
Towards a better understanding of Giant Molecular Clouds' evolution

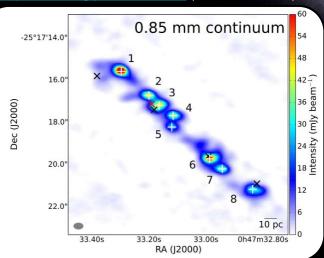
Giant Molecular Cloud (GMC) / 巨大分子雲

Birthplaces of stars

How: by collapse of gas

Virial equilibrium : $2E_{therm} + E_{grav} = 0$

$$\mathsf{E}_{\mathsf{therm}} = \frac{3Mk_BT}{2\mu m_H} \quad \mathsf{E}_{\mathsf{grav}} = \frac{-3GM^2}{5R}$$


Jeans mass:
$$M_J = \left(\frac{5k_BT}{G\mu m_H}\right)^{\frac{3}{2}} \left(\frac{3}{4\pi\rho}\right)^{\frac{1}{2}}$$

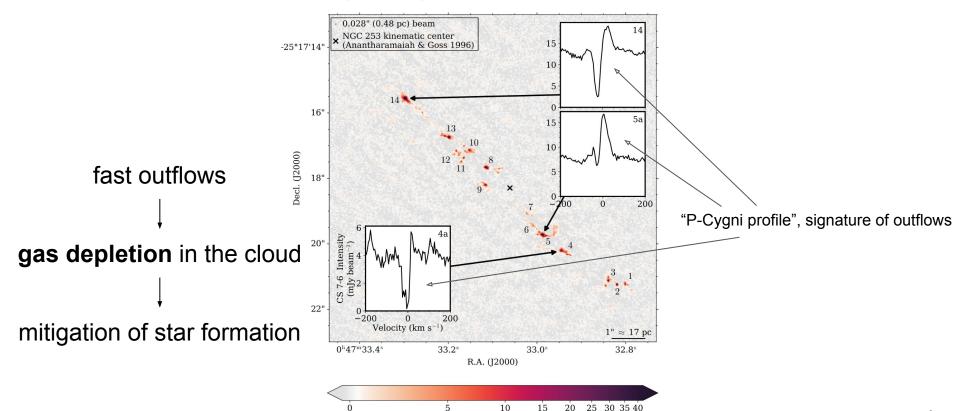
Fragmentation until ρ high enough to form a star

NGC 253

Radio observation

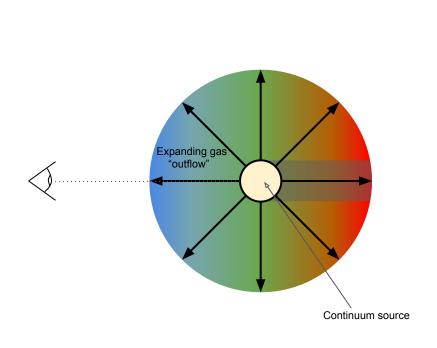
https://arxiv.org/pdf/1710.01432 (Ando et al. 2017)

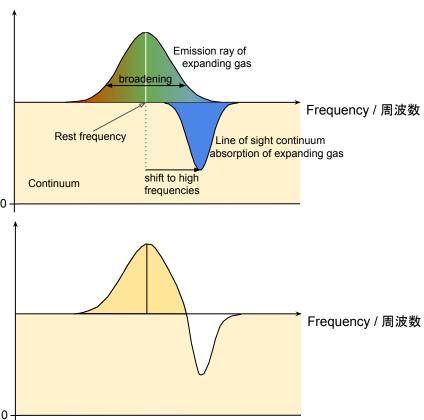
Starburst galaxy


3.5Mpcs

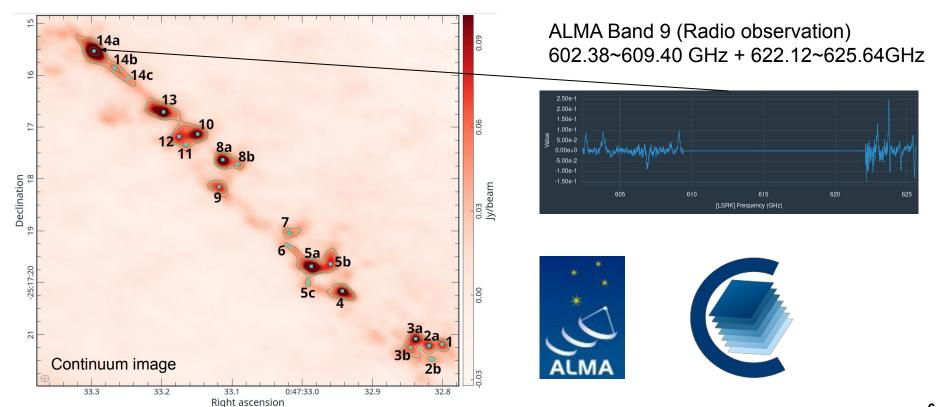
R.A. 00^h43^m33.1^s Dec -25°17'18"

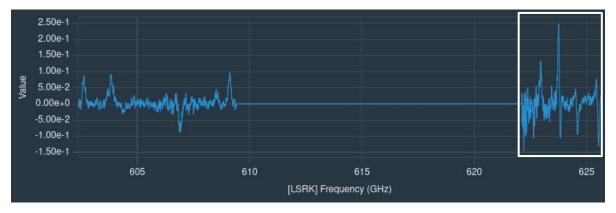
Optical observation

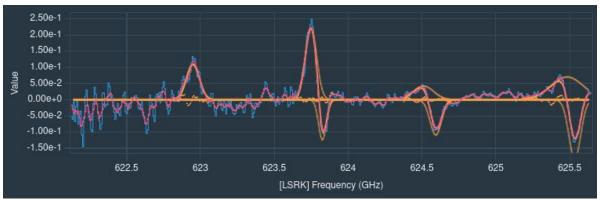

Mount Lemmon SkyCenter/University of Arizona


Super Star Clusters (SSC) / 超星団

350 GHz Continuum (K)

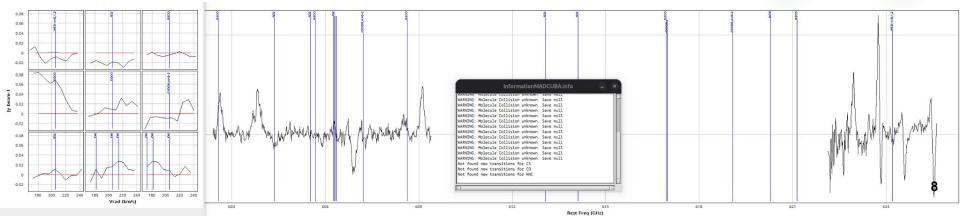

P-Cygni profile, signature of outflows




another good sign: presence of species such as ionized water (H₂O+)[°]

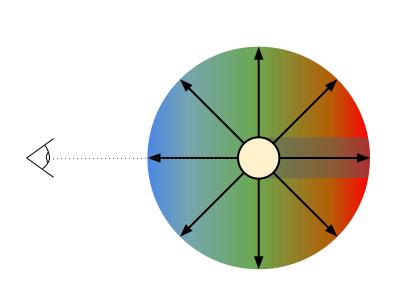
First Results 1/2

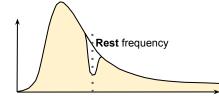
First Results 2/2


TODO List

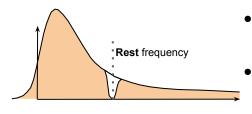
- Line identification (currently)
- Find less clean P-Cygni profile if any
- Explain declination offset with Levy et al. 2021
- Better understanding of those outflows
- Write a paper

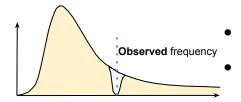
			LI .
#	Species	Chemical Name	Ordered Frequency (GHz) (rest frame, redshifted)
1	CH3OH V1 = 0-2	Methanol	603.193542, 603.193542
2	CH3OH Vt = 0-2	Methanol	603.194265, 603.194265
3	CH3OH v1 = 0-2	Methanol	603.268906, 603.268906
4	CH3OH V1 = 0-2	Methanol	603.269562, 603.269562
5	CH3OH V1 = 0-2	Methanol	603.344616, 603.344616
6	CH3OH V1 = 0-2	Methanol	603.468776, 603.468776
7	CH3OH Vt = 0-2	Methanol	603.468855, 603.468855
8	CH3OH Vt = 0-2	Methanol	603.731963, 603.731963
9	CH3OH Vt = 0-2	Methanol	603.751021, 603.751021
10	CH3OH V1 = 0-2	Methanol	603.877318, 603.877318
11	CH3OH V1 = 0-2	Methanol	604.194257, 604.194257
12	CH3OH V1 = 0-2	Methanol	604.237818, 604.237818
13	CH3OH V1 = 0-2	Methanol	604.319054, 604.319054
14	SO2 v = 0	Sulfur dioxide	604.367435, 604.367435
15	SO2 v = 0	Sulfur dioxide	604.4065334, 604.4065334
16	CH3OH Vt = 0-2	Methanol	604.508623, 604.508623


ionized water (H₂O⁺) 604.68 GHz 607.23 GHz



P-Cygni profile, signature of outflows (blueshifted absorption)




Frequency / 周波数

From gas' point of view

- Continuum is redshifted as the source is moving away
- Absorption frequency is intrinsic characteristic of the gas

From **observer's** point of view

- Continuum source is not moving
- Absorption seems blueshifted

10