

Al and Machine Learning Applications at the Near Detector of the T2K Experiment

Anaëlle Chalumeau

for the T2K collaboration & ND280 Al/ML working group

EPS-HEP Marseille, 07/07/2025

▶T16 - AI for HEP

Overview

- The T2K experiment and its Near Detector
- The AI/ML working group
- Overview of the group activities:
 - 1. SFGD Momentum reconstruction and PID with a BDT (TMVA)
 - 2. Global ND280 PID with BDT (XGBoost)
 - 3. Identify EM shower with PointNet
 - 4. 2D+3D CNN for e/γ classification
 - 5. Other projects using ND280 data (Omnifold, Normalizing Flows)
- Detailed project: PID in the SFGD with a Transformer

particle accelerator to create neutrino beam

near detector: ND280

particle accelerator to create neutrino beam

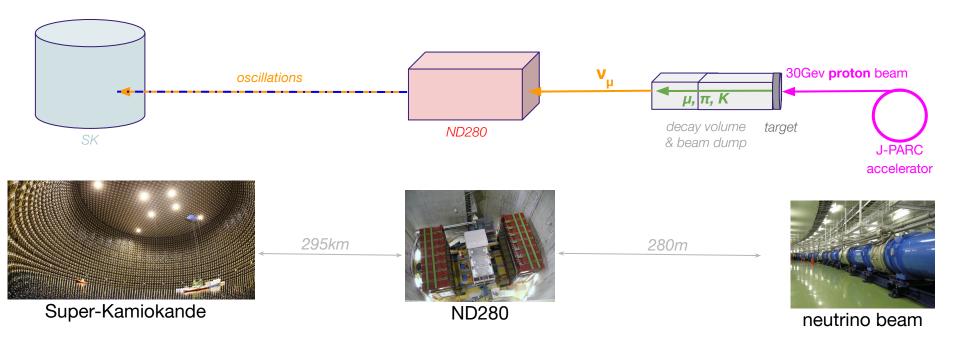
KAMIOKA ● ← TOKAI

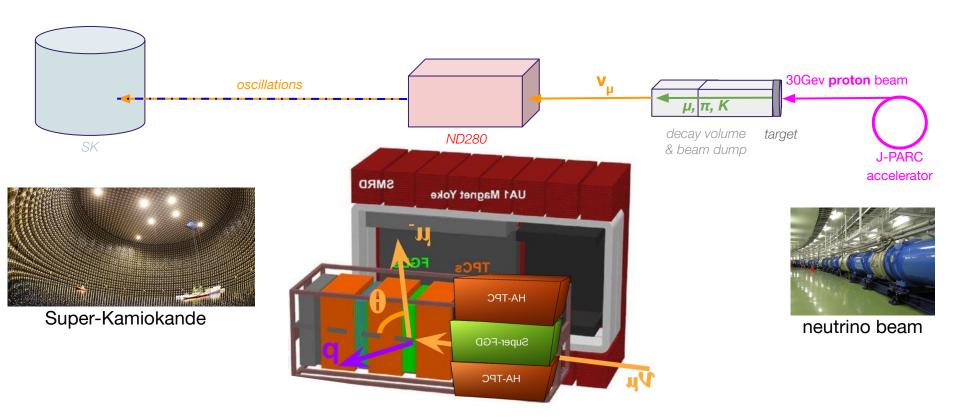
far detector: Super-Kamiokande

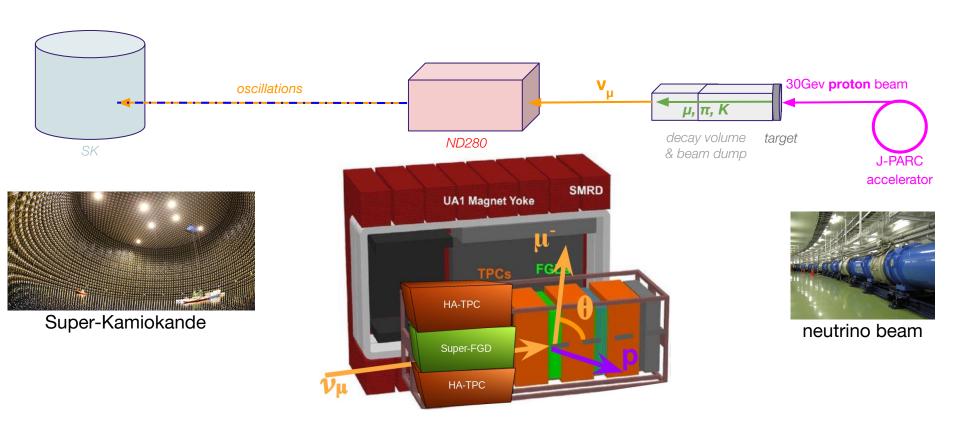
near detector: ND280

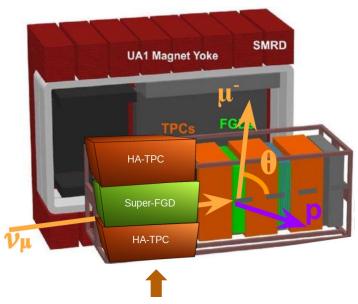
particle accelerator to create neutrino beam

TOKAI



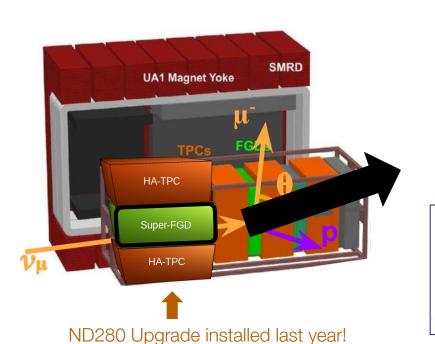






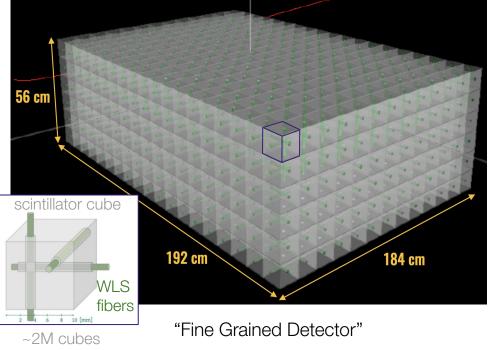
ND280 Upgrade installed last year!

& data taking since end of 2024



& data taking since end of 2024

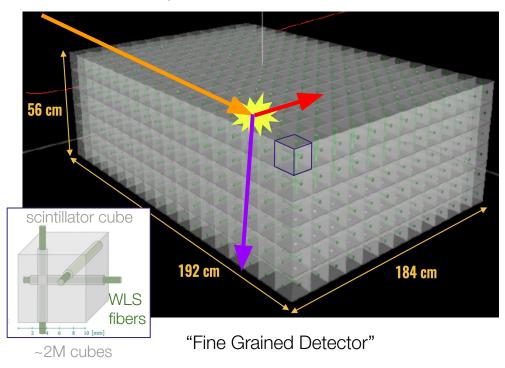
The Super-FGD: a Scintillator Detector



New detector technology

⇒ need new tools to identify the particle types (PID) from neutrino interaction using charge deposition in the detector

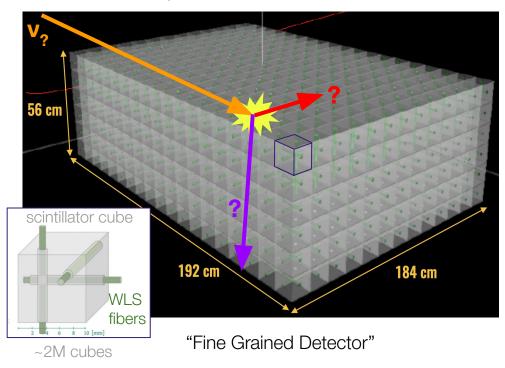
The Super-FGD: a Scintillator Detector



New detector technology

⇒ need new tools to identify the particle types (PID) from neutrino interaction using charge deposition in the detector

The Super-FGD: a Scintillator Detector



The ND280 AI/ML working group

- **ND28**0
- SMRD

 E-CAL

 HAT-TPC

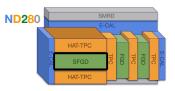
 FGD

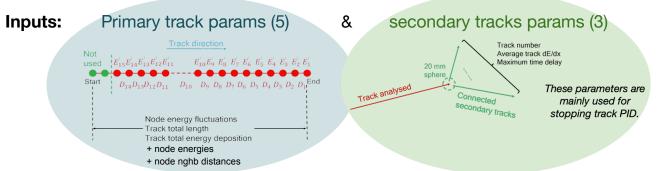
 HAT-TPC

 HAT-TPC
- Recent working group dedicated to Al/ML methods (since Nov. 2024)
- Convener is Saùl Alonso Monsalve (ETH Zurich)
- ~ 10 active analysers
- In different part of the experiment, various task focused around the Near Detector:
- * reconstruction: vertex activity, track fitting, momentum reco ---- 3 projects
- **★** analysis: PIDs, unfolding, modelling posterior systematics

 7 projects
- ★ simulation: cross-section sampling _____ 1 project

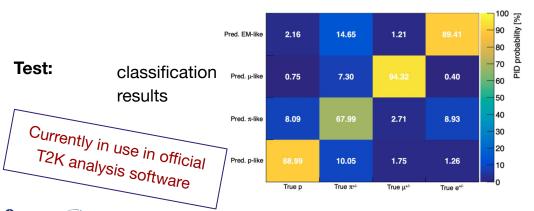
1. SFGD Momentum reconstruction & PID with BDT (TMVA)





Training:

- on particle-gun MC data (i.e. 1 particle /event): p, π[±], μ[±], e[±]
- 4 independent PID classifier & 3 independent momentum regressors

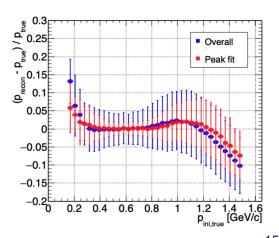


momentum resolution:

BDT HP: 5 to tune (done by hand):

Hyperparameter	Value
Decision tree number M	2000
Division point number <i>K</i> at each node	20
Decision tree maximum depth D_{max}	3
Shrinkage ν	0.05
Stochastic boosting fraction f	0.5

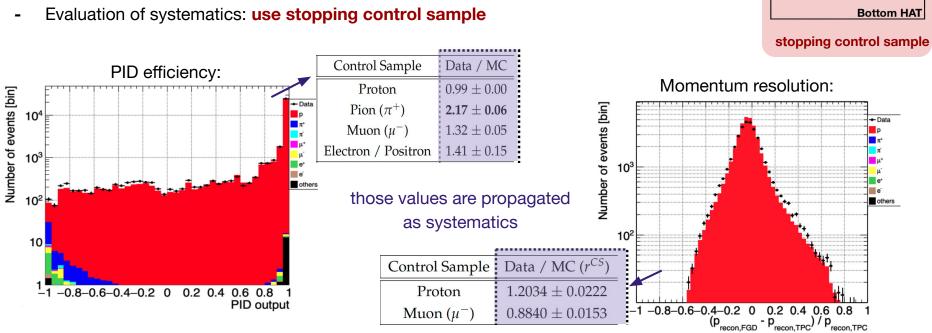
same for regression & classification



1. SFGD Momentum reconstruction & PID with BDT (TMVA)

BDT Systematics:

- for real application, apply BDT to MC & data ⇒ check if have similar performances!
- If not → need to evaluate the difference
- Propage this difference as systematic source in the analysis



Top HAT

Muon candidate

Proton candidate

SFGD

1. SFGD Momentum reconstruction & PID with BDT (TMVA)

Questions

- is the momentum regression used in SFG Recon?
- are the systematics currently propagated/where/what is the plan otherwise?
- in previous table, no pi-, no mu+ why
- controle sample: for each particle type? ID only with hats/tpcs? from outside events?
- 4 independent PID classifier & 3 independent momentum regressors but CM was classifier with 4 particles: just for the result plots?
- results data/mc FGD1,2 from technote → no results yet from SFGD? what should I say (control sample image is with SFGD): which are in use (eg for syst propa)

- 2 slides for this project because actively used in many analysis ⇒ good example

2. Global ND280 PID with BDT (XGBoost)

Goal: use inputs from many ND280 sub-detectors to get a global PID tool

Reconstructed theta

Inputs:

16 variables from

4 of ND280

sub-detectors

250 500 750 1000 1250 1500
Reconstructed momentum (MeV)

TPC2: muon pull

-2.5 0.0 2.5 5.0 7.5 10.0

TPC2 muon pull

Reconstructed momentum

FGD1: Energy by length

2000
0.5 0.6 0.7 0.8 0.9 1.0 FGD1 Ely(lext)
TPC2: proton pull

-15 -10 -5 TPC2 proton pull TPC3 dE/dx

0000 - 0000 - 0 1.2 1.4 1.6 1.8 ECal: Front back ratio

ECal: EM energy

2000
2000
2000
300
400
500
EM energy (MeV)

ECal: Truncated max ratio

ECal: Energy by length

ECal: Circularity

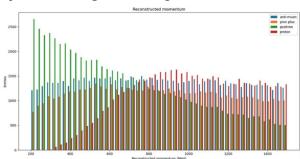
Training:

- on particle-gun MC data: p, π^+ , μ^+ , e^+

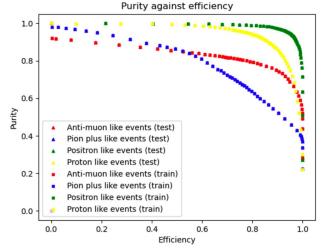
- starting position in FGD1 (later: SFGD)

- use HYPEROPT for the HPO

Preprocessing: re-weight each events to have uniform

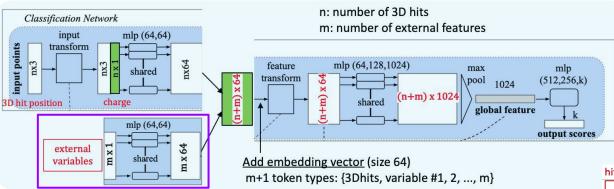


reconstructed momentum to avoid direct momentum dependence



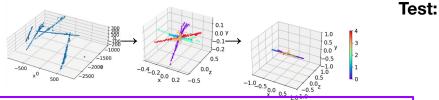
3. Identify EM shower in SFGD: PointNet

Architecture: PointNet (DNN for 3D point cloud data) with modifications



Preprocessing:

 center and align showed better perf



External features: adding global feature of the event increase performances! will be tested: add all BDT variables as external features

- total charge in the event
- total number of hits
- look for 3rd variable

Goal:

distinguish EM shower-like (e,y) particle from non EM ones (μ, π, p)

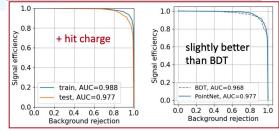
ND280

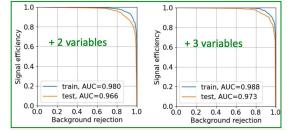
HAT-TPC

Inputs:

pgun of e⁻, μ ⁻ for now

hit charge & external variables improve the performance





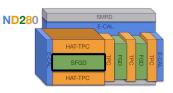
3. Identify EM shower in SFGD: PointNet

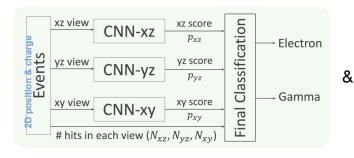
Question:

- segmentation network not used right? (from archi image) why don't we need it here
- how manageable is it to rm the 512 pt limit and make it changeable?
- plot updates with all eff,pur on same one?
- perf update with all BDT var?

4. 2D+3D CNN for e/γ classification

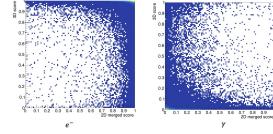
Architecture: experimental combination of 2D CNNs + sparse 3D CNN | + sparse 3D CNN | SSCN |





Sparse Submanifold convolutional networks

 $\Rightarrow (final\ score) = \frac{(2D\ score) + (3D\ score)}{2}$

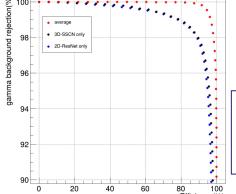


- true info used to precut some events § 100

Results:

model	e^- efficiency	γ rejection
3D-SSCN	95.5	95.3
3D-ResNet	94.9	95.8
2D-ResNet	95.3	94.4
3DSS+3DRes	96.1	96.4
3DSS+2DRes	98.3	97.9

Training: - particle-gun MC data: e⁻ and y with 400k training event

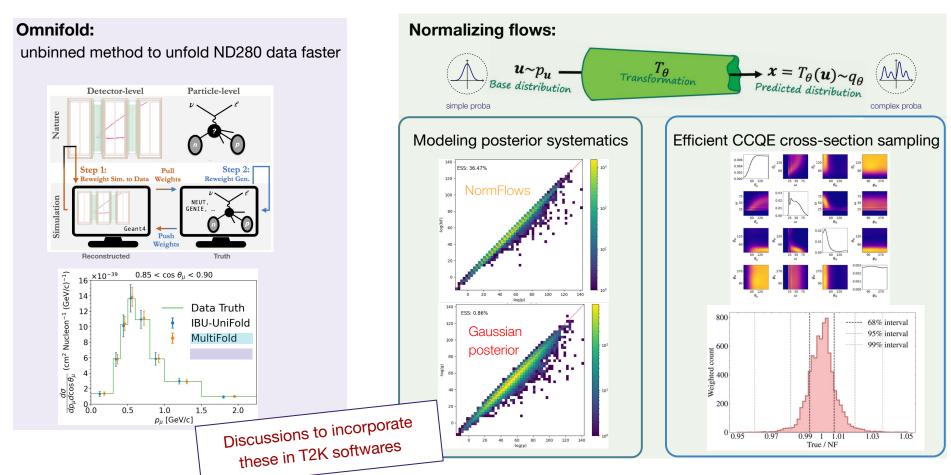


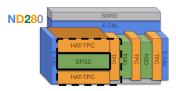
2D vs 3D scores: not much correlations

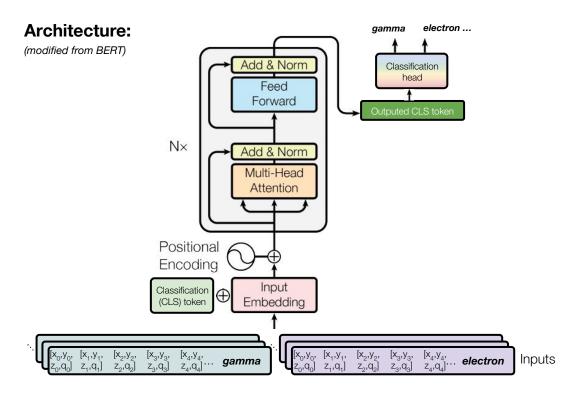
e/γ events looks similar because of γ→e⁺e⁻ creating similar shower of particles

⇒ challenge is to distinguish them

5. Other projects using ND280 data (Omnifold, Normalizing Flows)



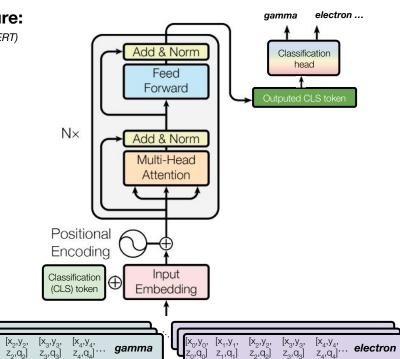


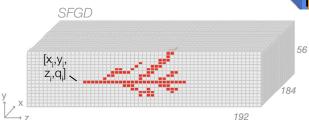


ND280

Architecture:

(modified from BERT)





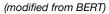
Inputs:

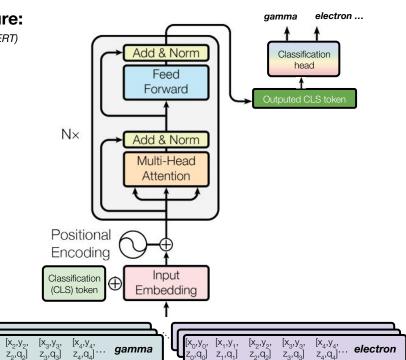
 $[x_0, y_0, [x_1, y_1, z_0, q_0]]$

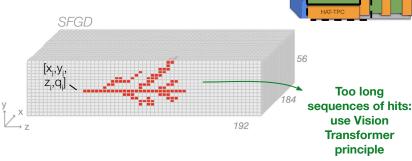
Inputs

ND280 Inputs:

Architecture:

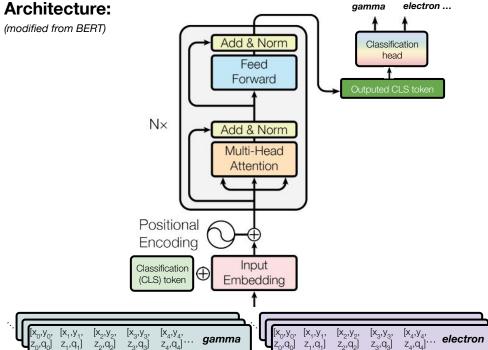


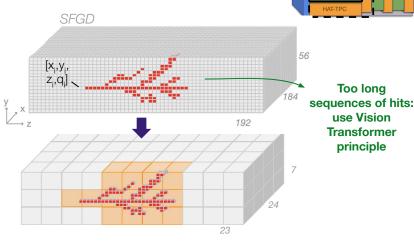




 $[x_0, y_0, [x_1, y_1, z_0, q_0]]$

Inputs





ND280

Inputs

ND280 **Detailed project: PID in the SFGD with a Transformer** Inputs: **Architecture:** electron ... gamma SFGD (modified from BERT) Add & Norm Classification 56 head Feed [x_i,y_i, z_i,q_i] Forward **Too long** sequences of hits: use Vision N× 192 Add & Norm **Transformer** principle Multi-Head Attention Positional Encoding Input Classification (CLS) token Embedding

 $[x_0, y_0, [x_1, y_1, z_0, q_0]]$

[x₂,y₂, z₂,q₂]

 $[x_3, y_3, z_3, q_3]$

 $\begin{bmatrix} x_4, y_4, \\ z_4, q_4 \end{bmatrix} \cdots$

gamma

 $\begin{bmatrix} [X_4, Y_4, \\ Z_4, Q_4 \end{bmatrix}$... electron

Inputs

 $[x_2, y_2, z_2, q_2]$

 $[x_0, y_0, [x_1, y_1,$

[x₃,y₃, z₃,q₃]

ND280 **Detailed project: PID in the SFGD with a Transformer** Inputs: **Architecture:** electron ... gamma SFGD (modified from BERT) Add & Norm Classification 56 head Feed [x_i,y_i, z_i,q_i] Forward Too long sequences of hits: use Vision N× 192 Add & Norm **Transformer** principle Multi-Head Attention Positional Encoding Input Classification each parent cube (CLS) token Embedding holds the info of its child voxels:

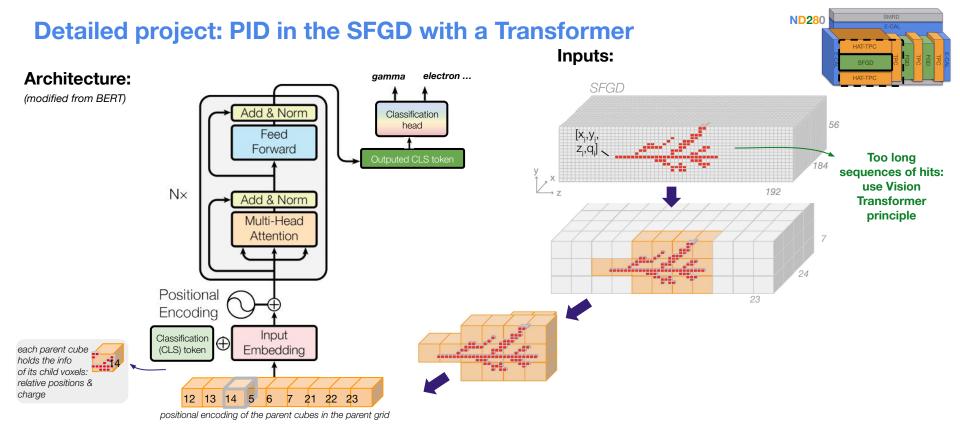
relative positions & charge

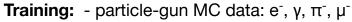
12 13

14 5

21

positional encoding of the parent cubes in the parent grid





- either along 1 direction or isotropic

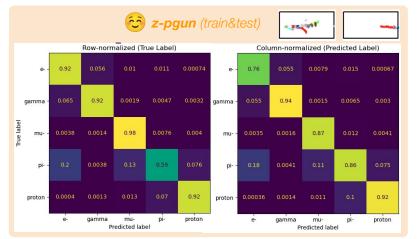
'z-pgun' 'iso-pgun'

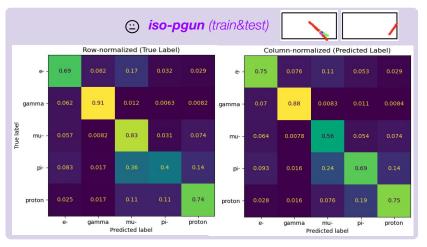
ND280 Detailed project: PID in the SFGD with a Transformer Inputs: **Architecture:** electron ... gamma SFGD (modified from BERT) Add & Norm Classification 56 head Feed $[x_i, y_i,$ Forward Too long sequences of hits: use Vision 192 N× Add & Norm **Transformer** principle Multi-Head Attention Positional Encoding Input Classification Embedding each parent cube (CLS) token holds the info of its child voxels: relative positions & - architecture converted in C++ (Libtorch) charge 21 14 positional encoding of the parent cubes in the parent grid - saved weights from training → 1rst complex ML model implemented in analysis **Training:** - particle-gun MC data: e^- , γ , π^- , μ^-

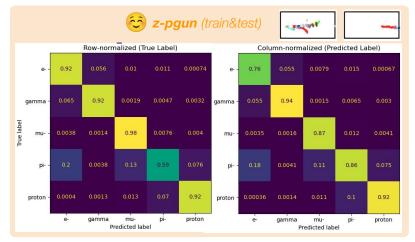
- either along 1 direction or isotropic

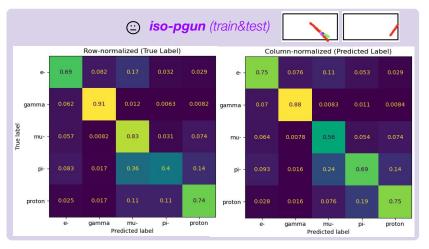
'iso-pgun'

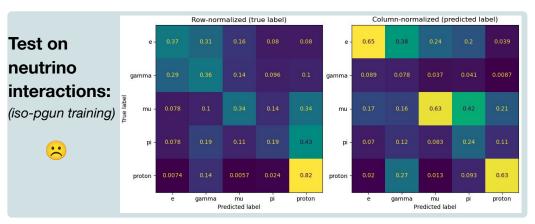
soft!



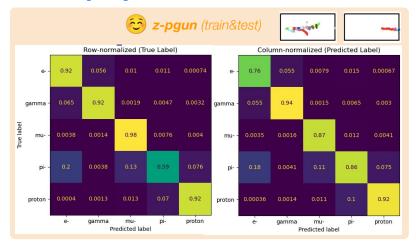


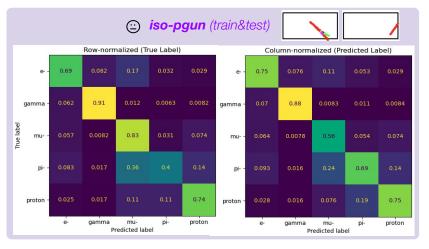


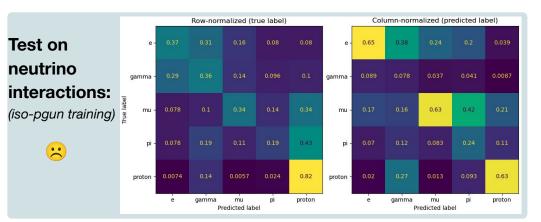




Test:







On-going improvements:

- refine pattern recognition before PID (if bad, then model cannot succeed)
- use time of each hits
- add e⁺, π⁺, μ⁺ to training
- add extra token to the input sequence:
 - total nhits
 - total charge
 - pulls from nghb detectors (HAT/TPCs)

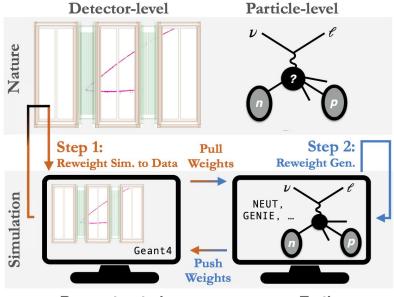
Summary

- Increasing number of ML projects at T2K ND
- In all stages of the experiment: more project in the analysis part, then reconstruction then simulation
- Methods are starting to be used in the official software (BDT, Transformer), paving the way for the other ones
- Challenges to come:
 - more friendly integration possibilities for these methods
 - strategy for systematic propagation

Back-up

Unfolding of ND280 data: Omnifold

Working principle:

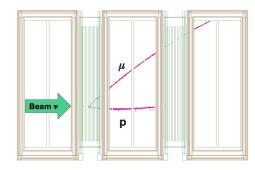


Reconstructed

Truth

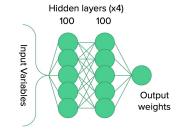
Data:

- 1.2M simulated ND280 evts ≈ 20k measured evts
- with π^+ and leading p kinematics



 for test: create fake dataset with a BeRPA-based modification to the true interaction rates

Archi:

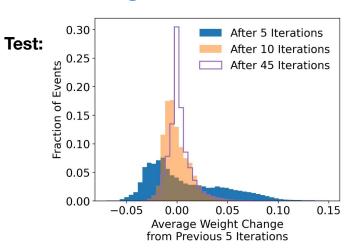


1NVIDIA A100 on a NERSC Perlmutter node: takes < 30 min to run 15 OmniFold iterations on one set of data/MC

Inputs:

- kinematic observables (p_u , $\cos \theta_u$, p_p , δp_T , $\delta \alpha_T$, $\delta \varphi_T$)
- detector sample ID
- interaction topology (CC0π0p, CC0π1p, CC0πNp, CC1π, CCother)

Unfolding of ND280 data: Omnifold



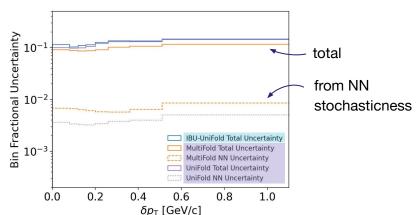
Comparision with conventional-like unfoldings:

- not straightforward since Omnifold is unbinned
- use Omnifold in a way that it is mathematically equivalent to IBU (Iterative Bayesian Unfolding): inputs limited to bin indices

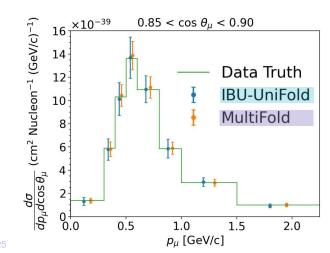
		χ^2			
	Method	$(p_{\mu},\cos heta_{\mu})$	$\delta p_{ m T}$	$\delta lpha_{ m T}$	$\delta\phi_{ m T}$
	Wiethod	DoF=58	DoF=8	DoF=8	DoF=8
conventional	Prior	298.2	2.3	5.9	4.9
	IBU-UniFold	2.1	0.2	0.4	0.1
	Binned UniFold	21.4	1.4	0.9	0.5
Omnifold variations	UniFold	27.1	1.1	0.6	1.1
	MultiFold	3.1	0.3	0.2	0.3
	OmniFold	10.0	0.8	1.1	0.4

		Triangular Discriminator			
_	Method	$(p_{\mu},\cos heta_{\mu})$		$\delta lpha_{ m T}$	
_	Prior	545.6	27.5	31.2	26.7
	IBU-UniFold	17.1	1.9	3.4	0.8
	Binned UniFold	29.9	2.8	6.0	1.9
	UniFold	17.3	5.7	5.8	1.7
	MultiFold	2.7	0.7	0.6	0.6
	OmniFold	9.4	1.7	3.0	2.1

Uncertainties:



(inputs choice)



Modeling posterior systematic: Normalizing Flows

ND fit is a constrain on systematic uncertainties using ND280 observations

Context: ND280 likelihood of systematics depends on >700 variables (from flux, detector and xsec uncertainties)

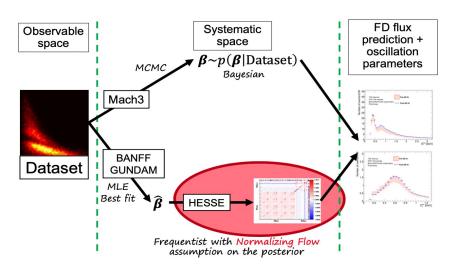
Goal: Learn the posterior probability distribution of neutrino flux binned in neutrino energy

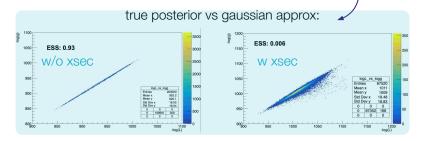
Conventional methods:

- Semi-frequentist (*GUNDAM*): gaussian assumption on the posterior, get best-fit params from MLE - miss xsec non-gaussianities

- Bayesian (*Mach3*): sample from the posterior using MCMC + ca

- pt cloud estimation (not analytical)





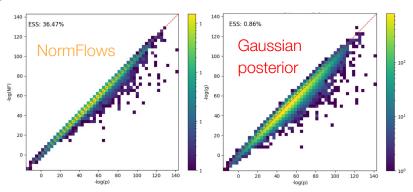
Where ML comes in:

replace *GUNDAM* gaussian approximation by something more complex to capture non-gaussianities in xsec params

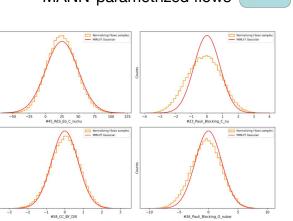
Modeling posterior systematic: Normalizing Flows

 \downarrow straighforward to: sample $\mathbf{x} = T_{\theta}(\mathbf{u}) \sim q_{\theta}$ with $\mathbf{u} \sim p_{\mathbf{u}}$ & evaluate the proba $q_{\theta}(\mathbf{x}) = p_{\mathbf{u}}(\mathbf{u}) \mid \det \left(\mathbf{J}_{T_{\theta}}(\mathbf{u}) \right) \mid^{-1}$

Test: on full sets of systematics (OA 2022 config) to learn the 59 xsec probas conditioned on the 652 flux + detector systematics



Archi: 5 RQ-NSF splines, MANN-parametrized flows



Gaussian samples in eigenspace

CovFlow (optionally trainable)

Post-fit covariance watrix "rescaled"

Flux + detector

watrix "rescaled"

Fast method: 10M sample /day vs?

Modeling posterior systematic: Normalizing Flows

Questions:

- running time comparison with non-ML method?
- is loss func the KDL or derived from it?

CCQE cross-section sampling: Normalizing Flows

Goal: efficient MC sampling for CCQE exclusive cross-section of neutrino-nucleus (12C)

Conventional method:

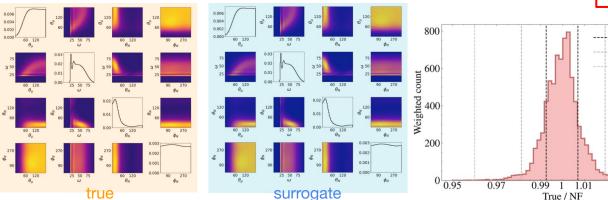
use sophisticated nuclear models

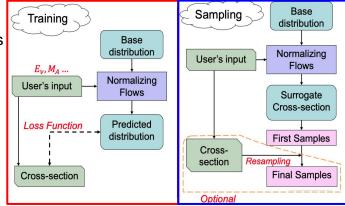
$$\frac{d^6\sigma}{dE_{\nu}d\omega d\Omega_{\mu}d\Omega_N} \propto L^{\mu\nu} W_{\mu\nu} \rightarrow \text{long computations}$$

ML method: same Normalizing Flow architecture as project 5 (slightly different loss function derived from KLD)

Train: to model 1p1h i.e. $p(\theta_{\mu}, \omega, \theta_{N}, \phi_{N} \mid E_{\nu}, \alpha)$ on 2 shells for many E_{ν}

Test: sample e.g for (600 MeV, 1s shell)





Fast method:

1M sample /25min/GPU vs 1 day/CPU

Next:

68% interval 95% interval

99% interval

1.03

1.05

2p2h will be more complicated because higher dimension

