

The Study of Polarised ZZ Vector Boson Scattering

Why study VBS?

- There is particular interest in studying the longitudinal component of VVjj VBS
- Testing the EWSB mechanism
 - The longitudinal components of the vector bosons arise from "eaten" Goldstone bosons
 - Deviations from SM predictions implies alterations to the Higgs mechanism
- Sensitivity to NP BSM
 - Many models (i.e. strongly coupled dynamics, composite Higgs, extra dimensions...) are affected by polarisation-dependent interactions of vector bosons
 - Can probe the anomalous triple and quartic gauge couplings. For example, ZZjj EW process is sensitive to WWZZ and WWZ self-interaction couplings
- Testing unitarity of a theory cancellation between V_L mediated and Higgs mediated diagrams

2310.13803

EW VVjj VBS

We are only interested in double-resonant diagrams as we want two on-shell intermediate state VBs. Including these extra diagrams would mean we could not separate the VBs polarisations

16 June 2025

How to perform polarisation measurements

Perform fits to distributions from data using polarisation templates, which are taken from Monte Carlo generators

- Practical
- Accurate in real detector environments
- Can extract polarisation information with minimal assumptions

The polarisation vectors are not Lorentz-covariant, so the choice of frame is very important. In my thesis, everything is defined in the lab frame

The polarised measurements so far

EW Production		Final states		
Vector Boson Scattering	SSWW	OSWW WZ	ZZ	
$q \rightarrow V W/Z$ $q \rightarrow V W/Z$ W/Z W/Z $q \rightarrow q$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z \xrightarrow{\ell^{-}} \ell^{+}$ $Z \xrightarrow{\ell^{-}} \ell^{+}$ $Z \xrightarrow{\ell^{-}} q$ $Z \xrightarrow{\ell^{-}} \ell^{-}$ $Z \xrightarrow{\ell^{-}} \ell^{+}$ $CMS PAS SM$	<u>P-24-013</u>
Experiment, year	Process	CM energy, L	Observed (expected) significance	What did they measure?
<u>ATLAS 2022</u>	W±Zjj	13TeV, 139fb-1	7.1	Pair production of longitudinally polarised W±Z - joint and individual helicity fractions for both W-Z and W+Z
ATLAS 2025	Same-sign W±W±jj	13TeV, 140fb-1	3.3 (4.0)	At least one of the W bosons is longitudinally polarised

16 June 2025

VBS Topology

- VBs and their decay products are produced in the central region of the detector
- High energy tagging jets with large pseudorapidity separation and high dijet invariant mass
- Central hadronic activity between jets is suppressed due to colour decoherence

Background

Fully Leptonic VBS Process $pp ightarrow jjZZ ightarrow jje^+ e^- \mu^+ \mu^-$

- Fully reconstructable leptonic final states which have very low backgrounds, excellent momentum resolutions and clean reconstruction of Z boson kinematics
- Limited number of events

CMS-PAS-FTR-18-014

Monte Carlo Simulations

- LO with MadGraph
 - Showering effects are included using PYTHIA8
- LO with SHERPA for direct comparison with MadGraph
 - Showering effects are included using internal mechanics
- QCD and EW NLO with SHERPA
 - Loop generators OpenLoops, Internal and Recola
 - Born, virtual and real corrections
 - UV divergences: dimensional regularisation, IR divergences: Catani-Seymour dipole subtraction method
- LHE/HepMC3 file is then passed through Delphes to simulate CMS detector effects
- ROOT, Python and C++ are used to analyse the results

Simulation setup

- To minimise $\gamma\gamma$ and γZ contributions: $|M_{l^+l^-} M_Z| < 15 \text{ GeV}$
- $p_t^l > 20$ GeV and $|\eta_l| < 2.5$ are applied to define a fiducial region where it is possible to reconstruct the entire final state
- $M_{4l} > 200 \text{ GeV}$ shields from the Higgs peak and selects large M_{ZZ} most interesting for NP
- $|\Delta \eta_{jj}| > 2.5$
- $M_{jj} > 500$
- $|\eta_j| < 5$
- $p_t^j > 20 \text{ GeV}$

1907.04722

MadGraph Validation

$$pp
ightarrow jjZ^e_{pol}Z^\mu_{unpol}
ightarrow jje^+e^-\mu^+\mu^-$$

LO SHERPA v MadGraph5

16 June 2025

LO SHERPA v MadGraph5

Sherpa gives a significantly harder pT spectrum

The pT Dilemma

- M_jj is a main discriminating variable between VBS and QCD induced processes
- pT ratio is independent to how jj is defined in MadGraph and SHERPA
- Jet multiplicity is the same for both MC generators
- The problem is believed to originate from the phase space mappings in SHERPA and needs correcting

NLO Corrections with SHERPA

There is a strong relationship between NLO QCD corrections and polarisation effects - LO templates are insufficient!

• QCD NLO: cross section is approximately +34% larger than LO

	LO cross section [pb]	QCD NLO cross section [pb]
Unpolarised	6.1789e-05 ± 2.7248e-07	7.2917e-05 ± 2.5824e-07
Longitudinal	1.6038e-05 ± 1.2343e-07	2.2267e-05 ± 1.3474e-07
Transverse	4.2288e-05 ± 2.8496e-07	4.7181e-05 ± 2.6258e-07

LO vs QCD NLO with SHERPA

16 June 2025

Next steps

- EW NLO corrections with Sherpa
- Training a boosted decision tree with these polarisation templates

Thank you