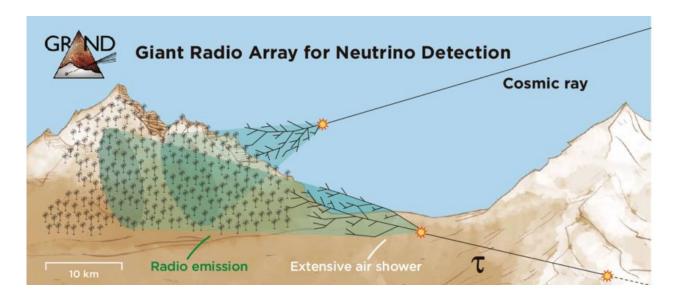
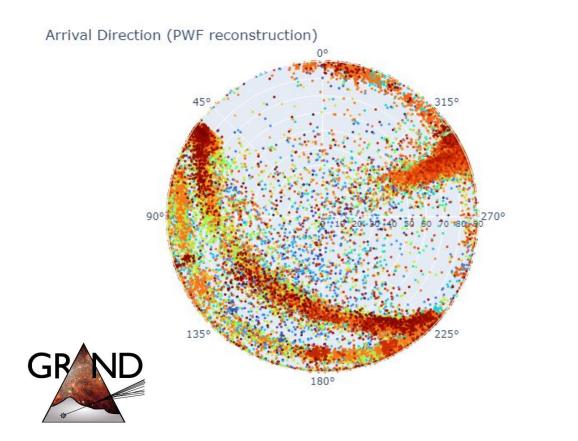

Cosmic Ray detection using clustering techniques

Sophie Carlier - Under the supervision of Jolan Lavoisier, Arsène Ferriere, Kumiko Kotera and Takashi Sako

Giant Radio Array for Neutrino Detection : GRAND

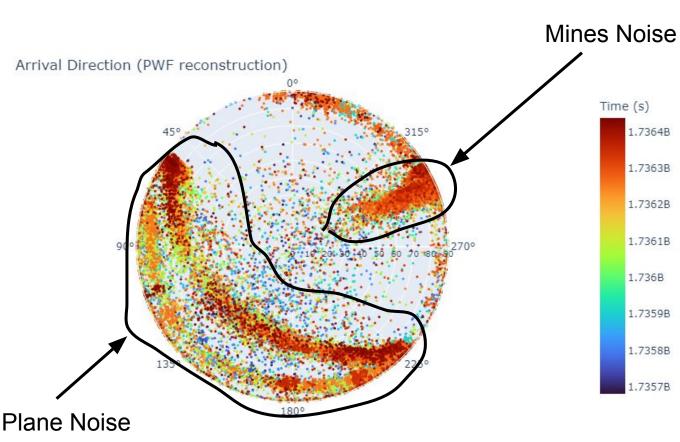


- Cosmic Rays enter the Earth's atmosphere
- Collision with nitrogen and oxygen → creation of an air shower (cascade of secondary particles)


Giant Radio Array for Neutrino Detection : GRAND

- Alr shower → Electromagnetic wave → detection with a network of radio antennas
- GRAND : 300 antennas over 200 km2

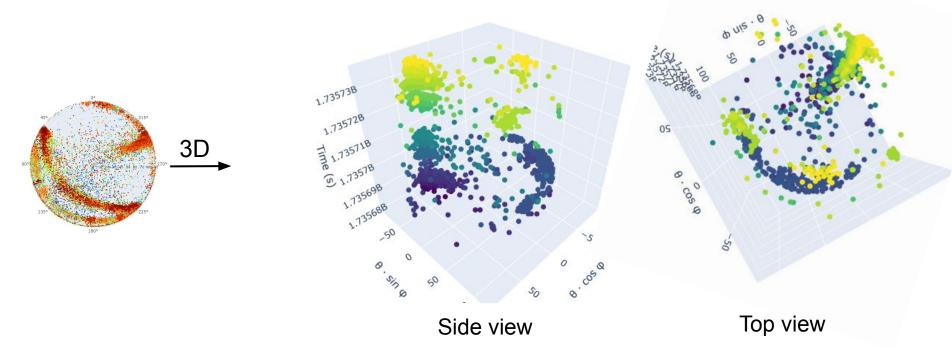
January 2025 data



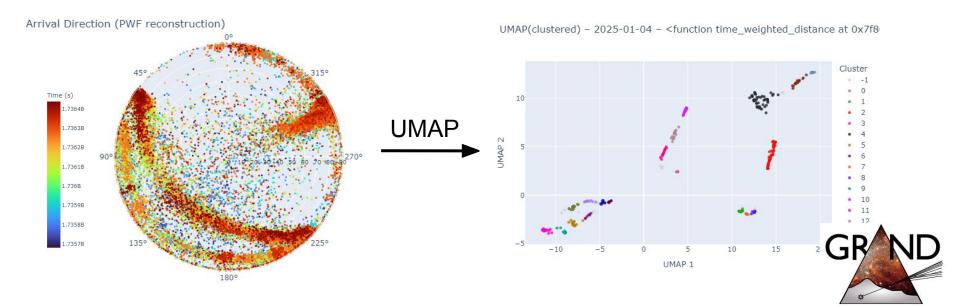
Three types of Noise :

- Galactic Noise
- Mines

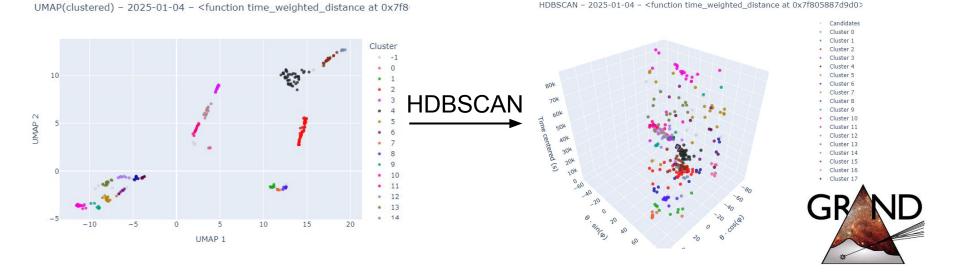
January 2025 data



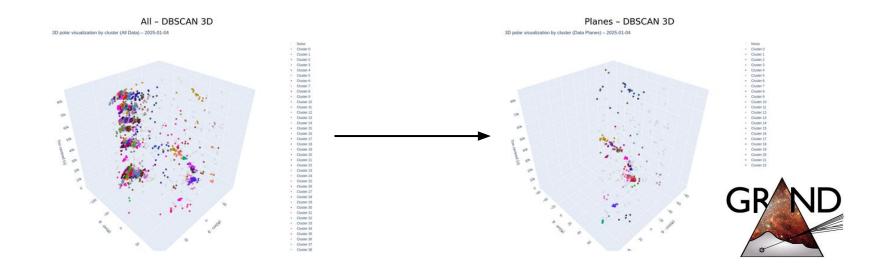
→ Clustering :
detect patterns
→ work on
mines and on
planes
individually


January 3D visualisation

Arrival Direction (PWF reconstruction)


Step 1 : Uniform Manifold Approximation and Projection (UMAP)

- Dimensionality **reduction technique** : preserves local and global structure
- Projects the original 3D space [time, theta, phi] into a 2D space [Umap1, Umap2]
- Parametric UMAP : neural network \rightarrow can learn and generalize to new data


Step 2 : Hierarchical Density Based Spatial Clustering of Application with Noise (HDBSCAN)

- Density-based clustering
- ++ : Handles varying densities and automatically detects outliers (= potential candidates)

- 1) Selection of Planes Data
 - $\rightarrow 50^{\circ} < \phi < 230^{\circ}$

 \rightarrow Goal : detect planes pattern (little Δt and high Δ angular : Plane signals appear as **horizontal slices** in the data space)

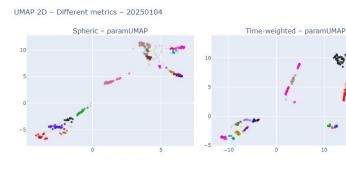
- 1) Selection of Planes Data
- 2) Introduce custom UMAP metrics

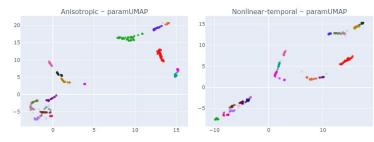
 \rightarrow give more importance to time than to angular variables

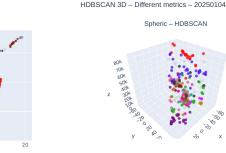
$$a=(t_a, heta_a,\phi_a), \hspace{1em} b=(t_b, heta_b,\phi_b)$$
 $\Delta t=|t_a-t_b|, \hspace{1em} \Delta heta=| heta_a- heta_b|, \hspace{1em} \Delta \phi=|\phi_a-\phi_b|$

1° linear metric $d_1(a,b) = 5 \cdot \Delta t + \Delta heta + \Delta \phi$

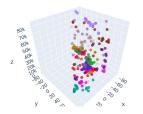
2° anisotropic metric $d_2(a,b) = \Delta t + 0.3 \cdot \sqrt{\Delta heta^2 + \Delta \phi^2}$

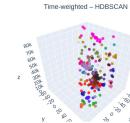

3° exponential metric $d_3(a,b) = \Delta t + e^{-1/\Delta t} \cdot (\Delta heta + \Delta \phi)$

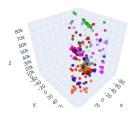

4° spherical metric $d(\mathbf{a}, \mathbf{b}) = \alpha \cdot (\Delta t)^2 + [\arccos(\sin \theta_a \cdot \sin \theta_b \cdot \cos(\phi_a - \phi_b) + \cos \theta_a \cdot \cos \theta_b)]^2$



10


- Selection of Planes Data 1)
- Introduce custom UMAP metrics 2)
- Implement parametric UMAP + HDBSCAN 3)



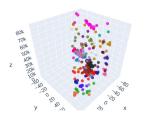

Anisotropic - HDBSCAN

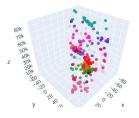
Nonlinear-temporal - HDBSCAN

- 1) Selection of Planes Data
- 2) Introduce custom UMAP metrics
- 3) Implement parametric UMAP + HDBSCAN
- 4) Optimize different parameters

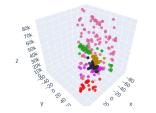
• HDBSCAN

test min_cluster_size : (5,10,20,50)

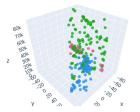

 \rightarrow min_cluster_size = 5



HDBSCAN 3D - Time-weighted metric - varying min_cluster_size (20250104)


min_cluster_size=5 - HDBSCAN 3D

min_cluster_size=10 - HDBSCAN 3D

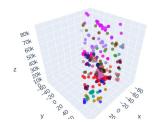


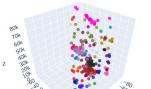
min_cluster_size=20 - HDBSCAN 3D

min_cluster_size=50 - HDBSCAN 3D

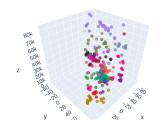
- 1) Selection of Planes Data
- 2) Introduce custom UMAP metrics
- 3) Implement parametric UMAP + HDBSCAN
- 4) Optimize different parameters

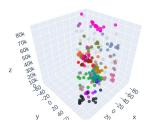
• HDBSCAN : *min_cluster_size* = 5


test n_neighbors : (5, 10, 20, 50)


 \rightarrow n_neighbors = 10

HDBSCAN 3D – varying n_neighbors – time_weighted_distance – 20250104


n_neighbors=5 – HDBSCAN 3D



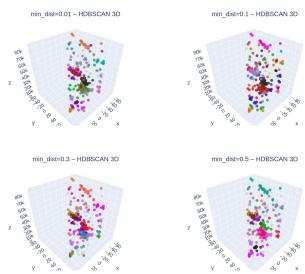
n neighbors=10 - HDBSCAN 3D

n_neighbors=20 – HDBSCAN 3D

n neighbors=50 - HDBSCAN 3D

- 1) Selection of Planes Data
- 2) Introduce custom UMAP metrics
- 3) Implement parametric UMAP + HDBSCAN
- 4) Optimize different parameters

• HDBSCAN : *min_cluster_size* = 5


n_neighbors = 10

UMAP : min_dist (0.01 , 0.01, 0.3 ,0.5)

 \rightarrow min_dist = 0.1

HDBSCAN 3D - varying min_dist - time_weighted_distance - 20250104

And now?

<u>Done :</u>

• Optimized clustering algorithm for planes

 \rightarrow Clear separation of clusters and outliers

Next steps and improvements :

• Apply the same methodology to mines data and **merge both datasets**

• Switch to a new representation space

 \rightarrow Current analysis uses SWF: (θ , ϕ , t)

 \rightarrow Next step: move to 4D space: (x, y, z, t) using PWF reconstruction