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Studying neutrinos
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The Hyper Kamiokande neutrino
detector



Water Cherenkov detectors

PMT support structure
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The Hyper Kamiokande detector
(experiment starting in 2028) with its
Photomultiplier Tubes (PMTs).
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Capturing this light with photosensors.



Water Cherenkov detectors
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Cherenkov radiation emitted at a fixed angle
for particles going at speeds higher than the
speed of light in the medium.
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Hyper Kamiokande’s construction

HK’s tank being drilled.

PMTs on their testing bench being
handled by a skilled worker.



Reconstruction of the events



Raw data : Cherenkov rings

PMT wall

PDPMT

Partide's-direction

Cone of light generated by
Cherenkov radiation.
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Ring projected by the |—

Cherenkov radiation on
the wall of the detector.
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Actual electron event detected by
Super Kamiokande.




Reconstructing the physical properties of the events

Main physical properties we need to reconstruct :
- Type of particle (electron, muon, pion, photon, ...)
- Momentum of the particle
- Vertex (starting point) of the particle

- Direction of the particle

One of the goal of my work : study the possibility of
separating gamma (photon) and electron events.
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Reconstructing the physical properties of the events

Statistical method based on know distributions.
Parameters used by the fit :
- Distribution of the Cherenkov charge emitted by the particle

Monte-Carlo simulations are used to generate these distributions.

unhit hit
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g 3
/ Then a more precise reconstruction :

. ) likelihood method on every parameters.
First reconstruction of the vertex by

calculating the time of flight of
Cherenkov photons and finding the best
fit with the actual observed data.
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Separation of gamma and electron events
Charge profiles:

s=0
Elect 3
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photon <e+

Inside the tank, high energy photons decay into a
pair of e+/e-.

The order of magnitude of the angle of separation
ism_e/k ~ 2° for 500 MeV photons, so the
Cherenkov rings superimpose into a single ring.
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Counts
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Separation of gamma and electron events

e-/gamma PID based on NLL
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Event selection



The T2K experiment

Super-Kamiokande

Mt.Noguchi-Goro Dake
2,924m

Mt.Ikenoyama
1,360m

Near Detector

Neutrino Beam

The T2K experiment layout : a beam of pure muon neutrinos is
produced and intercepted by our detector.
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the

flavor (muon, electron, tau)
of the neutrino can change

over time.
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At the energy of T2K (~600 MeV), CCQE
interactions are predominant followed

Figure 5.2: Neutrino charged current interaction with a nucleus through quasi-elastic (left), resonant (center) by CCRes interactions.
and DIS processes.
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Figure 7.2: T2K vy, beam spectrum at different off-axis angles. The v, Figure 7.4: Predicted T2K neutrino flux at SK. Figure provided by the T2K
survival probability at SK is also shown on the top. Figure taken from [86]. beam working group.



Different kind of interactions

Our signal for oscillation analysis is :

- CCQE nu_mu and CCQE from oscillated nu_e -> 1Re and 1Rmu samples

- CC1pi nu_mu and CC1pi from oscillated nu_e -> MRmu, 1Re+pi, MRe samples
Everything else is background :

- Neutral current

- Non oscillated nu_e (beam contamination)

- CCDIS (high energy neutrino interactions)

First study of this kind for Hyper Kamiokande : a lot of parameters needs to be optimized,

especially the fiducial volume (maximum volume containing all the events that we accept).

e direction
%— —
dwall towall

Particles outside the

fiducial volume are
ignored.
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Some results

Using the properties reconstructed by fiTQun, we
can find criteria to select only our signal events
among all the events:

Number of rings

Number of decay electrons (from muon decay)
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Some results

Signal efficiency (FCFV) vs dwall - CC1n—likev,selectionMR — channel
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Sample statistics obtained during this work (here
for CCQE samples).
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Final word

Other subjects | worked on during my internship :

- Phenomenology : study of the possibility of experimentally validating theoretical model of
neutrino physics like leptogenesis, discrete flavor symmetry.

- Exploring the impact of an electron/gamma separation on the background of proton decay
analysis.
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Thank you for listening



