Physical properties of dust-enshrouded highredshift galaxies with Data from ALMA and James Webb Space Telescopes

Supervisor: KOHNO Kotaro

- 1. Introduction : What are dusty star-forming galaxies (DSFGs)
- 2. Previous studies
- 3. Study of five lensed and high-redshift galaxies : RXCJ0032-ID304/ID127, M0417-ID46, A0102-ID224, R0600-ID67 focusing on R0600-ID67

Introduction or reminder

- <u>Sub-Millimeter Galaxy (SMG)</u>: **high red-shift, dust-rich** galaxy that emits most of its energy in the **sub-millimeter range** due to intense star formation hidden by dust.
- <u>Star-Forming Galaxy : galaxy</u> that is actively producing **new stars**, typically characterized by **strong ultraviolet emission** from young, hot stars.
- Lensing cluster : massive galaxy cluster whose gravity bends and magnifies the light from background objects, acting like a natural cosmic lens (characterized by a magnification value μ)

SCHOOL OF SCIENCE

Introduction or reminder

- <u>Sub-Millimeter Galaxy (SMG)</u>: **high red-shift, dust-rich** galaxy that emits most of its energy in the **sub-millimeter range** due to intense star formation hidden by dust.
- <u>Star-Forming Galaxy : galaxy that is actively producing **new stars**, typically characterized by **strong ultraviolet emission** from young, hot stars.</u>
- Lensing cluster : massive galaxy cluster whose gravity bends and magnifies the light from background objects, acting like a natural cosmic lens (characterized by a magnification value μ)

Introduction or reminder

- <u>Sub-Millimeter Galaxy (SMG)</u>: **high red-shift, dust-rich** galaxy that emits most of its energy in the **sub-millimeter range** due to intense star formation hidden by dust.
- <u>Star-Forming Galaxy : galaxy that is actively producing **new stars**, typically characterized by **strong ultraviolet emission** from young, hot stars.</u>
- <u>Lensing cluster :</u> massive galaxy cluster whose gravity bends and magnifies the light from background objects, acting like a natural cosmic lens (characterized by a magnification value µ)

What is the physical origin of heavily obscured galaxies that exhibit a "red" color, as indicated by H-[4.5] > 2.3?

ALMA Lensing Cluster Survey (ALCS) : RXC J0032.1+1808

Sun, F., et al. 2022, ApJ, 973, 77

- 33 cluster fields
- 96-hr large program ٠

Galaxies are hidden by dust !

ALMA Lensing Cluster Survey (ALCS) : RXC J0032.1+1808

Sun, F., et al. 2022, ApJ, 973, 77

- 33 cluster fields
- 96-hr large program

- 1c : RXCJ0032 ID304
- 2a : RXCJ0032 ID127

5 galaxies : RXCJ0032-ID304/ID127, M0417-ID46, A0102-ID224, R0600-ID67

- 10" × 10"
- from left to right :
 - ALMA 1.2 mm (native and tapered)
 - o HST/ACS F814W
 - o WFC3- IR F160W
 - o Spitzer/IRAC 3.6 μm

2023.1.01689.S Proposal : ALMA Lensing Cluster Survey; Fujimoto et al. 2023), Herschel (Herschel Lensing Survey; Egami et al. 2010), and HST/Spitzer (RELICS; Coe et al. 2019

5 galaxies : RXCJ0032-ID304/ID127, M0417-ID46, A0102-ID224, R0600-ID67

- 10" × 10"
- from left to right :
 - ALMA 1.2 mm (native and tapered)
 - HST/ACS F814W
 - WFC3- IR F160W
 - Spitzer/IRAC 3.6 µm

Dusty star-forming galaxies (DSFGs) important because :

- Might represent the majority of massive galaxies $(M_* \ge 10^{10} M_{\odot})$ of the MS with 3 < z < 6
- The claimed high abundance of the mm-faint NIRdark sources at 3 < z < 6 cannot be reproduced by current semi-analytical models.

Why theses five galaxies ?

- 10" × 10"
- from left to right :
 - **ALMA** 1.2 mm (native and tapered)
 - o HST/ACS F814W
 - o WFC3- IR F160W
 - \circ Spitzer/IRAC 3.6 μ m

Source	Z _{spec}	coordinates	μ	Angular resolution (ALMA)	Physical length
M0417 ID46	3.65	04:17:33.2880, - 11:55:03.922	7.2	0.1″	~0.3 kpc
R0032 ID127	2.39	00:32:13.1600, 18:08:14.255	6.2	0.1″	~0.2 kpc
R0032 ID304	2.99	00:32:08.9526, 18:08:41.771	2.7	0.2"	~0.8 kpc
A0102 ID224	4.33	01:02:55.6832, - 49:15:09.068	9.0	0.1″	~0.2 kpc
R0600 ID67	4.80	06:00:05.0099, - 20:09:24.326	4.5	0.1"	~0.2 kpc

Adapted from 2023.1.01689.S Proposal

2023.1.01689.S Proposal : ALMA Lensing Cluster Survey; Fujimoto et al. 2023), Herschel (Herschel Lensing Survey; Egami et al. 2010), and HST/Spitzer (RELICS; Coe et al. 2019

5 galaxies : RXCJ0032-ID304/ID127, M0417-ID46, A0102-ID224, R0600-ID67

- 10" × 10"
- from left to right :
 - ALMA 1.2 mm (native and tapered)
 - HST/ACS F814W
 - o WFC3- IR F160W
 - \circ Spitzer/IRAC 3.6 μ m

Need to have high resolution images (similar to 0.1" ALMA) focused on **nearinfrared spectra**

2023.1.01689.S Proposal : ALMA Lensing Cluster Survey; Fujimoto et al. 2023), Herschel (Herschel Lensing Survey; Egami et al. 2010), and HST/Spitzer (RELICS; Coe et al. 2019)

Previous studies : spatial distribution of dust emission via gravitational lensing

SCHOOL OF SCIENCE THE UNIVERSITY OF TOKYO 12

Last studies : Tsujita and al., 2025

Why R0032 ID304 so attenuated ?

- Edge-on configuration ?
- Dust compactness ?

Last studies : Tsujita and al., 2025

Why R0032 ID304 so attenuated ?

- • Edge-on configuration ?
 - Dust compactness ?

What is the spatial distribution of
stellar light in these dustenshrouded galaxies ?

IL^ANCE

SCHOOL OF SCIENCE 14

Recent JWST data of 4 lensing clusters

Wavelength (microns)

NIRCam Filters - JWST User Documentation

R0600-ID67 : images from carta

Image processing of R0600-ID67 : PSF models for PSF matching

On-working SED of R0600-ID67 : JWST DATA

Conclusion and perspectives

- Conclusions after studying certain DSFGs, attenuation might come from:
 - \circ Dust compactness
 - \circ Edge-on observation

IL^ANCE

SCHOOL OF SCIENCE THE UNIVERSITY OF TOKYO

- Perspectives :
 - $\,\circ\,$ SED fitting with CIGALE
 - $\,\circ\,$ Spatially resolved SED analysis
 - $\,\circ\,$ Re-imaging ALMA data with JWST data

Thank you for your attention

Annexes

Recent JWST data of 4 lensing clusters

NIRCam Filters - JWST User Documentation

