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Summary

• PEPITES detector
• Internship: objectives
• Shockley-Ramo theorem in brief

• Introductory example
• Application in PEPITES

• Simulation of the different fields 
• Simulation of the different currents

• Preliminary results and future work: 
• Time resolution
• Study of the signal form to trigger the measurement
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PEPITES detector
• PEPITES is a beam monitor developed at LLR, using Secondary Electron 

Emission (SEE) as its detection principle

• SEE occurs when ionization electrons, created near a material’s surface, 

escape into the vacuum

• SEE requires only a material thickness of O(10 nm), allowing for the creation 

of ultra-thin, non-perturbing beam monitors

• These monitors provide real-time (online) measurements of the beam as it 

strikes the target

• SEE is highly linear, making it ideal for use with high-intensity beams

• This makes PEPITES particularly suited for emerging techniques like FLASH 

radiotherapy
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Internship: objectives 
• Explore a new application of SEE using PEPITES as a Time-of-Flight (ToF) 

monitor

• Simulate the signal shape (from electron generation to their collection, 

to assess the feasibility of precise triggering)

• Use the Shockley-Ramo theorem to calculate the signal induced by 

moving charges

• Gain insights into the PEPITES signal to understand its behaviour 
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where 𝐸∗ is the virtual electric field that 

would exist if:

• electrode 𝑘 were placed at potential 1𝑉

• all other electrodes being grounded (0𝑉)

• all charges present in the detector were 

removed

Shockley Ramo 
theorem in brief

• Consider a set of electrodes raised to potentials 𝑉𝑖

• Let there be a particle with charge 𝑞, whose motion 𝑀 𝑡  

is known. Then its velocity is Ԧ𝑣 𝑡 .

• Electrode k receives a current I(t) induced due to the 

particle’s motion.

𝐼 𝑡 = −𝑞 ⋅ Ԧ𝑣 𝑡 ⋅
𝐸∗

1𝑉

derived from Maxwell’s equations
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Real field 𝐸
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𝑉

Application: 2 infinite planes 1/4 
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Ramo field 𝐸1
∗

1
𝑉

Application: 2 infinite planes 2/4
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Ramo field 𝐸2
∗

𝑂
𝑉

1
𝑉

Application: 2 infinite planes 3/4
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Real field 𝐸Ramo field 𝐸1
∗ Ramo field 𝐸2

∗

𝑒−
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0
𝑉

Application: 2 infinite planes 4/4
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Analytical resolution (1mm plane)

Electric charge 

conservation
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In the case of PEPITES? 1/6
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Ramo field 𝐸1
∗

Ramo field 𝐸2
∗

In the case of PEPITES? 6/6

Inducing a current without receiving or emitting a charge
raises the question of how the charge is conserved

Ramo field 𝐸1
∗

Ramo field 𝐸1
∗
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What really happens 1/3

17

The motion of the electron induces a transient current in the adjacent 

electrodes, starting positive and then becoming negative
The two currents cancel each other out, so the integral is zero and no charge is transmitted 
to the neighboring electrodes
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What really happens 2/3

The motion of the electron induces a transient current in the adjacent 

electrodes, starting positive and then becoming negative
The two currents cancel each other out, so the integral is zero and no charge is transmitted 
to the neighboring electrodes
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What really happens 3/3

The motion of the electron induces a transient current in the adjacent 

electrodes, starting positive and then becoming negative
The two currents cancel each other out, so the integral is zero and no charge is transmitted 
to the neighboring electrodes
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Calculation of the different fields: 
working principles
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• Use of the Mean Value Theorem

𝑉 𝑀 = 𝑉ۦ ۧ𝑃

•  If we take an arbitrary point M and surround it with a sphere, the mean value of the 

potential at all points on the sphere’s surface is equal to the potential at point M.

• If we approximate the Laplacian with ∆𝑉 ≈
4 𝑉𝑚𝑜𝑦−𝑉𝑖,𝑗

ℎ2 ,

it comes down to solving: 𝑉𝑖,𝑗 = 𝑉𝑚𝑜𝑦



Numerical solution of 

Laplace’s equation using a 

diffusion-based approach:

∆𝑉 =
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2

Low-resolution calculation 

followed by interpolation in 

the region of interest (ROI)
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Simulating Ramo field and studying electron dynamics in this field (1/3)
The electron's movement is not influenced by the Ramo field, but by the real field.
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Simulating Ramo field and studying electron dynamics in this field (2/3)
The electron's movement is not influenced by the Raman field, but by the real field.

23
Alexandre Poirot - M1 Internship 

23/06/2025



Simulating Ramo field and studying electron dynamics in this field (3/3)
The electron's movement is not influenced by the Raman field, but by the real field.
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at the end, no 
electrical charge 
is transmitted

artifact in the 
discretization
of the field...

Simulation of Ramo current in transmitter and neighboring stripes
The current in the parallel strips is of the same magnitude as that in the transmitter strips
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Future work:
Investigation of Time Resolution
• Measurement of hadron therapy beam energy using the time-of-flight method

• Impact of electron trajectory variability

• Analysis of signal shape for trigger optimization

𝑇1 𝑇2

Hadron beam

PEPITES detector
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𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

Various possible paths that electrons can take 
• what signal will this generate once Shockley-Ramo is applied ? 
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with a uniform distribution of solid 

angles of incidence and the following 

energy spectrum:

𝑁 𝐸 ∝
1

𝐸 + 𝐸0

where 𝐸0 is the average binding energy 

of electrons in the material (e.g. ~5 −

50 𝑒𝑉 for gold)

Preliminary
statistical analysis 
of time variance:
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Thank you for 
your attention!
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