

Coffret DAQ PEPITES

Franck Gastaldi / Rémi Duhamel / Remi. Guillaumat / Lorenzo Bernardi / François Joubert ... et bien d'autres avant

Journée des groupes techniques du LLR – 3 juillet 2025

Sommaire

Contexte

Le système DAQ

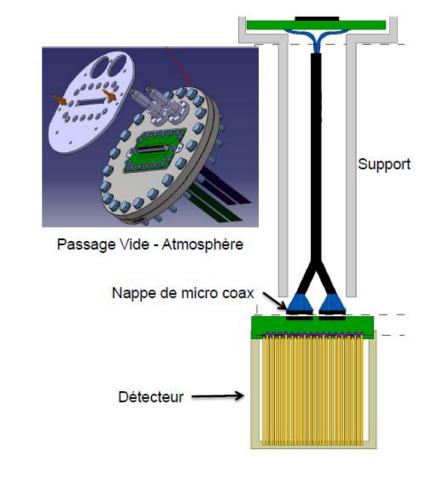
Architecture du firmwre

Conclusion

Contexte

Acheminer des faibles courants (pA) depuis le détecteur situé dans la ligne faisceau à l'ASIC situé hors du

tube faisceau

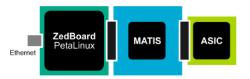

Petits courants

configuration Triax

- Câblage environ 30 cm de long basse capacité
- Translation du détecter faisceau / hors faisceau
- Passage vide/Atmosphère ambiant

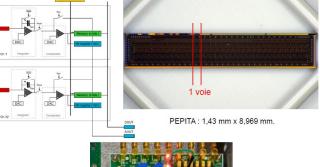
Solution : câbles micro coax basse capacité logés dans le support détecteur

- Coax + support Triax
- Logés dans le support Pas de problème avec la translation du détecteur (tout se déplace ensemble)
- Passage de vide via un PCB traversant



Le système DAQ

Coffret constitué de 3 cartes : ZedBoard + Matis + PEPITA



- Cœur du control/readout PEPITAS
- FGPA Zynq (processeur embarqué)
- Lecture/contrôle par RJ45
- Interface logiciel PETALINUX
- Firmware téléchargé sur carte SD
- Interconnexion Zedboard/Matis Connecteur FMC

Spécifications Matis

- Translateur/driver de niveaux
- Régulateurs de tensions pour **PEPITAS**
- Interconnexion Trigger/Sync/Signal externe
- ADC 2 voies 200Mbs/14bits
- Interconnexion ZedBoard FMC
- Interconnexion PEPITAS Samtec

Spécifications PEPITA

- Lecture 2 x 32 voies courant
- 2 ASICs PEPITAS (32 voies) de lecture
 - Développé par le CEA-DEDIP
- Grande gamme dynamique (pA à 10 nA par voie)
- Technologie XFAB 180 nm 1 voie = Intégrateur et 2 comparateurs (seuil haut, seuil bas)
- Placé en dehors du tube faisceau pour diminuer la dose reçue

Architecture du firmware

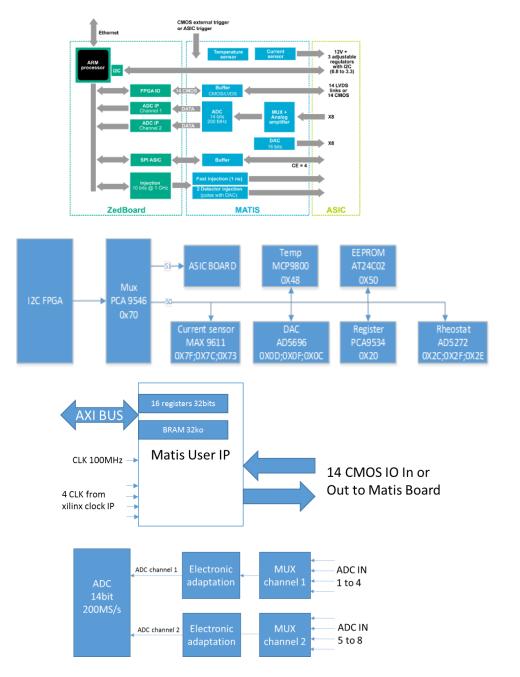
Contrôle/Commande

Effectué par liaison série I2C et divisée en 2 canaux Un canal est utilisé pour contrôler les composants I2C sur la carte MATIS L'autre canal est utilisé pour PEPITA

Configuration de l'ASIC

Chaque Asic sont configurés par 320 bits dans la même transaction. Le firmware (FPGA Zedboard) dispose de 20 registres de 32 bits chacun

Régalage des HV


Le firmware permet de régler les valeurs de HV sur les plans de PEPITES

Générateur de signaux

- 1. Mode TDC
- 2. Mode Multiplexé

Lecture des données

L'ADC dispose de 2 canaux connectés à un multiplexeur 4 canaux en un. Le multiplexeur est contrôlé par le firmware

Conclusion

- 1. Système semi-opérationnel (un mode de fonctionnement de l'ASIC à debugger)
- 2. Réaliser une automatisation des tests
 - 1. Slow control
 - 2. Control/commande I2C
 - 3. Pilotage ADC
- 3. Mener une réflexion sur l'avenir de ce coffret et les solutions envisagées

