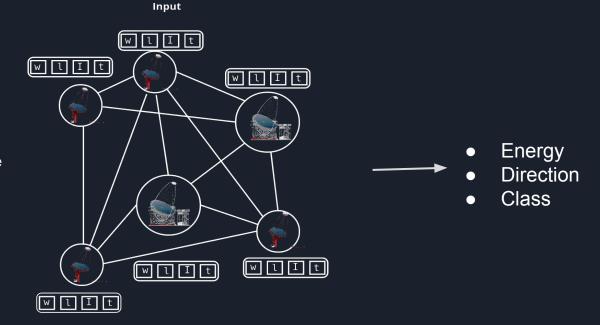
- Sparse and very long feature vector
- Memory greedy
- Longer to train
- Loss of spatial correlations between telescopes

Graphs


- **G=(V,E)**: A pair consisting of two sets
- V : vertices (also called nodes)
- **E**: edges, each associated with a pair $\{u, v\}$ of vertices, where $(u, v) \in V$
- Graphs are everywhere around us, and they can be found in various fields and applications, such as

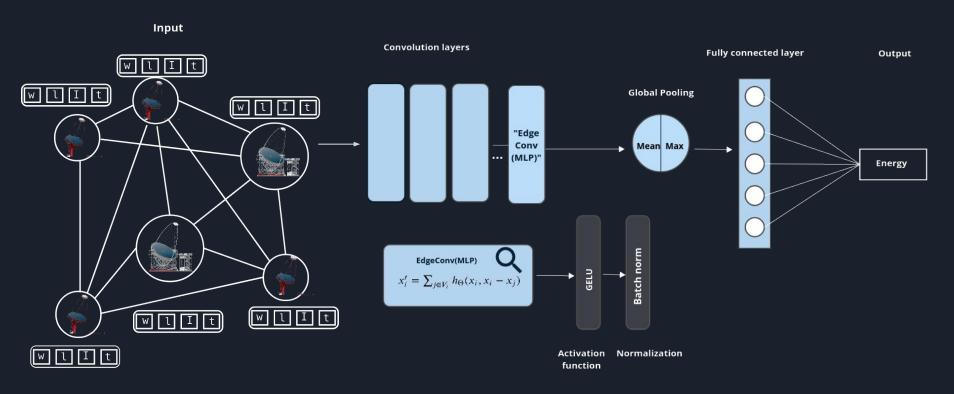
An example of triggered telescopes of the North array MST (Medium Size Telescopes) LST (Large Size Telescopes) 400 Non-triggered Telescopes 300 200 100 northing [m] -100 -200 -300 -400 -300 100 200 300 400 easting [m] →

Array display (North site-La Palma): An example of triggered telescopes


Why graphs?

Schematic representation of a graph. Each node of the graph is a telescope of the array.

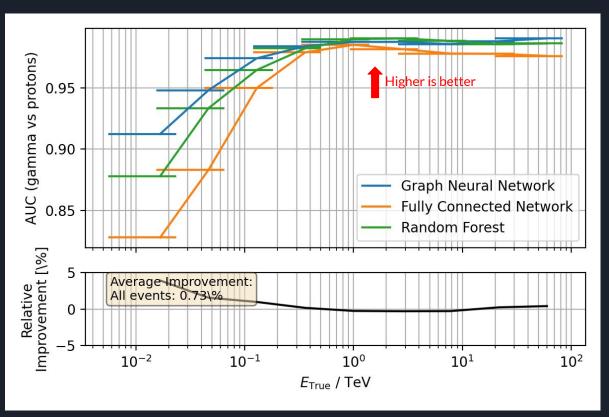
The application of GNN's to the Stereoscopic Reconstruction of gamma events PRODUCING GRAPHS


- Each event will be represented by one graph.
- 42 features per node
- Hillas parameters on nodes
- Monte Carlo (MC) simulations from ctapipe v19 (prod5_ctapipe_v0.19).
- One network per task

Each node has the Hillas parameters as node features. For each graph, we predict a global graph reconstruction: the direction, energy, and class probability.

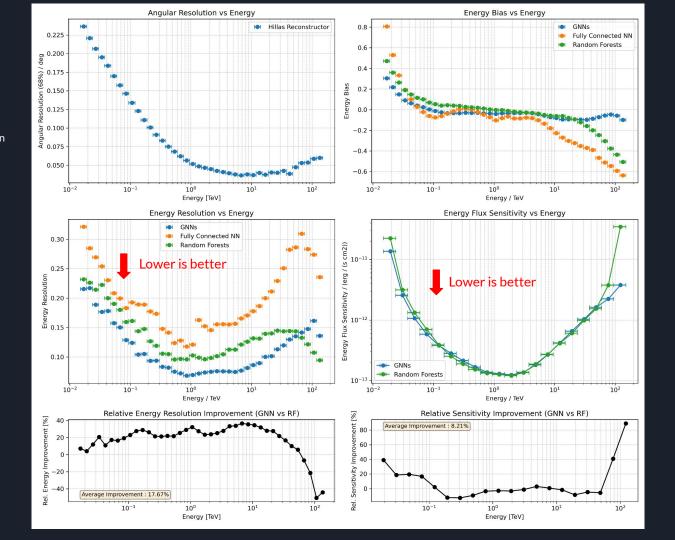
The **stereoscopic** event reconstruction

MODEL ARCHITECTURE


RESULTS

Metrics

Task	Metric	Definition	Goal
Classification	AUC	Area Under the Curve, measures the classifier performance	Higher is better
Energy reconstruction	Energy resolution	A measure of error across energy bins.	Lower is better
Direction reconstruction	Angular resolution (PSF)	A measure of directional error across energy bins.	Lower is better
	Sensitivity	Evaluates the overall performances of the telescopes.	Lower is better


Results

Gamma/hadron separation

Results

- Gamma/hadron cuts
- Cuts on the origin direction

Conclusion

- Graphs : A promising approach for the stereoscopic reconstruction of gamma events.
- Significant improvement observed in the reconstruction, with better energy resolution and energy biais, as well as improved separation between gamma photons and protons.
- Not more complicated than RFs (same inputs, restructured as node features).
- Relatively fast to train (a few hours on a small GPU, or CPU)

Perspectives

- Combining CNNs and GNNs: potential integration into the GammaLearn project, which is currently focused on monoscopic reconstruction.
- Working on graph explainability

- Reproducible analysis (Open data)
- Gitlab repository (Open source):

Stereograph: https://gitlab.in2p3.fr/gammalearn/stereograph/stereograph

Documentation: <a href="https://gammalearn.pages.in2p3.fr/stereograph/stereogr

Bibliography

[1] CORSIKA: A Monte Carlo code to simulate extensive air showers

[2] https://doi.org/10.1016/j.astropartphys.2008.07.009

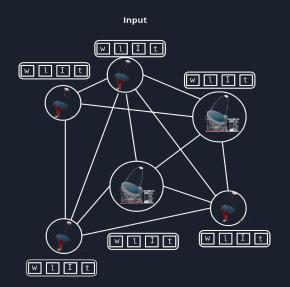
[3] https://doi.org/10.22323/1.444.0703

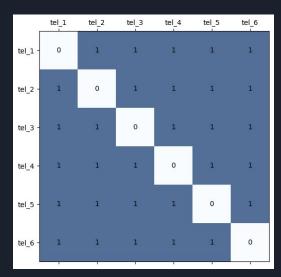
[4] https://doi.org/10.5281/zenodo.11190775

[5] https://arxiv.org/abs/1801.07829

Acknowledgments

This work has been done thanks to the facilities offered by the Univ. Savoie Mont Blanc - CNRS/IN2P3 MUST computing center

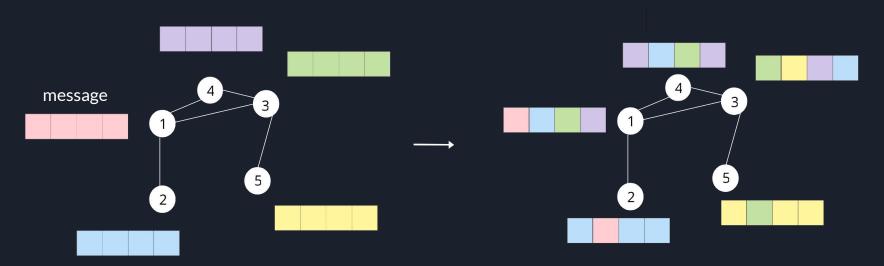

GammaLearn: https://purl.org/gammalearn/acknowledgements



BACKUP

Graph representation

- The characteristics of the nodes are stored in a matrix.
- The edge weights are stored, depending on the case, either in the adjacency matrix or in an independent vector.


Boolean matrix describing the edges of the graph

Node	Adjacent Vertices
1	[2, 3, 4, 5, 6]
2	[1, 3, 4, 5, 6]
3	[1, 2, 4, 5, 6]
4	[1, 2, 3, 5, 6]
5	[1, 2, 3, 4, 6]
6	[1, 2, 3, 4, 5]

A list containing the list of adjacent vertices.

Learning on graphs

- Message passing: Each node in the graph collects the embeddings of its neighbors (messages).
 Message passing function: Affine, or a neural network (MLP).
- **2. Aggregation:** using an aggregation function (sum, max, average).
- 3. Update of embeddings

