# Hyper-Kamiokande : reconstruction and selection of events

Arthur Choquet

## **Studying neutrinos**

Very light particles interacting only through weak interaction (W and Z bosons).

Interesting and not yet completely understood phenomena like **neutrino oscillation**.



(a) CCQE

One possible neutrino interaction with matter, **creating a charged lepton** (here a muon).

#### **Standard Model of Elementary Particles**



Standard Model of particle physics.

# The Hyper Kamiokande neutrino detector

#### Water Cherenkov detectors



The **Hyper Kamiokande** detector (experiment starting in 2028) with its Photomultiplier Tubes (PMTs). Capturing this light with photosensors.

#### Water Cherenkov detectors



Cherenkov radiation emitted at a fixed angle for particles going at speeds **higher than the speed of light in the medium**.



Capturing this light with photosensors.

#### Hyper Kamiokande's construction



HK's tank being drilled.





PMTs on their **testing bench** being handled by a skilled worker.

## **Reconstruction of the events**

#### **Raw data : Cherenkov rings**





Actual **electron event** detected by Super Kamiokande.

#### Reconstructing the physical properties of the events

Main physical properties we need to reconstruct :

- Type of particle (electron, muon, pion, photon, ...)
- Momentum of the particle
- Vertex (starting point) of the particle
- Direction of the particle

One of the goal of my work : study the possibility of **separating gamma (photon) and electron events**.



Actual **electron event** detected by Super Kamiokande.

#### Reconstructing the physical properties of the events

Statistical method based on know distributions.

Parameters used by the fit :

- Distribution of the Cherenkov charge emitted by the particle

Monte-Carlo simulations are used to generate these distributions.



First reconstruction of the vertex by calculating the **time of flight** of Cherenkov photons and finding the best fit with the actual observed data.

$$L(\mathbf{x}) = \prod_{j}^{\text{unhit}} P_j(\text{unhit}|\mathbf{x}) \prod_{i}^{\text{hit}} \{1 - P_i(\text{unhit}|\mathbf{x})\} f_q(q_i|\mathbf{x}) f_t(t_i|\mathbf{x}).$$

Then a more precise reconstruction : **likelihood method** on every parameters.



#### Separation of gamma and electron events



- Inside the tank, high energy photons decay into a **pair of e+/e-.**
- The order of magnitude of the angle of separation is m\_e/k ~ 2° for 500 MeV photons, so the Cherenkov rings **superimpose into a single ring**.



Charge profiles :

<mark>Red</mark> is e- events Blue is gamma events

#### Separation of gamma and electron events



Using reconstructed properties, **the separation power is lost.** 



## **Event selection**

#### The T2K experiment



The T2K experiment layout : **a beam of pure muon neutrinos** is produced and intercepted by our detector.



#### Different flavors of neutrino.



Neutrino oscillation : the flavor (muon, electron, tau) of the neutrino can change over time.



Figure 5.2: Neutrino charged current interaction with a nucleus through quasi-elastic (left), resonant (center) and DIS processes.

cm² 10 TOTAL **ш**0 50.6 X0.4 10<sup>2</sup> 10<sup>-1</sup> 10 E. (GeV)

Figure 5.1: Total neutrino CC cross sections per nucleon divided by neutrino energy and plotted as a function of energy. The important increase from  $E_v \sim 100$  MeV to 1 GeV is due to the kinematics of the process which should produce a muon. Taken from [65], See Figure 5.3 for the legends of the different data sets,

At the energy of T2K (~600 MeV), CCQE interactions are predominant followed by CCRes interactions.

1 lepton produced : Charged **Current Quasi Elastic** (CCQE) interactions

 $CC1\pi$  (1 lepton + 1 charged pion produced): **Charged Current Resonant interaction** 



T2K Run1-4 Flux at Super-K Flux (/cm<sup>2</sup>/50MeV/10<sup>21</sup>p.o.t)  $= \nu_{\mu}$ 106 ₩v
<sub>µ</sub>  $10^{2}$ Ψve  $\# \overline{\mathbf{v}}_{\mathbf{e}}$ 104 103  $10^{2}$ 0 2 6 8 10 E. (GeV)

Figure 7.2: T2K  $\nu_{\mu}$  beam spectrum at different off-axis angles. The  $\nu_{\mu}$ survival probability at SK is also shown on the top. Figure taken from [86]. Figure 7.4: Predicted T2K neutrino flux at SK. Figure provided by the T2K beam working group.

15

### **Different kind of interactions**

Our signal for oscillation analysis is :

- CCQE nu\_mu and CCQE from oscillated nu\_e -> 1Re and 1Rmu samples
- CC1pi nu\_mu and CC1pi from oscillated nu\_e -> MRmu, 1Re+pi, MRe samples

Everything else is background :

- Neutral current
- Non oscillated nu\_e (beam contamination)
- CCDIS (high energy neutrino interactions)

First study of this kind for Hyper Kamiokande : a lot of parameters needs to be optimized, especially the **fiducial volume** (maximum volume containing all the events that we accept).



Particles outside the fiducial volume are ignored.

#### Some results

Using the properties reconstructed by fiTQun, we can find criteria to **select only our signal events** among all the events :

- Number of rings

-

. . .

- Number of decay electrons (from muon decay)
- Particle identification



17

#### Some results



Impact of the **fiducial volume** on the selection;



| Samples       |               | Signal<br>efficiency<br>(FCFV) | Signal<br>purity | Backgro<br>und<br>accepta<br>nce | Main<br>background                         |
|---------------|---------------|--------------------------------|------------------|----------------------------------|--------------------------------------------|
| CCQE<br>nu_e  | T2K<br>(2020) | 69.4%                          | 80.4%            | 1.6%                             | nu_e beam,<br>NC                           |
|               | нк            | 90.6%                          | 80.0%            | 1.3%                             | oscillated<br>nu_e CC,<br>nu_e beam,<br>NC |
| CCQE<br>nu_mu | T2K<br>(2020) | 84.2%                          | 76.3%            | 7.3%                             | nu_mu CC<br>non QE, NC                     |
|               | нк            | 92.2%                          | 80.4%            | 13.0%                            | nu_mu CC<br>non QE, NC                     |

**Sample statistics** obtained during this work (here for CCQE samples).

#### Final word

Other subjects I worked on during my internship :

- Phenomenology : study of the possibility of experimentally validating theoretical model of neutrino physics like **leptogenesis**, **discrete flavor symmetry**.
- Exploring the impact of an electron/gamma separation on the background of **proton decay** analysis.

# Thank you for listening