

Al and Machine Learning Applications at the Near Detector of the T2K Experiment

Anaëlle Chalumeau

for the T2K collaboration & ND280 Al/ML working group

EPS-HEP Marseille, 07/07/2025

▶T16 - AI for HEP

Overview

- The T2K experiment and its Near Detector
- The AI/ML working group
- Presentation of 6 selected projects:
 - Momentum reconstruction and track PID with a BDT
 - 2. EM shower PID with PointNet
 - 3. PID in the SFGD with a Transformer
 - 4. Unfolding of ND280 data with Omnifold
 - 5. Modeling posterior systematic with Normalizing Flows
 - 6. CCQE cross-section sampling with Normalizing Flows

-in order of complexity (pov)

2

particle accelerator to create neutrino beam



near detector: ND280

particle accelerator to create neutrino beam

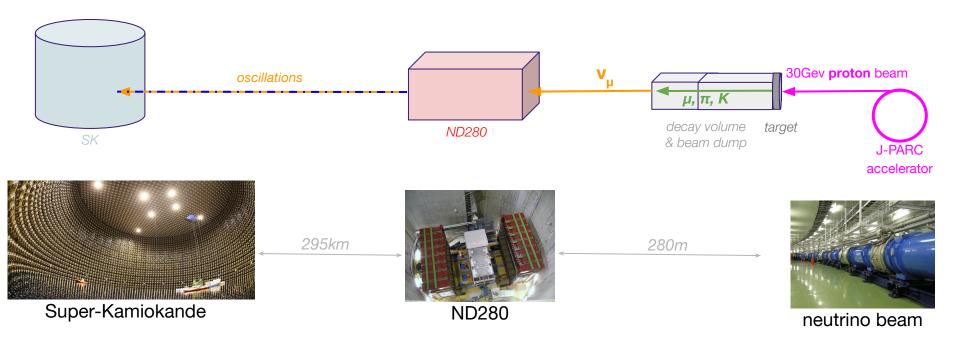
KAMIOKA ● ← TOKAI

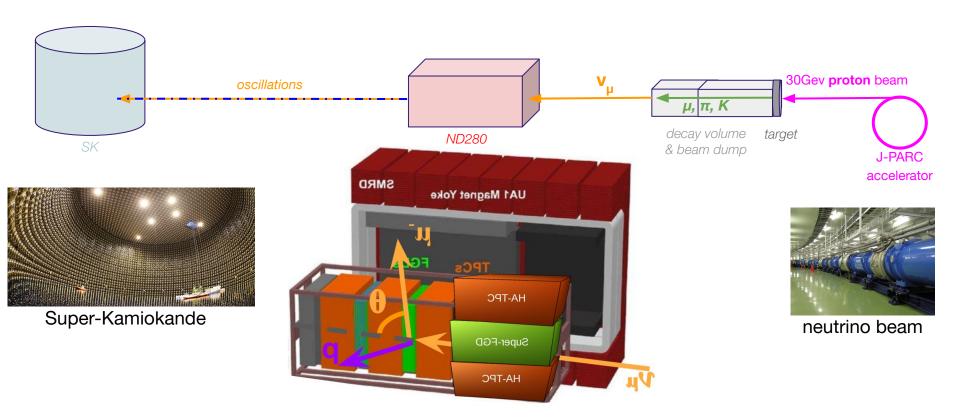
far detector: Super-Kamiokande

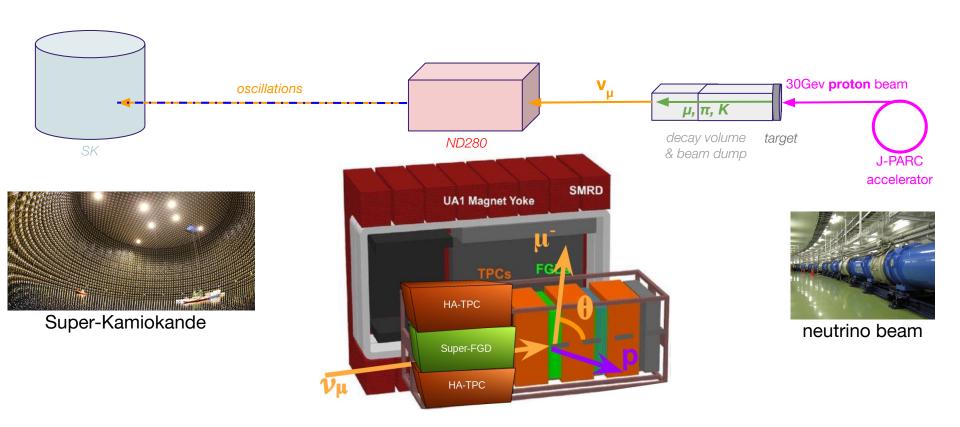
near detector: ND280

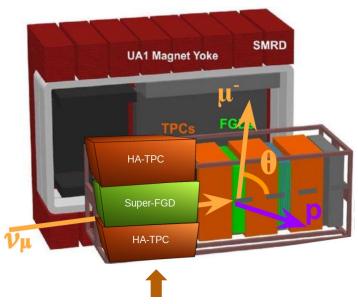
particle accelerator to create neutrino beam

TOKAI



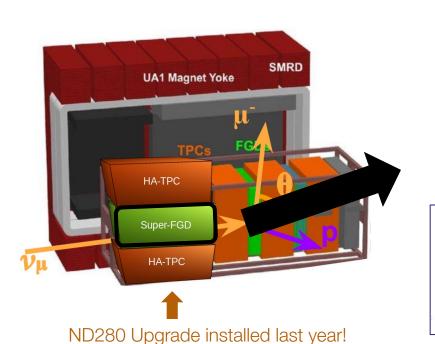






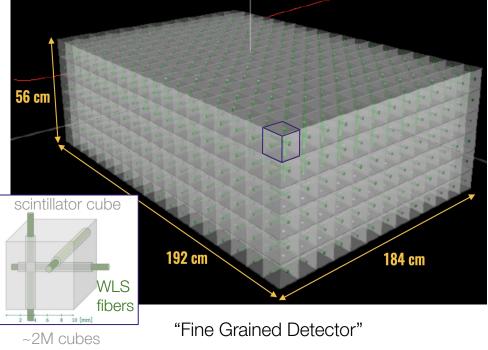
ND280 Upgrade installed last year!

& data taking since end of 2024



& data taking since end of 2024

The Super-FGD: a Scintillator Detector

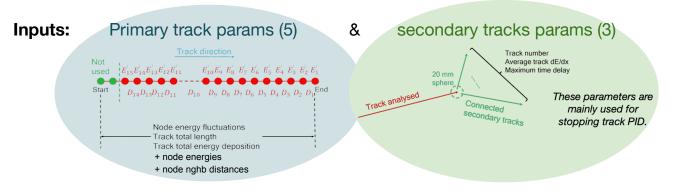


The ND280 AI/ML working group

- Recent working group dedicated to Al/ML methods (since Nov. 2024)
- Convener is Saùl Alonso Monsalve (ETH Zurich)
- ~ 10 active analysers
- In different part of the experiment, various task focused around the Near Detector:
- * reconstruction: vertex activity, track fitting, momentum reco ---- 3 projects
- **★** analysis: PIDs, unfolding, modelling posterior systematics

 7 projects
- ★ simulation: cross-section sampling _____ 1 project

1. Momentum reconstruction & track PID with BDT



BDT HP: 5 to tune (done by hand):

Hyperparameter		
Decision tree number M	2000	
Division point number <i>K</i> at each node	20	
Decision tree maximum depth D_{max}	3	
Shrinkage ν	0.05	
Stochastic boosting fraction <i>f</i>	0.5	

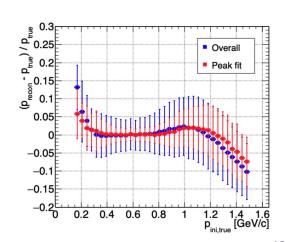
same for regression & classification

Training:

- on particle-gun MC data (i.e. 1 particle /event): p, π^{\pm} , μ^{\pm} , e^{\pm}
- 4 independent PID classifier & 3 independent momentum regressors

2.16 14.65 1.21 Pred. EM-like 70 **Test:** classification 0.75 7.30 0.40 60 results 50 Pred. π-like 8.09 2.71 8.93 30 Pred. p-like 10.05 1.75 1.26 True p True π+/-True µ+/ True e+/-

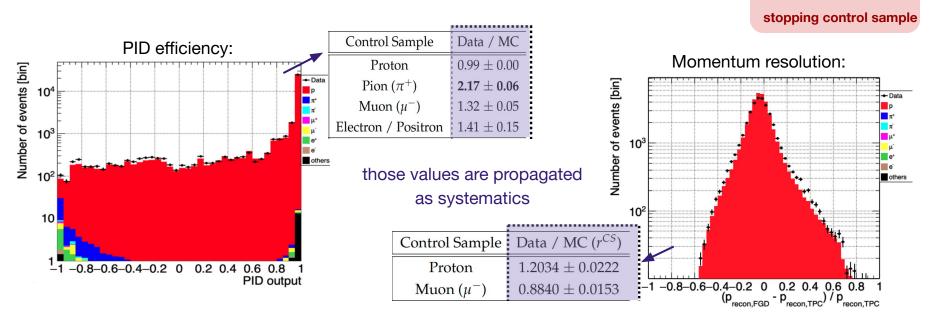
momentum resolution:



1. Momentum reconstruction & track PID with BDT

BDT Systematics:

- for real application, apply BDT to MC & data ⇒ check if have similar performances!
- If not → need to evaluate the difference
- Propage this difference as systematic source in the analysis
- Evaluation of systematics: use stopping control sample



Top HAT

Bottom HAT

Muon candidate

Proton candidate

SFGD

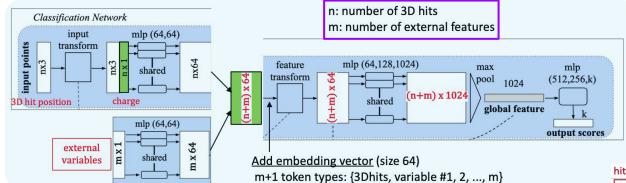
1. Momentum reconstruction & track PID with BDT

Questions

- is the momentum regression used in SFG Recon?
- are the systematics currently propagated/where/what is the plan otherwise?
- in previous table, no pi-, no mu+ why
- controle sample: for each particle type? ID only with hats/tpcs? from outside events?
- 4 independent PID classifier & 3 independent momentum regressors but CM was classifier with 4 particles: just for the result plots? why 3 momentum regressors?

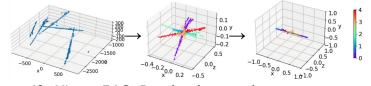
2. EM shower PID in SFGD: PointNet

Architecture: PointNet (DNN for 3D point cloud data) with modifications



Preprocessing:

center and align
 showed better perf



- PointNet take 512 pts:

If nHits > 512: Randomly sample

• If nHits < 512: Repeatedly sample

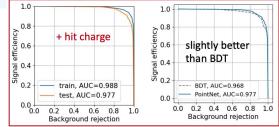
External features: adding global feature of the event increase performances! will be tested: add all BDT variables as external features

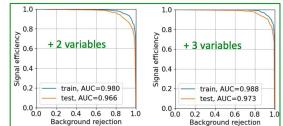
Inputs:

- pgun of e⁻, μ⁻ for now
- use the pattern reco algo on the pgun (used for neutrino interaction)
- select shower-like, contained patterns
- ▶ 8000 patterns

Test:

hit charge & external variables improve the performance



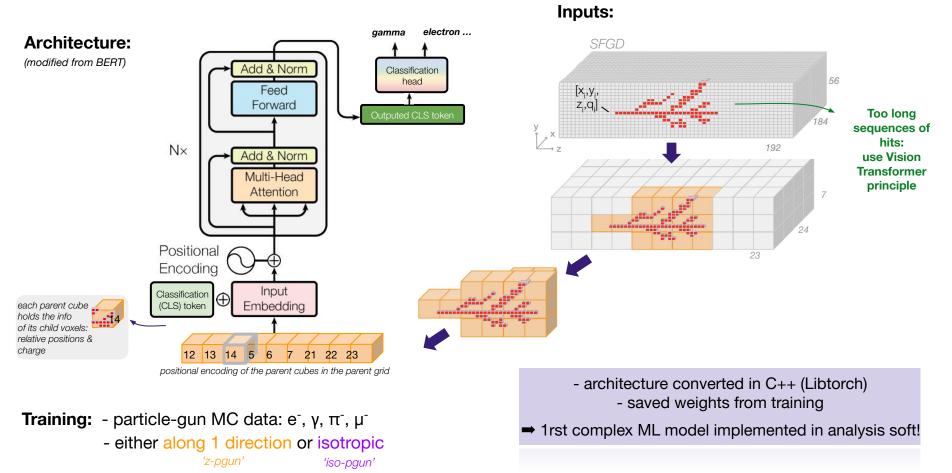


2. EM shower PID in SFGD: PointNet

Question:

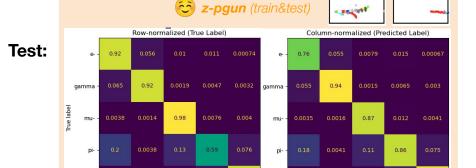
- segmentation network not used right? (from archi image) why don't we need it here
- how manageable is it to rm the 512 pt limit and make it changeable?
- plot updates with all eff,pur on same one?
- perf update with all BDT var?

3. PID in the SFGD: Transformer



18

3. PID in the SFGD: Transformer



0.92

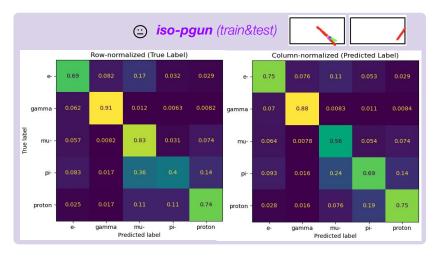
proton

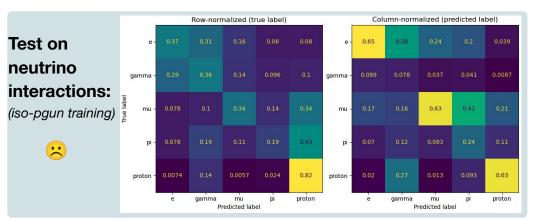
proton -

0.00036

mu-

Predicted label





On-going improvements:

- refine pattern recognition before PID (if bad, then model cannot succeed)
- use time of each hits
- add e⁺, π⁺, μ⁺ to training
- add extra token to the input sequence:
 - total nhits
 - total charge
 - pulls from nghb detectors (TPCs)

proton

gamma

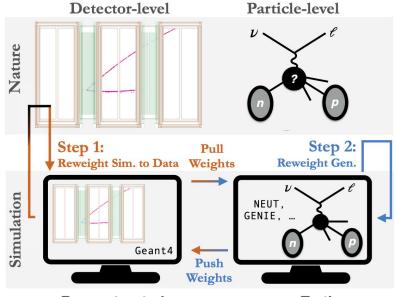
Predicted label

0.92

proton

4. Unfolding of ND280 data: Omnifold

Working principle:

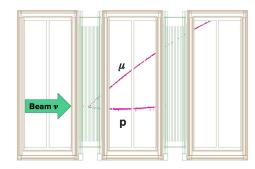


Reconstructed

Truth

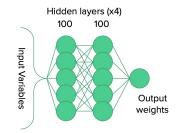
Data:

- 1.2M simulated ND280 evts ≈ 20k measured evts
- with π^+ and leading p kinematics



 for test: create fake dataset with a BeRPA-based modification to the true interaction rates

Archi:

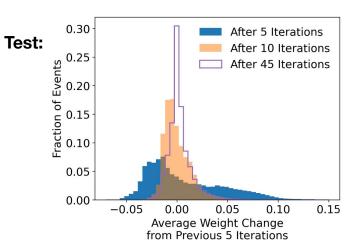


1NVIDIA A100 on a NERSC Perlmutter node: takes < 30 min to run 15 OmniFold iterations on one set of data/MC

Inputs:

- kinematic observables (p_u , $\cos \theta_u$, p_p , δp_T , $\delta \alpha_T$, $\delta \varphi_T$)
- detector sample ID
- interaction topology (CC0π0p, CC0π1p, CC0πNp, CC1π, CCother)

4. Unfolding of ND280 data: Omnifold



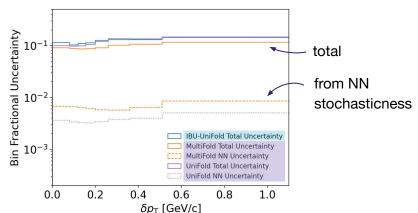
Comparision with conventional-like unfoldings:

- not straightforward since Omnifold is unbinned
- use Omnifold in a way that it is mathematically equivalent to IBU (Iterative Bayesian Unfolding): inputs limited to bin indices

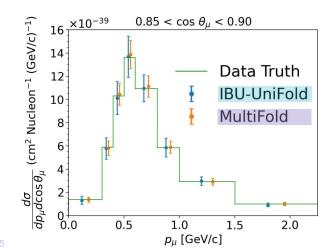
		χ^2				
-	Method	$(p_{\mu}, \cos \theta_{\mu})$	$\delta p_{ m T}$	$\delta lpha_{ m T}$	$\delta\phi_{ m T}$	
	Method	DoF=58	DoF=8	DoF=8	DoF=8	,
conventional	Prior	298.2	2.3	5.9	4.9	
	IBU-UniFold	2.1	0.2	0.4	0.1	
	Binned UniFold	21.4	1.4	0.9	0.5	
Omnifold variations	UniFold	27.1	1.1	0.6	1.1	
	MultiFold	3.1	0.3	0.2	0.3	
	OmniFold	10.0	0.8	1.1	0.4	

		Triangular Discriminator			
_	Method	$(p_{\mu},\cos heta_{\mu})$	$\delta p_{ m T}$	$\delta lpha_{ m T}$	$\delta\phi_{ m T}$
-	Prior	545.6	27.5	31.2	26.7
	IBU-UniFold	17.1	1.9	3.4	0.8
	Binned UniFold	29.9	2.8	6.0	1.9
	UniFold	17.3	5.7	5.8	1.7
	MultiFold	2.7	0.7	0.6	0.6
_	OmniFold	9.4	1.7	3.0	2.1

Uncertainties:



(inputs choice)



4. Unfolding of ND280 data: Omnifold

Questions

5. Modeling posterior systematic: Normalizing Flows

ND fit is a constrain on systematic uncertainties using ND280 observations

Context: ND280 likelihood of systematics depends on >700 variables (from flux, detector and xsec uncertainties)

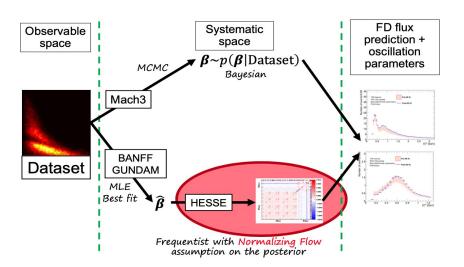
Goal: Learn the posterior probability distribution of neutrino flux binned in neutrino energy

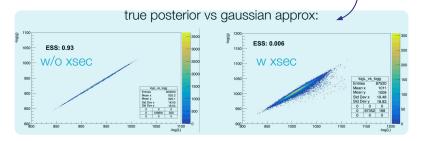
Conventional methods:

- Semi-frequentist (*GUNDAM*): gaussian assumption on the posterior, get best-fit params from MLE - miss xsec non-gaussianities

- Bayesian (*Mach3*): sample from the posterior using MCMC

- pt cloud estimation (not analytical)





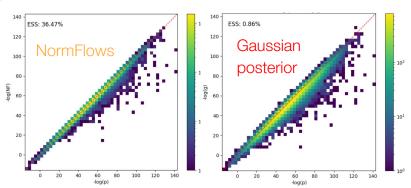
Where ML comes in:

replace *GUNDAM* gaussian approximation by something more complex to capture non-gaussianities in xsec params

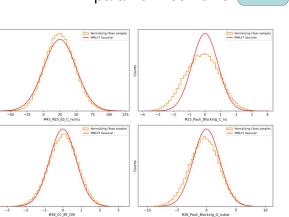
5. Modeling posterior systematic: Normalizing Flows

 $\mathbf{x} = T_{\theta}(\mathbf{u}) \sim q_{\theta} \text{ with } \mathbf{u} \sim p_{\mathbf{u}} \text{ & evaluate the proba } q_{\theta}(\mathbf{x}) = p_{\mathbf{u}}(\mathbf{u}) \mid \det \left(\mathbf{J}_{T_{\theta}}(\mathbf{u}) \right) \mid^{-1} \mathbf{u}$

Test: on full sets of systematics (OA 2022 config) to learn the 59 xsec probas conditioned on the 652 flux + detector systematics



Archi: 5 RQ-NSF splines, MANN-parametrized flows



Gaussian samples in eigenspace

CovFlow (optionally trainable)

Post-fit (optional)

Post-fit (optional)

Post-fit (optional)

Flux + detector wordfrix,

"resculed"

Fast method: 10M sample /day vs?

5. Modeling posterior systematic: Normalizing Flows

Questions:

- running time comparison with non-ML method?
- is loss func the KDL or derived from it?

6. CCQE cross-section sampling: Normalizing Flows

Goal: efficient MC sampling for CCQE exclusive cross-section of neutrino-nucleus (12C)

Conventional method:

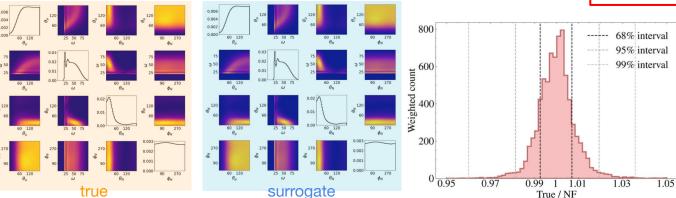
use sophisticated nuclear models

$$\frac{d^6\sigma}{dE_{\nu}d\omega d\Omega_{\mu}d\Omega_N} \propto L^{\mu\nu} W_{\mu\nu}
ightarrow ext{long computations}$$

ML method: same Normalizing Flow architecture as project 5 (slightly different loss function derived from KLD)

Train: to model 1p1h i.e. $p(heta_{\mu},\,\omega,\, heta_{N},\,\phi_{N}\mid E_{
u},\,lpha)$ on 2 shells for many $E_{
u}$

Test: sample e.g for (600 MeV, 1s shell)



Base Sampling Training distribution Base distribution Normalizing User's input Flows $E_{\nu}, M_{A} \dots$ Normalizing User's input Flows Surrogate Cross-section Predicted Loss Function distribution First Samples Cross-Resampling section **Final Samples** Cross-section Optional

Fast method:

1M sample /25min/GPU vs 1 day/CPU

Next:

2p2h will be more complicated because higher dimension

26

6. CCQE cross-section sampling: Normalizing Flows

Questions:

.

Summary

- Increasing number of ML projects at T2K ND
- In all stages of the experiment: more project in the analysis part, then reconstruction then simulation
- Methods are starting to be used in the official software (BDT, Transformer), paving the way for the other ones
- Challenges to come:
 - integration within reconstruction softwares is more tricky?
 - more friendly integration possibilities for these methods?
 - strategy for systematic propagation

28