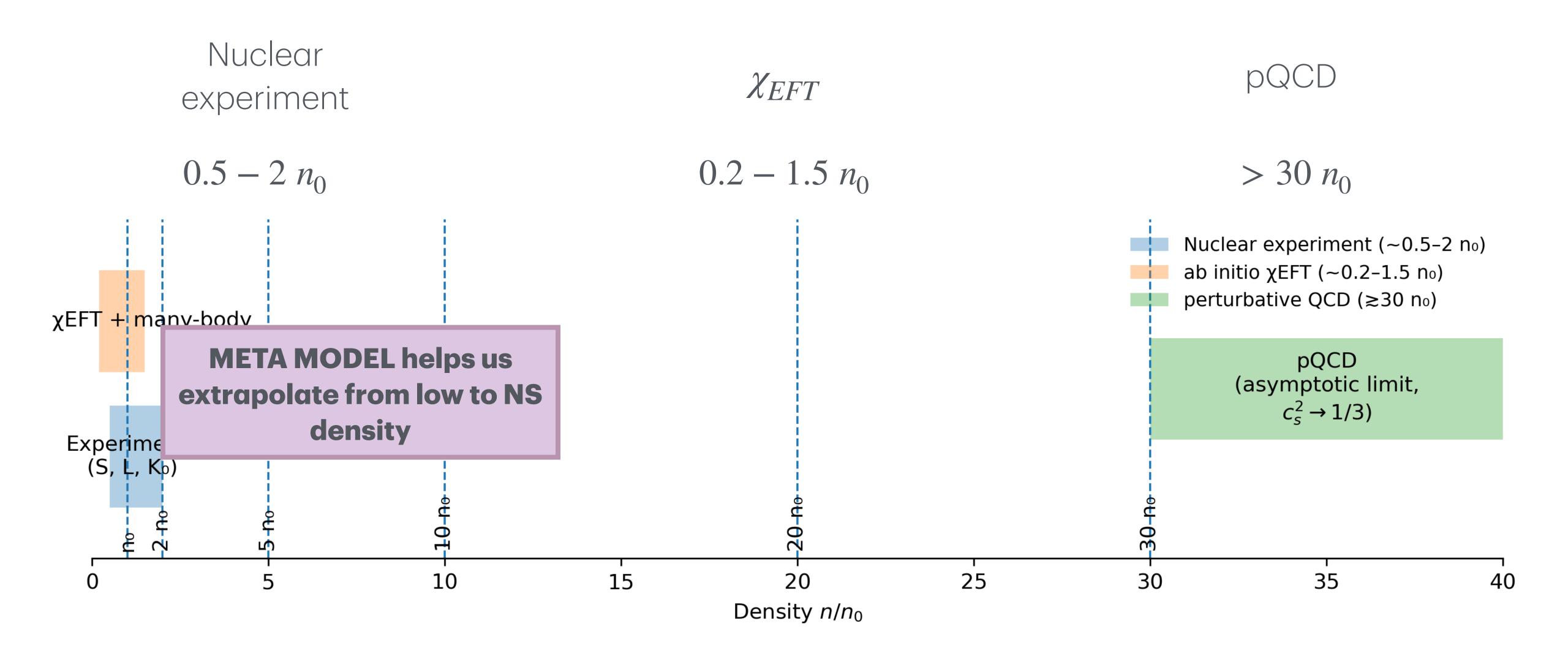
AN ALMOST CAUSAL META-MODEL

Gabriele Montefusco LPC CAEN - CNRS

Motivation: Nuclear EoS uncertainty



Motivation: Meta model extrapolation



Meta-modelling of the EoS: Exploring the EoS space

Originally presented in [PRC 97, 025805 (2018)]

Parametric representation of the energy density $\epsilon_X(n_n,n_p,\dots)$ as a function of the different species

The variation of the parameters set X makes possible to explore the EoS space compatible with the hypothesis of a matter with the chosen species

Both nuclear and Astro observables are accessible

$$e_X(n_n, n_p, \dots)$$
 M, R, Λ

Nuclear observables

Astro observables

Almost causal meta-model: A possible choice of the energy density

Montefusco et al [in prep]

Causality asymptotically implemented

Starting ansatz:

$$\epsilon(n, x_e, x_\mu) = \epsilon_k(n, x_e, x_\mu) + n \left[e_0(n) + \delta^2 e_2(n) + \delta^4 e_4(n) \right]$$

Almost causal meta-model: A possible choice of the energy density

Montefusco et al [in prep]

Causality asymptotically implemented

free fermi gas energy density

for $npe\mu$ matter

Starting ansatz:

Nuclear asymmetry $\delta = 1 - 2(x_e + x_\mu)$ $\epsilon(n, x_e, x_\mu) = \epsilon_k(n, x_e, x_\mu) + n \left[e_0(n) + \delta^2 e_2(n) + \delta^4 e_4(n)\right]$

Nucleonic Potential (per baryon)

$$e_0(x) = V_0(x) + \frac{h_0 + h_1 x + h_2 x^2 + h_3 x^3}{(1 + a_0 x)(1 + b_0 x)(1 + c_0 x)}$$

Quartic correction

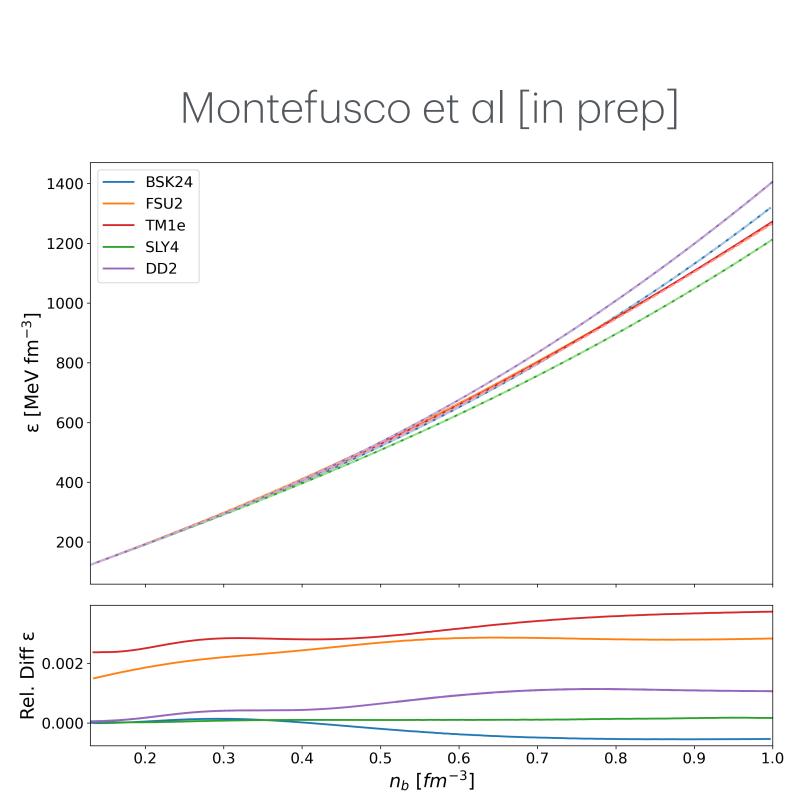
$$e_4(n) = A \frac{n/n_0}{1 + (n/n_0)^B}$$

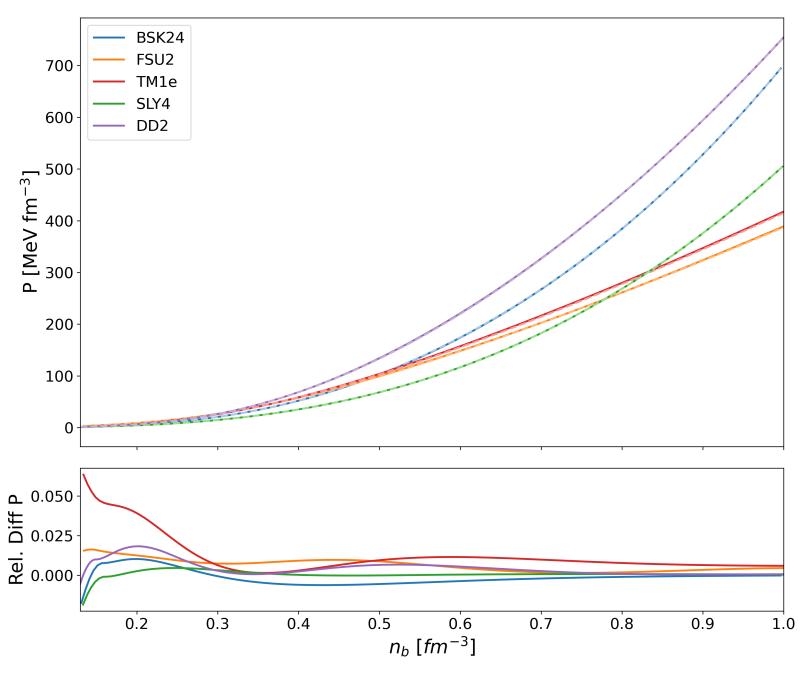
Almost causal meta-model: EoS reconstruction

Test the flexibility of the model to reproduce β -equilibrated EoS

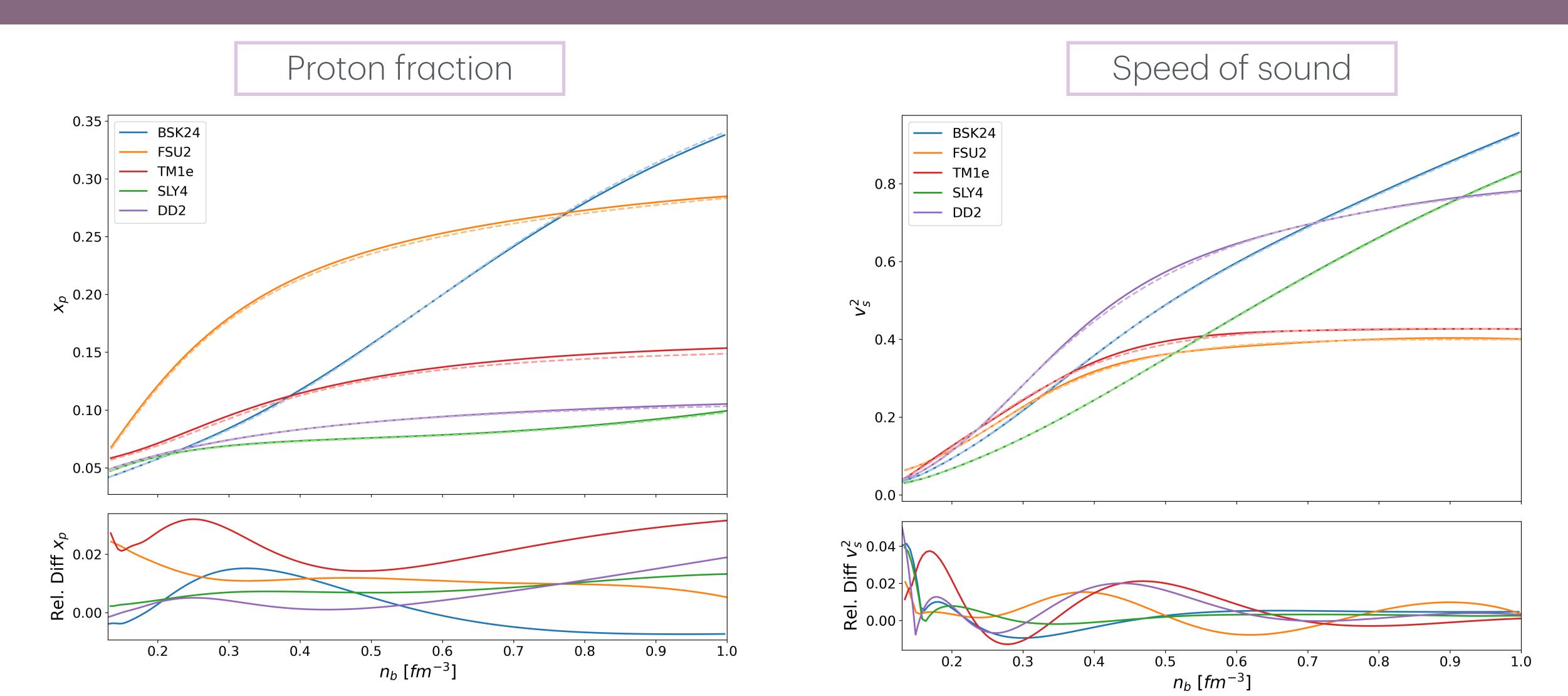
Constrain the space of the unphysical parameters

We have chosen: Sly4, BSK24, DD2, FSU2 and TM1e





Almost causal meta-model: EoS reconstruction



Bayes inference

$$\mathcal{M}: \mathbf{X} \to \{\epsilon(n_B), P(n_B), \delta(n_B), v_{\beta}(n_B), v_{FR}(n_B), \dots \}$$

$$\mathcal{L}(\mathbf{X}) = \prod_{j} \mathcal{L}_{j}(\mathbf{X}) = \prod_{j} p\left(D_{j} | \mathcal{M}(\mathbf{X})\right)$$

Bayes inference

$$\mathcal{M}: \mathbf{X} \to \{\epsilon(n_B), P(n_B), \delta(n_B), \nu_{\beta}(n_B), \nu_{FR}(n_B), \dots \}$$

$$\mathcal{L}(\mathbf{X}) = \prod_{j} \mathcal{L}_{j}(\mathbf{X}) = \prod_{j} p\left(D_{j} | \mathcal{M}(\mathbf{X})\right)$$

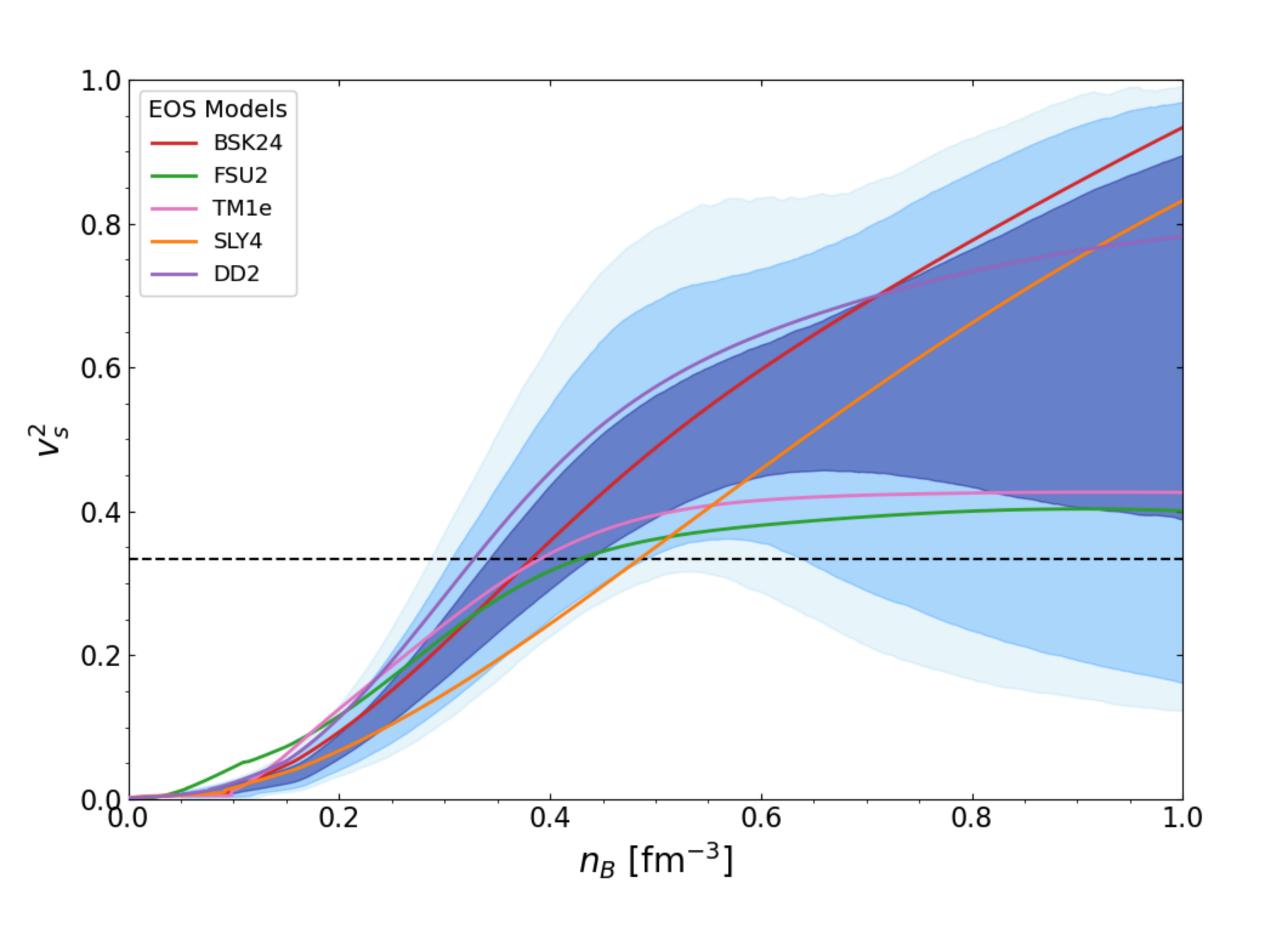
Informed prior sampling the χ_{EFT} band¹ of PNM energy with a metropolis MCMC

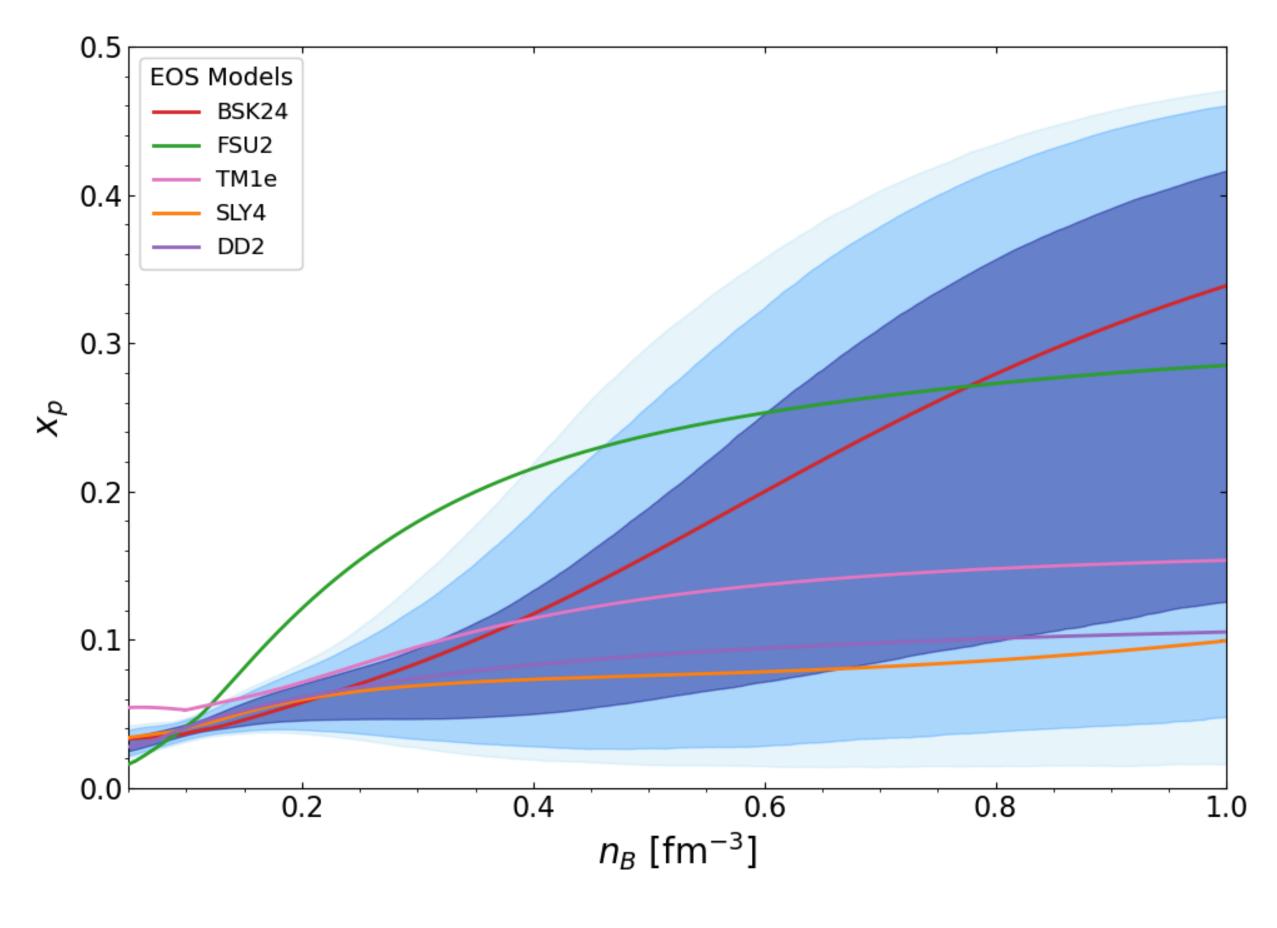
At this stage we have 10^9 models

We extract 5×10^5 models that pass through the remaining filter:

- AME2020 nuclear masses table
- Maximum observed NS mass from radio-timing of PSRJ0348 and PSRJ0740
- Tidal deformability from GW170817 event detected by Ligo/Virgo collaboration
- NICER+XMN M-R measurements of PSRJ0030, PSRJ0347, PSRJ0614 and PSRJ0740

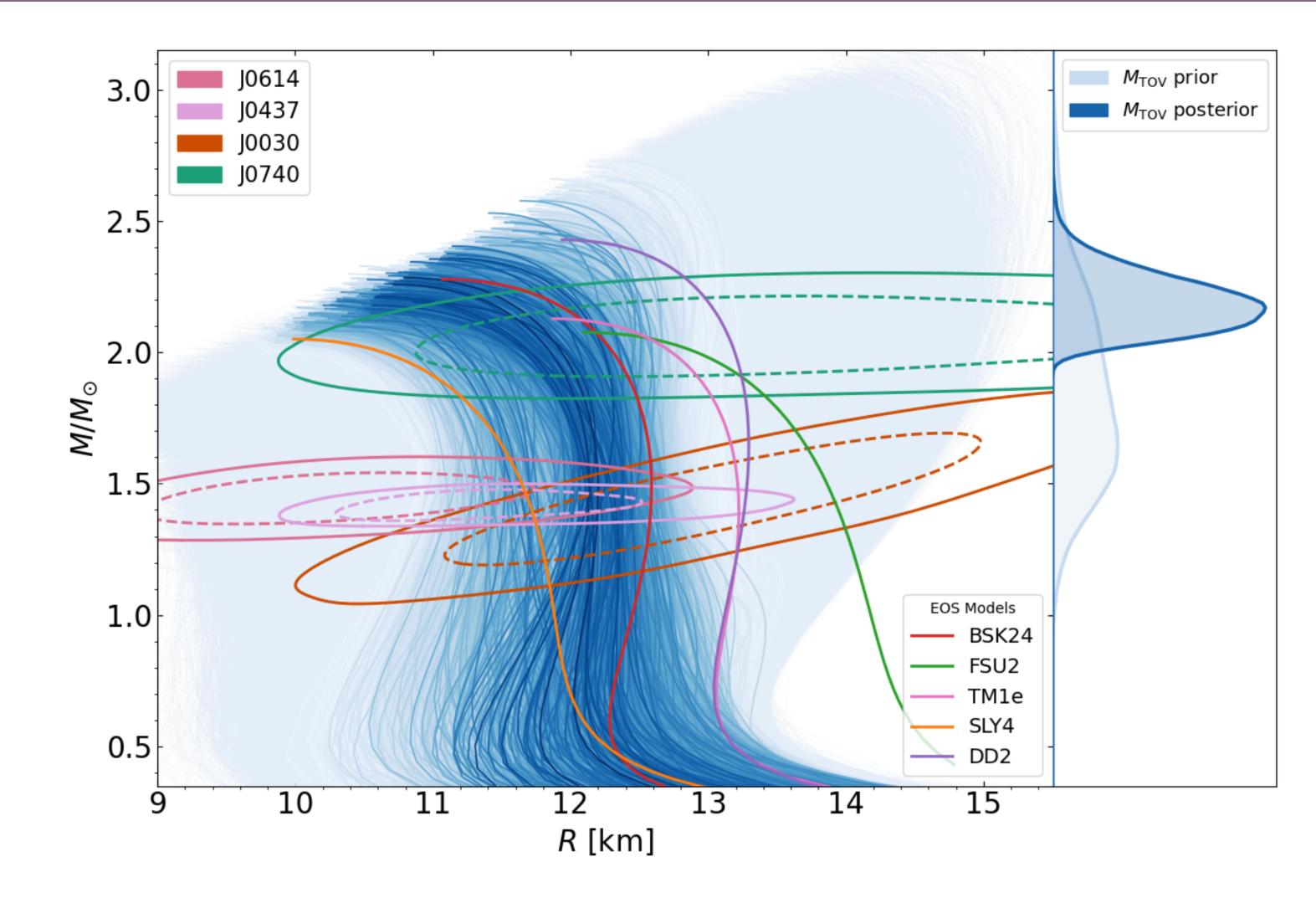
Composition and speed of sound





Mass Radius

We cover a wide range of masses and radii

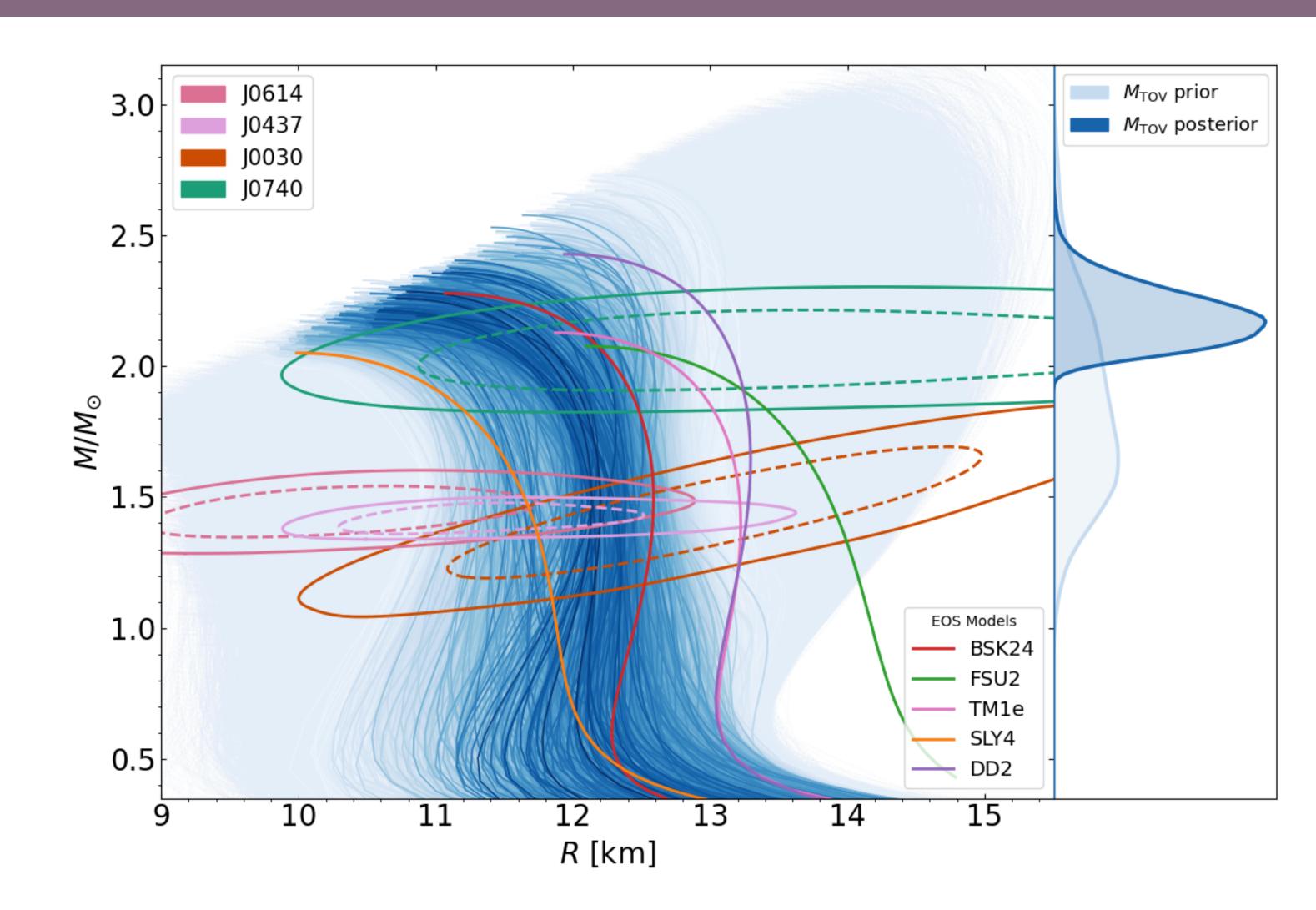


Mass Radius

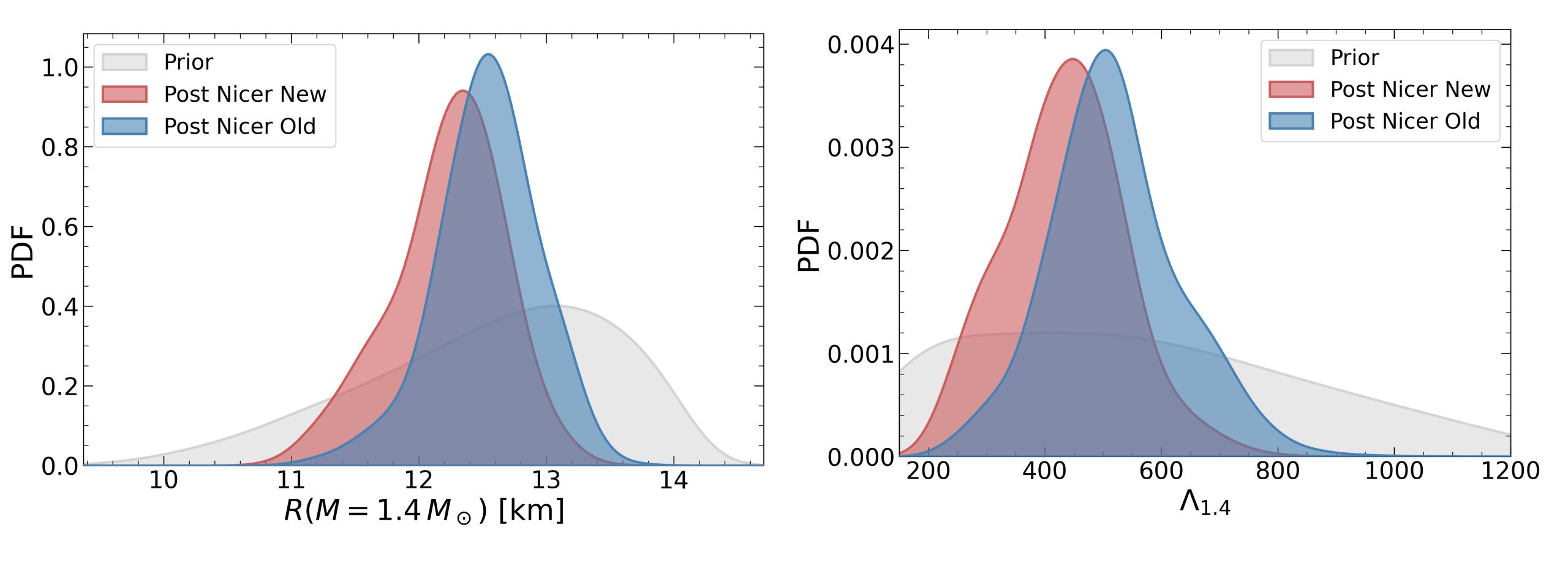
We cover a wide range of masses and radii

The two newest nicer data suggest a soft EoS

 $M_{TOV} > 2.5 M_{\odot}$ is disfavored



NICER softening



Summary

We propose an almost causal meta-model

Its flexibility was tested by fitting five widely
 different nucleonic EoSs

It reproduces the energy density, pressure, vs2 and composition within few percent

 We have performed a bayesian inference including the latest nicer measurements

The model offers a wide range on NS features which is pushed towards the softer side from new Nicer results

BACKUP SLIDES

Fitting existing EoS

Test the flexibility of the model to reproduce β -equilibrated EoS

Constrain the space of the unphysical parameters

We have chosen: <u>Sly4</u>, <u>BSK24</u>, DD2, FSU2 and TM1e

Procedures

- Fix the NMP up to second order from COMPOSE
- Fix e_4 parameters from PNM expansion
- Keep e_4 fixed and fit e_0 at least up to n_{tov} on SM
- Repeat the same for e_2 on PNM while keeping both e_0 and e_4 fixed

FIT: results for SNIM and PNIM

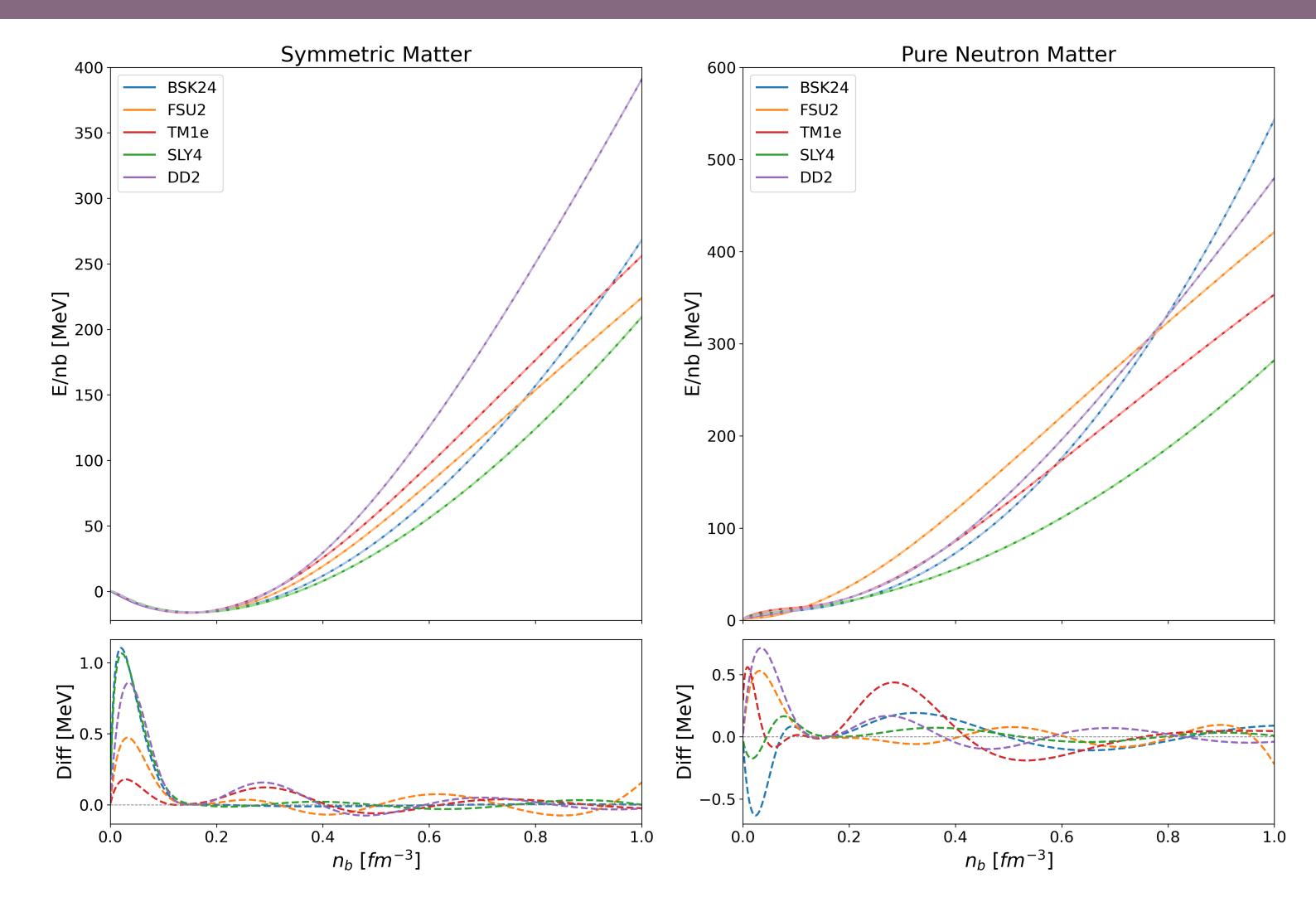
We found satisfying results with

$$g_{0,2} = 0$$

Less Paramaters!

Before saturation the accuracy is limited

Focus on astrophysics



Nucleonic potentials

$$e_0(x) = V_0(x) + \frac{h_0 + h_1 x + h_2 x^2 + h_3 x^3}{(1 + a_0 x)(1 + b_0 x)(1 + c_0 x)}$$

$$V_0(x) = \frac{s_0 x^3}{1 + w_0 (3x + 1)^{3 + g_0}}$$

Nucleonic potentials

$$e_0(x) = V_0(x) + \frac{h_0 + h_1 x + h_2 x^2 + h_3 x^3}{(1 + a_0 x)(1 + b_0 x)(1 + c_0 x)}$$

$$V_0(x) = \frac{s_0 x^3}{1 + w_0(3x + 1)^{3+g_0}}$$

 $h_{0,1,2}$ are fixed through a simple mapping with the NMP up to second order

 h_3 controls the stiffness/softness at high density

 $a_0,\,b_0$ and c_0 balance the numerator for causality

Nucleonic potentials

$$e_0(x) = V_0(x) + \frac{h_0 + h_1 x + h_2 x^2 + h_3 x^3}{(1 + a_0 x)(1 + b_0 x)(1 + c_0 x)}$$

$$V_0(x) = \frac{s_0 x^3}{1 + w_0 (3x + 1)^{3+g_0}}$$

 s_0 is fixed by the request of the energy vanishing at n=0

 \boldsymbol{x} is cubic to not modify the mapping with NMP up to second order

 g_0 takes care of causality while w_0 tunes the dominant range of the correction

 e_2 is built with the same structure

Quartic correction in δ for the PNM

 E_{sym} / J , L_{sym} and K_{sym} are usually defined starting from:

$$\frac{\partial^2 e}{\partial \delta^2} \Big|_{x=0} = 0$$

By fixing the "sym" parameters of a given EoS with the quadratic expansion in δ , we would not reproduce the PNM ($\delta=1$) around saturation density

We introduce a term in the energy density to correct this behavior:

$$e_4(n) = A \frac{n/n_0}{1 + (n/n_0)^B}$$

Metamodel representation of the nucleonic EoS

A possible scheme could be

$$\epsilon_X(n_n, n_p) = \sum_{ij} \alpha_{ij} n_n^{\xi_i} n_p^{\theta_j},$$

where $X=(\alpha_{ij},\xi_i,\theta_j)$ can be set to reproduce a given known function $\epsilon(n_n,n_p)$ or to explore novel energy density behaviors beyond those established in the literature

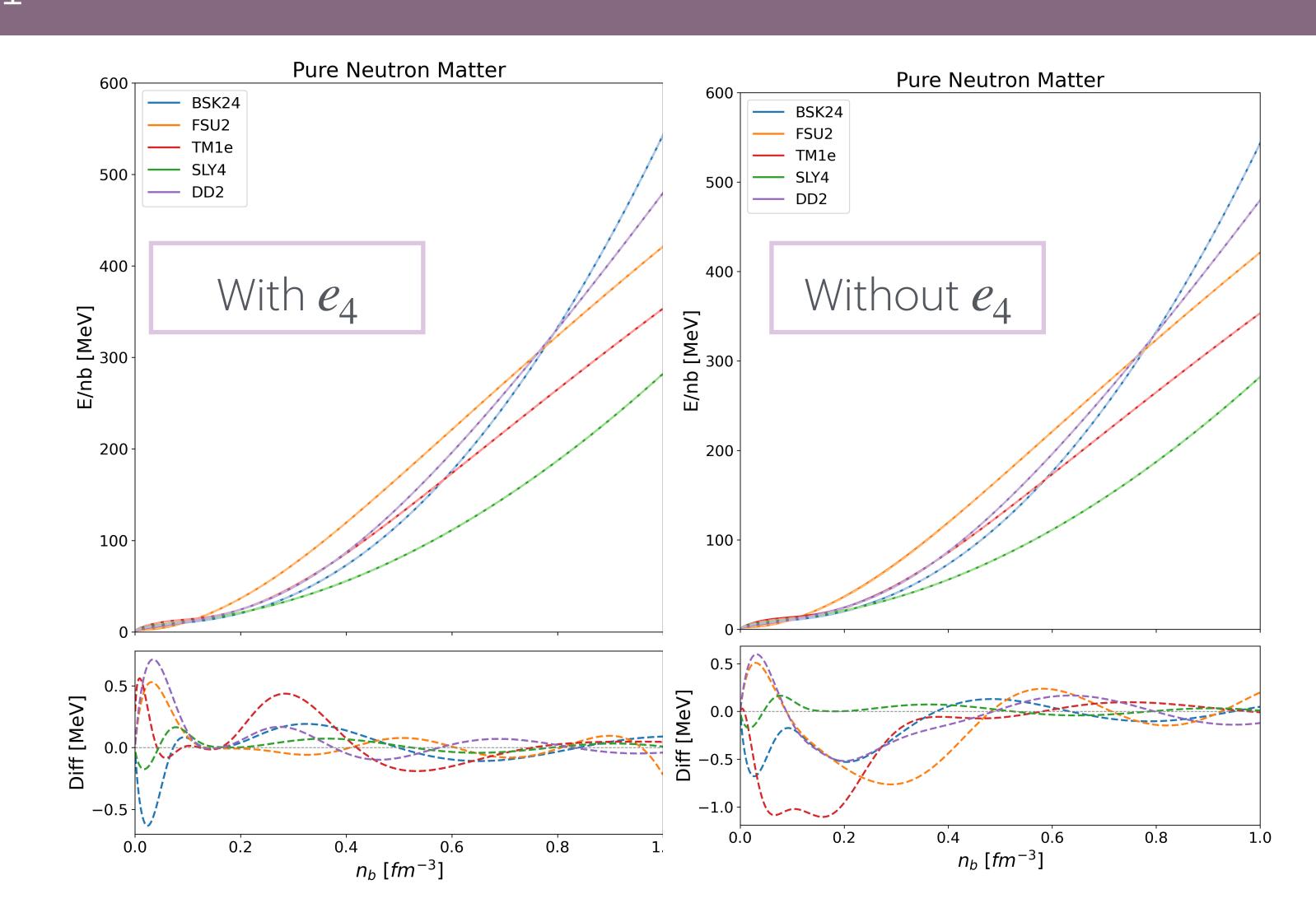
All the other relevant zero-temperature thermodynamic quantities are obtained in the standard way:

$$\mu_X^q(n_n,n_p) = \partial_q \epsilon_X, \quad P_X(n_n,n_p) = \sum_{q=n,p} n_q \mu_X^q - \epsilon_X,$$
 where $q=n,p$

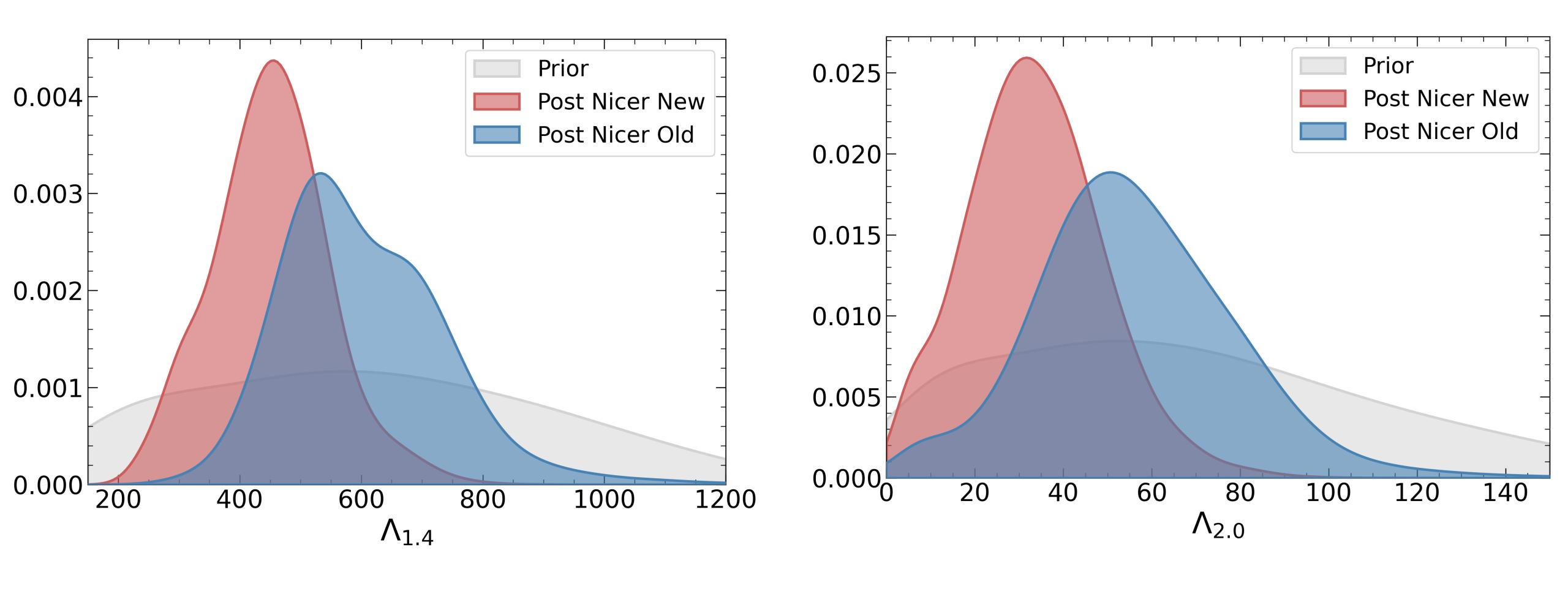
Fit without the linear δ correction

Without the correction around saturation the PNM fit exhibit a $\sim 0.5/1$ MeV of difference

The overall accuracy doesn't change



Nicer old vs nicer new: Tidal deformability



The quest for Nuclear EoS: Complementing with astro-observables

