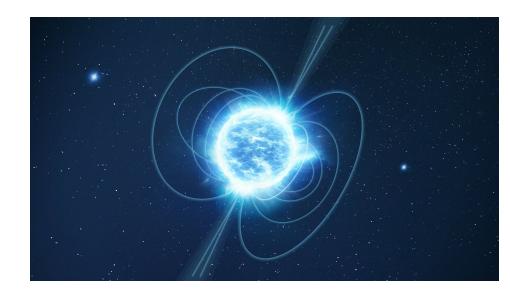

Equation of state and Nuclear parameter inference with GW detections of NS mergers

Neuvième assemblée du GdR Ondes Gravitationnelles 13/10/2025

In collaboration with LPC Caen, GANIL, Observatoire de Strasbourg, CSUF


Lami Suleiman
Deutsches Elektronen-Synchrotron

Neutron Stars as probes for Dense Matter Physics

Limited understanding of strong interaction

- Non-perturbative nature of strong interaction
- Experimental data is limited by thermodynamic conditions

Dense matter properties are poorly know. Thankfully, we have **Neutron Stars** (NSs)!

Credit ESA website

Neutron Stars as probes for Dense Matter Physics

Limited understanding of strong interaction

- Non-perturbative nature of strong interaction
- Experimental data is limited by thermodynamic conditions

Dense matter properties are poorly know. Thankfully, we have **Neutron Stars** (NSs)!

- Highly compact objects M~Msol, R~10km
- Matter in their interior is very dense (several times ρ_{nuc}) and neutron rich
- Astro. parameters (M, R, Λ) are modeled with
 - theory of gravitation, mostly GR
 - theory for the Equation of State (EoS) i.e. $P(\rho)$ or $P(\epsilon)$, mostly T=0 and β-equilibrium.

BNS merger quantities: mass/tidal deformation

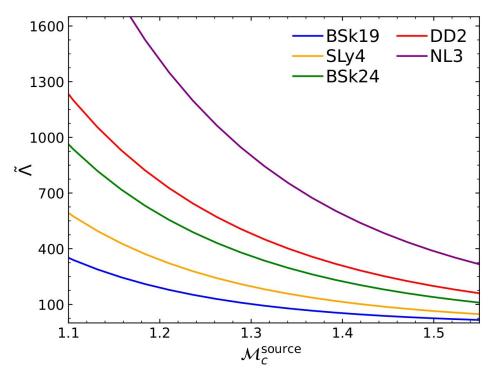


Figure for MANITOU book

Neutron Stars as probes for Dense Matter Physics

Limited understanding of strong interaction

- Non-perturbative nature of strong interaction
- Experimental data is limited by thermodynamic conditions

Dense matter properties are poorly know. Thankfully, we have **Neutron Stars** (NSs)!

- Highly compact objects M~Msol, R~10km
- Matter in their interior is very dense (several times ρ_{nuc}) and neutron rich
- Astro. parameters (M, R, Λ) are modeled with
 - theory of gravitation, mostly GR
 - theory for the **Equation of State** (EoS) i.e. $P(\rho)$ or $P(\epsilon)$, mostly T=0 and β-equilibrium.
- Comparing modeling and observations, we can probe dense matter Physics.

BNS merger quantities: mass/tidal deformation

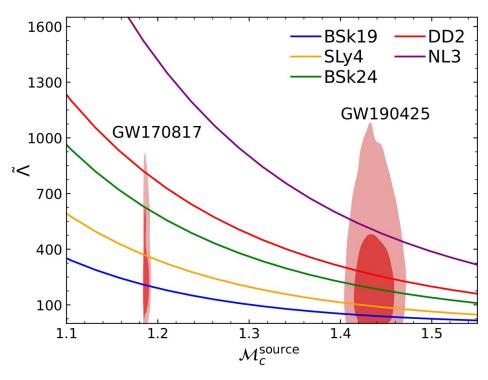
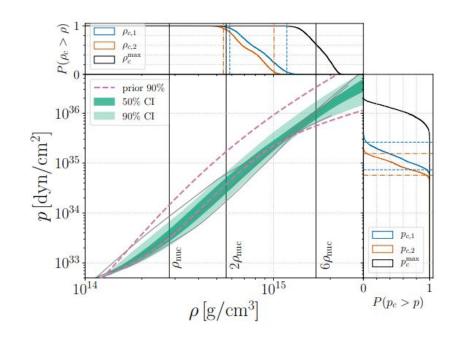



Figure for MANITOU book

Equation of State inference from GW detections

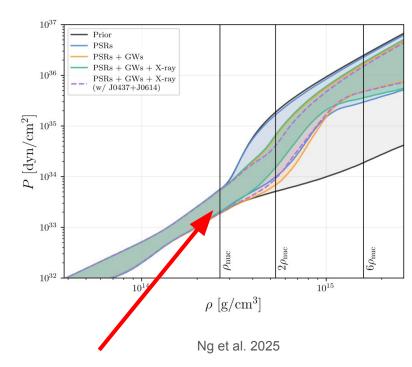
Instead of testing EoS by EoS, we use **Bayesian** approach for inference that relies on priors of EoSs.

Abbott et al. 2018 Phys. Rev. Lett. 121, 161101

Equation of State inference from GW detections

Instead of testing EoS by EoS, we use **Bayesian** approach for inference that relies on priors of EoSs.

Prior preferences:

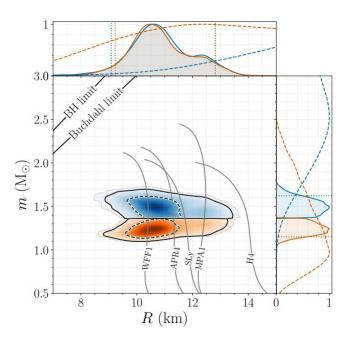

- Large agnostic priors for astrophysicists
- Priors linked to nuclear physics quantities.

We have a solution to combine both: semi-agnostic priors

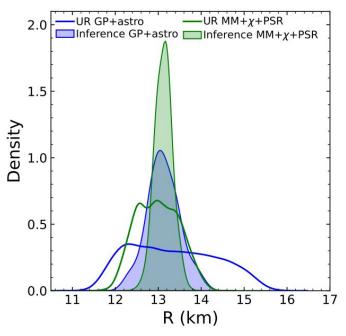
Crust Unified Tool for Eos Reconstruction (CUTER) Davis et al. 2024 (A&A, 687, A44)

- low density based on the meta-model
 - EoS based on nuclear parameters
 - experimental/theory data dictate the prior
 - describes npeµ matter only
- high density based on agnostic approach
 - Piecewise Polytropes or Gaussian Processes

GW data paired with other astrophysical data



Nuclear parameters only dictate the EoS up to ρ_{nuc}


Neutron Star parameter extraction from GW detections

Extract a measure of R using:

- quasi-universal relations vs direct EoS inference
 - careful in the future [Suleiman & Read 2024]

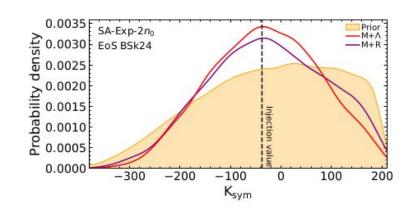
Abbott et al. 2018 Phys. Rev. Lett. 121, 161101

Suleiman & Read 2024, Phys. Rev. D 109, 103029

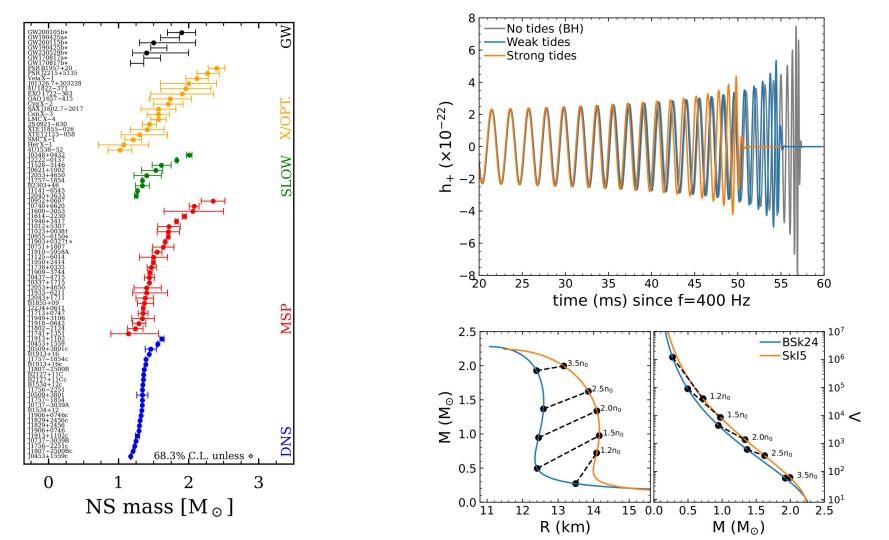
Going beyond the EoS: nuclear parameter inference

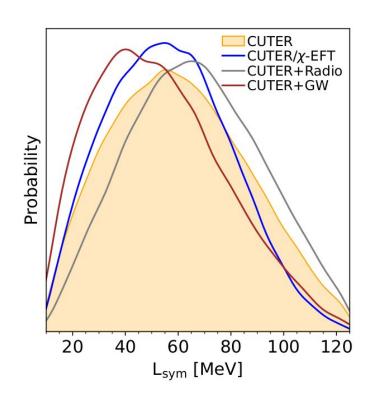
If nuclear parameters are used to build the prior, we can design posteriors for them given astrophysical data.

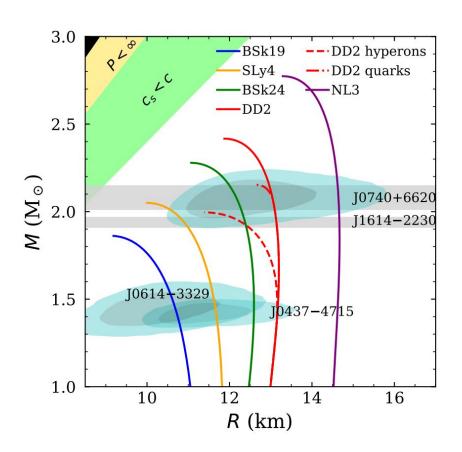
Challenge of semi-agnostic approach:

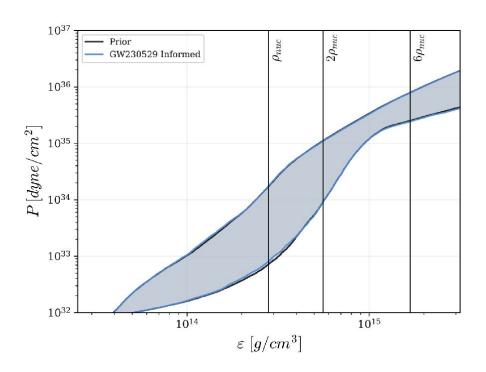

- Sources must constrain low density EoS
- Careful to have a large prior
- Not all parameters can be constrained

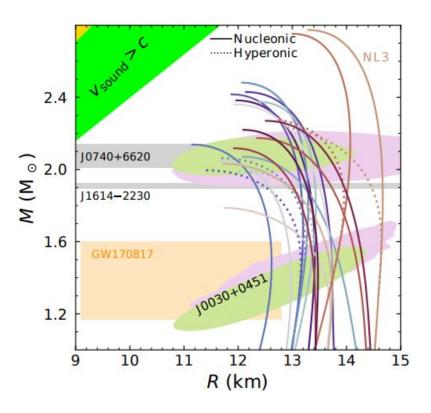
Conclusion


- → GW detections of BNS mergers help probe neutron rich and dense matter Physics.
- → **CUTER** builds EoSs priors partly based on nuclear parameters, with nuclear physics knowledge.
- → With semi-agnostic EoS priors in a Bayesian inference, we can constrain SOME nuclear parameters.

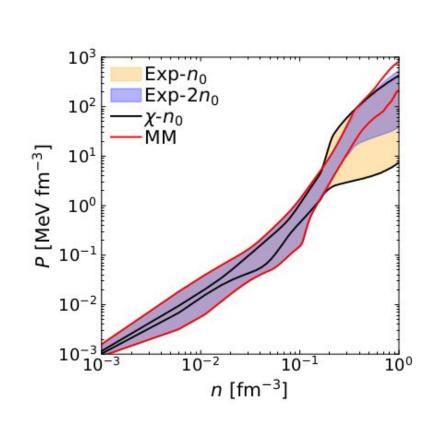

Preliminary figure


Simulated data with injection study: BSk24 EoS used to simulate NSs $n_0 = n_{\text{nuc}} = \rho_{\text{nuc}} / \text{ mn}$




Thank you for your attention.

$$e_{\text{nuc}}(n, \delta) = e_{\text{is}}(n) + e_{\text{iv}}(n)\delta^{2} + t_{\text{FG}}^{*}(n, \delta)$$


$$e_{\text{is}}(n) = e_{\text{is}}(n; n_{\text{sat}}, \{X_{\text{is}}\}, m_{\text{sat}}^{*}, \Delta m_{\text{sat}}^{*}, b) ,$$

$$e_{\text{iv}}(n) = e_{\text{iv}}(n; n_{\text{sat}}, \{X_{\text{iv}}\}, m_{\text{sat}}^{*}, \Delta m_{\text{sat}}^{*}, b) ,$$

$$\{X_{\text{is}}\} = \{E_{\text{sat}}, K_{\text{sat}}, Q_{\text{sat}}, Z_{\text{sat}}\} ,$$

$$\{X_{\text{iv}}\} = \{E_{\text{sym}}, L_{\text{sym}}, K_{\text{sym}}, Q_{\text{sym}}, Z_{\text{sym}}\}$$

	X_{\min}	X_{\max}
n_{sat}	0.15	0.17
$E_{ m sat}$	-17.0	-15.0
K_{sat}	190.0	270.0
$Q_{ m sat}$	-1000.0	1000.0
$Z_{ m sat}$	-3000.0	3000.0
$E_{ m sym}$	26.0	38.0
$L_{ m sym}$	10.0	80.0
K_{sym}	-400.0	200.0
Q_{sym}	-2000.0	2000.0
$Z_{ m sym}$	-5000.0	5000.0
$m_{\rm sat}^{\star}/m$	0.6	0.8
$\Delta m_{\rm sat}^{\star}/m$	0.0	0.2
b	1	10

