Theoretical predictions for tau-pair production in ultraperipheral heavy-ion collisions

#### José Luis Hernando Ariza

In collaboration with Stefan Dittmaier, Mathieu Pellen, and Tim Engel [arxiv: 2504.11391, to appear in JHEP]



universitätfreiburg

#### 1 Introduction

- **2** Description of the process
- **3** Spin-correlation effects
- 0 Next-to-leading-order electroweak corrections
- **6** Parametrization of the photon flux
- **6** Conclusion and outlook

• To study the anomalous magnetic moment of the  $\tau\text{-lepton}$ 



• To study the anomalous magnetic moment of the  $\tau\text{-lepton}$ 



• Anomalous magnetic moment  $a_{\ell}$  as a test of the Standard Model



• To study the anomalous magnetic moment of the  $\tau$ -lepton



• Anomalous magnetic moment  $a_{\ell}$  as a test of the Standard Model



-  $a_e \rightarrow$  Agreement between theory and experiment up to 12 digits [T. Kinoshita, 2014] [X. Fan, *et al.*, 2023]

• To study the anomalous magnetic moment of the  $\tau$ -lepton



$$\gamma \sim q_{\ell^-} \longrightarrow a_{\ell} = \frac{g_{\ell} - 2}{2} = \frac{\alpha}{2\pi} + \ldots = 0.00116 \ldots$$
  
Schwinger term

- $a_e \rightarrow$  Agreement between theory and experiment up to 12 digits [T. Kinoshita, 2014] [X. Fan, *et al.*, 2023]
- $a_{\mu} \rightarrow$  Discrepancy rising up to [FNAL, 2025]  $\begin{cases} \sim 5\sigma \text{ using } e^+e^- \text{-} \text{data [T. Aoyama, et al., 2020]} \\ \sim 1\sigma \text{ using Lattice [R. Aliberti, et al., 2025]} \end{cases}$

• To study the anomalous magnetic moment of the  $\tau$ -lepton



- $a_e \rightarrow$  Agreement between theory and experiment up to 12 digits [T. Kinoshita, 2014] [X. Fan, *et al.*, 2023]
- $a_{\mu} \rightarrow$  Discrepancy rising up to [FNAL, 2025]  $\begin{cases} \sim 5\sigma \text{ using } e^+e^- \text{-} \text{data [T. Aoyama, et al., 2020]} \\ \sim 1\sigma \text{ using Lattice [R. Aliberti, et al., 2025]} \end{cases}$
- $a_{\tau} \rightarrow \text{No precise determination} (\tau_{\tau} = 2.9 \cdot 10^{-13} \text{ s})$ [A. Keshavarzi, D. Nomura, and T. Teubner, 2020]

$$-0.0042 < a_{\tau} < 0.0062$$
 [CMS, 2024]

José Luis Hernando Ariza

# Experimental determination of $a_{\tau}$

• Challenging experimental determination due to the small lifetime of the  $\tau$ -lepton,  $\tau_{\tau} = 2.9 \cdot 10^{-13} \,\mathrm{s}$ 



= p  $-0.0042 < a_{\tau} < 0.0062$ [ATLAS, 2022; CMS, 2022]

Ph



# Experimental determination of $a_{\tau}$

• Challenging experimental determination due to the small lifetime of the  $\tau$ -lepton,  $\tau_{\tau} = 2.9 \cdot 10^{-13} \,\mathrm{s}$ 



José Luis Hernando Ariza

Ph

# Ultraperipheral collisions (UPC)



- Two  $\gamma \tau \tau$  vertices  $\hookrightarrow$  Larger sensitivity to  $a_{\tau}$
- Elastic collision (nuclei do not break up)
   → Clean final state
- Long-distance interaction
   → Photons with low virtuality
- Photon flux  $\propto Z^2$  $\hookrightarrow$  Cross section  $\propto Z^4$

# Ultraperipheral collisions (UPC)



- Two  $\gamma \tau \tau$  vertices  $\hookrightarrow$  Larger sensitivity to  $a_{\tau}$
- Elastic collision (nuclei do not break up)
   → Clean final state
- Long-distance interaction → Photons with low virtuality
- Photon flux  $\propto Z^2$  $\hookrightarrow$  Cross section  $\propto Z^4$

#### Previous studies

 $\hookrightarrow$  Sensitivity to  $a_{\tau}$  (effective  $\gamma \tau \tau$  coupling)

[F. del Aguila, et al., 1991] [S. Atag and A. A. Billur, 2010] [L. Beresford and J. Liu, 2019]
 [M. Dyndal, et al., 2020] [M. Verducci, et al., 2024]

#### $\hookrightarrow \text{Higher-order corrections } (\text{PbPb} \to \text{PbPb}\tau^+\tau^-)$

[H.-S. Shao and D. d'Enterria, 2024] [J. Jiang, et al., 2024] [H.-S. Shao and L. Simon, 2025]

## Equivalent-photon approximation

- Equivalent-photon approximation (EPA)
  - $\hookrightarrow$  Provides a theoretical framework for the treatment of UPCs
  - $\hookrightarrow Describes the electromagnetic field of the accelerated charged particle as a flux of quasireal photons [C. F. von Weizsacker, 1934] [E. J. Williams, 1934]$



## Equivalent-photon approximation

- Equivalent-photon approximation (EPA)
  - $\hookrightarrow$  Provides a theoretical framework for the treatment of UPCs
  - $\hookrightarrow Describes the electromagnetic field of the accelerated charged particle as a flux of quasireal photons [C. F. von Weizsacker, 1934] [E. J. Williams, 1934]$

$$A_{1} \xrightarrow{\gamma \atop i} A_{1}$$

$$(\sqrt{s_{A_{1}A_{2}}}) = \int \frac{dE_{\gamma_{1}}}{E_{\gamma_{1}}} \frac{dE_{\gamma_{2}}}{E_{\gamma_{2}}} \frac{d^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}^{(A_{1}A_{2})}}{dE_{\gamma_{1}}dE_{\gamma_{2}}} \hat{\sigma}(\sqrt{s_{\gamma\gamma}})$$

$$A_{2} \xrightarrow{\gamma \atop i} A_{2}$$

- Photon flux
  - $\hookrightarrow$  Probability of  $\gamma_1$  being emitted by  $A_1$  with an energy  $E_{\gamma_1}$  and  $\gamma_2$  being emitted by  $A_2$  with an energy  $E_{\gamma_2}$  without breaking up the ions
  - ↔ Computed with gamma-UPC using the charge form factor of the ions [H.-S. Shao and D. d'Enterria, 2022]

# Equivalent-photon approximation

- Equivalent-photon approximation (EPA)
  - $\hookrightarrow$  Provides a theoretical framework for the treatment of UPCs
  - $\hookrightarrow Describes the electromagnetic field of the accelerated charged particle as a flux of quasireal photons [C. F. von Weizsacker, 1934] [E. J. Williams, 1934]$

- Photon flux
  - $\hookrightarrow$  Probability of  $\gamma_1$  being emitted by  $A_1$  with an energy  $E_{\gamma_1}$  and  $\gamma_2$  being emitted by  $A_2$  with an energy  $E_{\gamma_2}$  without breaking up the ions
  - ↔ Computed with gamma-UPC using the charge form factor of the ions [H.-S. Shao and D. d'Enterria, 2022]
- Hard process
  - $\hookrightarrow$  Describes the production of a final state X via photon–photon scattering,

e.g. 
$$\gamma\gamma \rightarrow \tau^+\tau$$

José Luis Hernando Ariza

### Summary of perturbation theory

• Perturbation theory

 $\hookrightarrow$  Compute observables as a perturbative expansion in small couplings

- $\hookrightarrow$  Perturbation parameters:  $\alpha \sim 0.01$  and  $\alpha_{\rm s} \sim 0.1$
- $\hookrightarrow \text{Cross section } \hat{\sigma}$

$$\hat{\sigma} = \hat{\sigma}^{\mathrm{LO}} \left( 1 + \delta_{\mathrm{s}}^{(1)} + \delta_{\mathrm{s}}^{(2)} + \delta_{\mathrm{EW}}^{(1)} + \dots \right)$$

- LO contribution  $\hat{\sigma}^{\text{LO}}$ 

- Higher-order corrections  $\delta$ 

# Summary of perturbation theory

• Perturbation theory

 $\hookrightarrow$  Compute observables as a perturbative expansion in small couplings

- $\hookrightarrow$  Perturbation parameters:  $\alpha \sim 0.01$  and  $\alpha_{\rm s} \sim 0.1$
- $\hookrightarrow$  Cross section  $\hat{\sigma}$

$$\hat{\sigma} = \hat{\boldsymbol{\sigma}}^{\mathrm{LO}} \left( 1 + \delta_{\mathrm{s}}^{(1)} + \delta_{\mathrm{s}}^{(2)} + \delta_{\mathrm{EW}}^{(1)} + \dots \right)$$

- LO contribution  $\hat{\sigma}^{\rm LO}$ 

 $\hookrightarrow$  Provides the bulk of the prediction

$$\hat{\sigma}^{\mathrm{LO}} = \frac{1}{F} \int \mathrm{d}\Phi_n \overline{\left|\mathcal{M}^{(0)}(\Phi_n)\right|^2}$$

- $\cdot$   $F\colon$  Flux factor
- ·  $d\Phi_n$ : Differential phase-space volume
- ·  $\mathcal{M}^{(0)}$ : LO matrix element
- Higher-order corrections  $\delta$

# Summary of perturbation theory

• Perturbation theory

 $\hookrightarrow$  Compute observables as a perturbative expansion in small couplings

- $\hookrightarrow$  Perturbation parameters:  $\alpha \sim 0.01$  and  $\alpha_{\rm s} \sim 0.1$
- $\hookrightarrow$  Cross section  $\hat{\sigma}$

$$\hat{\sigma} = \hat{\sigma}^{\text{LO}} \left( 1 + \delta_{\text{s}}^{(1)} + \delta_{\text{s}}^{(2)} + \delta_{\text{EW}}^{(1)} + \dots \right)$$

- LO contribution  $\hat{\sigma}^{\rm LO}$
- Higher-order corrections  $\delta$ 
  - $\hookrightarrow$  Small corrections to the LO contribution

$$\delta = \frac{\hat{\sigma}^{\text{NLO}} - \hat{\sigma}^{\text{LO}}}{\hat{\sigma}^{\text{LO}}}$$

- $\hookrightarrow$  Include extra powers in the perturbative parameter
  - NLO QCD correction  $\, \delta_{\rm s}^{(1)} \propto \alpha_{\rm s} \sim 10 \, \%$
  - NNLO QCD correction  $\delta_{\rm s}^{(2)}\propto\alpha_{\rm s}^2\sim1\,\%$
  - NLO EW correction  $\delta_{\rm EW}^{(1)} \propto \alpha \sim 1 \%$

#### Introduction

- **2** Description of the process
- **3** Spin-correlation effects
- Next-to-leading-order electroweak corrections
- **6** Parametrization of the photon flux
- **6** Conclusion and outlook

• Hard process:  $\gamma \gamma \rightarrow \tau^+ \tau^-$ 



- $\hookrightarrow$  No possible direct detection of the  $\tau$  leptons ( $\tau_{\tau} = 2.9 \cdot 10^{-13} \,\mathrm{s}$ )
- $\hookrightarrow$  A precise description of their decay modes is needed,  $\mathit{e.g.}$  leptonic  $\tau\text{-decays}$

• Hard process:  $\gamma \gamma \rightarrow \tau^+ \tau^-$ 



 $\hookrightarrow$  No possible direct detection of the  $\tau$  leptons ( $\tau_{\tau} = 2.9 \cdot 10^{-13}$  s)  $\hookrightarrow$  A precise description of their decay modes is needed, *e.g.* leptonic  $\tau$ -decays

 $\hookrightarrow \gamma \gamma \to \tau^+ \tau^- \to e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$ 



• Hard process:  $\gamma \gamma \rightarrow e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$ 



• Hard process:  $\gamma \gamma \rightarrow e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$ 



• Classification attending to the resonant pattern

$$\frac{1}{|p^2 - m^2 + \mathrm{i}m\Gamma|^2} \quad \widetilde{\Gamma \ll m} \quad \frac{\pi}{m\Gamma} \delta(p^2 - m^2) + \mathcal{O}\left(\frac{\Gamma}{m}\right)$$

-  $\tau$ -resonance

 $\hookrightarrow$  Missing  $\Rightarrow$  suppression of  $\Gamma_{\tau}/m_{\tau} \sim 10^{-12}$ 

- Weak-gauge-boson resonance
  - $\hookrightarrow$  Enhancement of  $M_V/\Gamma_V \sim 40 \ (V=W,Z)$
  - $\hookrightarrow$  Photon-flux suppression  $(s_{\gamma\gamma} \gtrsim M_{\rm W}^2)$

• Hard process:  $\gamma \gamma \rightarrow e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$ 



• Classification according to the resonant pattern

$$\frac{1}{|p^2 - m^2 + \mathrm{i}m\Gamma|^2} \quad \widetilde{\Gamma \ll m} \quad \frac{\pi}{m\Gamma} \delta(p^2 - m^2) + \mathcal{O}\left(\frac{\Gamma}{m}\right)$$

-  $\tau$ -resonance

 $\hookrightarrow$  Missing  $\Rightarrow$  suppression of  $\Gamma_{\tau}/m_{\tau} \sim 10^{-12}$ 

- Weak-gauge-boson resonance
  - $\hookrightarrow$  Enhancement of  $M_V/\Gamma_V \sim 40 \ (V=W,Z)$
  - $\hookrightarrow$  Photon-flux suppression
- Main contribution:  $\gamma \gamma \rightarrow \tau^+ \tau^- \rightarrow e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$

#### Process

• Process:  $\gamma \gamma \rightarrow \tau^+ \tau^- \rightarrow e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$  induced by UPCs of lead ions  $\rightarrow \sqrt{s_{\text{PbPb}}} = 5.02 \text{ TeV}$ 



#### Process

• Process:  $\gamma \gamma \rightarrow \tau^+ \tau^- \rightarrow e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$  induced by UPCs of lead ions  $\rightarrow \sqrt{s_{\text{PbPb}}} = 5.02 \text{ TeV}$ 



- Fiducial phase-space region  $(\ell = \mu, e)$  [ATLAS,2022]
  - $|\eta_\ell| < 2.5$
  - $p_{\mathrm{T},\ell} > 4 \,\mathrm{GeV}$



#### Introduction

- **2** Description of the process
- **3** Spin-correlation effects
- Next-to-leading-order electroweak corrections
- **6** Parametrization of the photon flux
- **6** Conclusion and outlook

#### Narrow-width approximation

• Narrow-width approximation (NWA)

 $\hookrightarrow$  Keeps only the main contributions  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$ 

 $\hookrightarrow$  Takes the narrow-width limit  $\Gamma_{\tau}/m_{\tau} \to 0 \ (\Gamma_{\tau}/m_{\tau} \sim 10^{-12})$ 

$$\frac{1}{|p_{\tau}^2 - m_{\tau}^2 + \mathrm{i}m_{\tau}\Gamma_{\tau}|^2} \sim \frac{\pi}{m_{\tau}\Gamma_{\tau}}\delta(p_{\tau}^2 - m_{\tau}^2)$$



$$\overline{|\mathcal{M}|^2} \underset{\text{NWA}}{\longrightarrow} \left(\frac{\pi}{m_\tau \Gamma_\tau}\right) \left(\frac{\pi}{m_\tau \Gamma_\tau}\right) \overline{|\mathcal{\widetilde{M}}|^2} \delta(p_\tau^2 - m_\tau^2) \delta(\bar{p}_\tau^2 - m_\tau^2)$$

José Luis Hernando Ariza

### Naive vs. improved NWA

- Narrow-width approximation (NWA)
  - $\hookrightarrow$  Keeps only the main contributions  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$
  - $\hookrightarrow$  Takes the narrow-width limit  $\Gamma_\tau/m_\tau \to 0$



- Naive NWA

 $\hookrightarrow \text{Does not transfer the spin information} \\ \text{of the } \tau\text{-leptons to the decays}$ 

$$|\widetilde{\mathcal{M}}_{\rm NWA}|^2 = \overline{|\mathcal{M}_{\rm P}|^2} \ \overline{|\mathcal{M}_{\rm D}|^2} \ \overline{|\mathcal{M}_{\rm D}|^2}$$

 $\hookrightarrow$  Neglects spin correlations between decaying  $\tau$ -leptons

### Naive vs. improved NWA

- Narrow-width approximation (NWA)
  - $\hookrightarrow$  Keeps only the main contributions  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$
  - $\hookrightarrow$  Takes the narrow-width limit  $\Gamma_{\tau}/m_{\tau} \to 0$



- Naive NWA

 $\hookrightarrow \text{Does not transfer the spin information} \\ \text{of the } \tau\text{-leptons to the decays}$ 

$$\overline{|\widetilde{\mathcal{M}}_{NWA}|^2} = \overline{|\mathcal{M}_{P}|^2} \ \overline{|\mathcal{M}_{D}|^2} \ \overline{|\mathcal{M}_{\overline{D}}|^2}$$

 $\hookrightarrow$  Neglects spin correlations between decaying  $\tau$ -leptons

- Improved NWA

 $\hookrightarrow$  Includes spin correlations between decaying  $\tau\text{-leptons}$ 

$$\overline{|\widetilde{\mathcal{M}}_{iNWA}|^{2}} = \overline{|\mathcal{A}_{D}(\not{p}_{\tau} + m_{\tau})\mathcal{A}_{P}(\not{p}_{\tau} - m_{\tau})\mathcal{A}_{\overline{D}}|^{2}} = \overline{|\mathcal{A}_{D}(\sum_{\sigma} u_{\sigma}\bar{u}_{\sigma})\mathcal{A}_{P}(\sum_{\bar{\sigma}} v_{\bar{\sigma}}\bar{v}_{\bar{\sigma}})\mathcal{A}_{\overline{D}}|^{2}} \\ \widetilde{\mathcal{M}}_{iNWA} = \sum_{\sigma,\bar{\sigma}} \mathcal{M}_{P,\sigma\bar{\sigma}} \mathcal{M}_{D,\sigma} \mathcal{M}_{\overline{D},\bar{\sigma}}$$

 $\hookrightarrow$  Relevant if the final-state kinematics are not fully integrated over

José Luis Hernando Ariza

## Numerical results

- Spin-correlations effects:  $\Delta_{spin} = \frac{\sigma_{NWA}^{LO} \sigma_{iNWA}^{LO}}{\sigma_{iNWA}^{LO}}$ 
  - Fiducial cross section

|               | $\sigma^{\rm LO} [{\rm nb}]$ | $\Delta_{\rm spin}$ [%] |
|---------------|------------------------------|-------------------------|
| Spin corr.    | 45.869(4)                    | -                       |
| No spin corr. | 43.282(4)                    | -5.64(1)                |

### Numerical results

- Spin-correlations effects:  $\Delta_{\text{spin}} = \frac{\sigma_{\text{NWA}}^{\text{LO}} \sigma_{\text{INWA}}^{\text{LO}}}{\sigma_{\text{INWA}}^{\text{LO}}}$ 
  - Fiducial cross section

|               | $\sigma^{\rm LO} [{\rm nb}]$ | $\Delta_{\rm spin}  [\%]$ |
|---------------|------------------------------|---------------------------|
| Spin corr.    | 45.869(4)                    | -                         |
| No spin corr. | 43.282(4)                    | -5.64(1)                  |

- Differential distributions



## Numerical results

- Spin-correlations effects:  $\Delta_{spin} = \frac{\sigma_{NWA}^{LO} \sigma_{iNWA}^{LO}}{\sigma_{iNWA}^{LO}}$ 
  - Fiducial cross section

|               | $\sigma^{\rm LO} [{\rm nb}]$ | $\Delta_{\rm spin}  [\%]$ |
|---------------|------------------------------|---------------------------|
| Spin corr.    | 45.869(4)                    | -                         |
| No spin corr. | 43.282(4)                    | -5.64(1)                  |

- Differential distributions



- NLO EW corrections  $\mathcal{O}(1\%)$ 
  - $\hookrightarrow$  Necessary in a precise study of  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$

José Luis Hernando Ariza

#### Introduction

- **2** Description of the process
- **3** Spin-correlation effects

0 Next-to-leading-order electroweak corrections

- **6** Parametrization of the photon flux
- **6** Conclusion and outlook

### Next-to-leading-order corrections

• Perturbation expansion for  $\hat{\sigma}$ 

$$\hat{\sigma} = \hat{\sigma}^{\mathrm{LO}} \left( 1 + \delta_{\mathrm{s}}^{(1)} + \delta_{\mathrm{s}}^{(2)} + \delta_{\mathrm{EW}}^{(1)} + \dots \right)$$

- LO contribution  $\hat{\sigma}^{\rm LO}$
- Higher-order corrections  $\delta$ 
  - $\hookrightarrow$  No quark nor gluon lines in LO diagrams  $\Rightarrow \delta_{\rm s}^{(1)} = \delta_{\rm s}^{(2)} = 0$
  - $\hookrightarrow$  NLO corrections  $\rightarrow$  EW corrections  $\delta_{\rm EW}^{(1)}$

#### Next-to-leading-order corrections

• Perturbation expansion for  $\hat{\sigma}$ 

$$\hat{\sigma} = \hat{\sigma}^{\mathrm{LO}} \left( 1 + \delta_{\mathrm{s}}^{(1)} + \delta_{\mathrm{s}}^{(2)} + \delta_{\mathrm{EW}}^{(1)} + \dots \right)$$

- LO contribution  $\hat{\sigma}^{\rm LO}$
- Higher-order corrections  $\delta$

 $\hookrightarrow$  No quark nor gluon lines in LO diagrams  $\Rightarrow \delta_{s}^{(1)} = \delta_{s}^{(2)} = 0$ 

 $\hookrightarrow$  NLO corrections  $\rightarrow$  EW corrections  $\delta_{\rm EW}^{(1)}$ 

One-loop corrections

Real-emission corrections



#### One-loop corrections

- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]

Factorizable

Non-factorizable


## One-loop corrections

- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]

Factorizable

Non-factorizable



### One-loop corrections

- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]

#### Factorizable

Non-factorizable





# Partial fractioning

• Used to split diagrams

### One-loop corrections

- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]

Factorizable





- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]

#### Factorizable



- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]

#### Factorizable



- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \rightarrow \tau^+\tau^- \rightarrow e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]

#### Factorizable



- Narrow-width approximation
  - $\hookrightarrow$  Keeps only the corrections to  $\gamma\gamma \to \tau^+\tau^- \to e^+\mu^-\bar{\nu}_\tau\nu_\tau\bar{\nu}_\mu\nu_e$  that can be factorized into corrections to  $\tau$ -pair production and corrections to  $\tau$ -decays [R. G. Stuart, 1991] [A. Denner, *et al.*, 1998] [S. Dittmaier and C. Schwan, 2016]



- Relative next-to-leading-order correction:  $\delta = \frac{\sigma^{\text{NLO}} \sigma^{\text{LO}}}{\sigma^{\text{LO}}}$ 
  - Fiducial cross section

|        | $\sigma [{\rm nb}]$ | $\delta$ [%] |
|--------|---------------------|--------------|
| LO     | 45.869(4)           | -            |
| NLO EW | 45.327(4)           | -1.182(1)    |

- Relative next-to-leading-order correction:  $\delta = \frac{\sigma^{\text{NLO}} \sigma^{\text{LO}}}{\sigma^{\text{LO}}}$ 
  - Fiducial cross section

|        | $\sigma [{ m nb}]$ | $\delta$ [%] |
|--------|--------------------|--------------|
| LO     | 45.869(4)          | -            |
| NLO EW | 45.327(4)          | -1.182(1)    |

- Differential distributions



#### Introduction

- **2** Description of the process
- **3** Spin-correlation effects
- Next-to-leading-order electroweak corrections
- **6** Parametrization of the photon flux
- **6** Conclusion and outlook

# Equivalent-photon approximation

- Equivalent-photon approximation (EPA)
  - $\hookrightarrow$  Provides a theoretical framework for the treatment of UPCs
  - ↔ Describes the electromagnetic field of the accelerated charged particle as a flux of quasireal photons [C. F. von Weizsacker, 1934] [R. N. Cahn and J. D. Jackson, 1990]

$$A_{1} \xrightarrow{\gamma} A_{1}$$

$$(\sqrt{s_{A_{1}A_{2}}}) = \int \frac{dE_{\gamma_{1}}}{E_{\gamma_{1}}} \frac{dE_{\gamma_{2}}}{E_{\gamma_{2}}} \frac{d^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}^{(A_{1}A_{2})}}{dE_{\gamma_{1}}dE_{\gamma_{2}}} \hat{\sigma}(\sqrt{s_{\gamma\gamma}})$$

$$A_{2} \xrightarrow{\gamma} A_{2}$$

- Photon flux
  - $\hookrightarrow$  Probability of  $\gamma_1$  being emitted by  $A_1$  with an energy  $E_{\gamma_1}$  and  $\gamma_2$  being emitted by  $A_2$  with an energy  $E_{\gamma_2}$  without breaking up the ions
  - $\hookrightarrow$  Computed with gamma-UPC using the charge form factor of the ions  $_{\rm [H.-S.\,Shao\,\,and\,D.\,d'Enterria,\,2022]}$
- Hard process
  - $\hookrightarrow$  Describes the production of a final state X via photon–photon scattering,

e.g. 
$$\gamma\gamma \rightarrow \tau^+\tau$$

# Photon flux

- Photon flux
  - $\hookrightarrow$  Probability of  $\gamma_1$  being emitted by  $A_1$  with an energy  $E_{\gamma_1}$  and  $\gamma_2$  being emitted by  $A_2$  with an energy  $E_{\gamma_2}$  without breaking up the ions

$$\frac{\mathrm{d}^{2}N^{(\mathrm{A}_{1}\mathrm{A}_{2})}_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}{\mathrm{d}E_{1}\mathrm{d}E_{2}} = \int \mathrm{d}^{2}\mathbf{b}_{1}\mathrm{d}^{2}\mathbf{b}_{2} P_{\mathrm{elas}}(\mathbf{b}_{1},\mathbf{b}_{2}) N_{\gamma_{1}/Z_{1}}(E_{\gamma_{1}},\mathbf{b}_{1}) N_{\gamma_{2}/Z_{2}}(E_{\gamma_{2}},\mathbf{b}_{2})$$

- Probability of elastic scattering  $P_{\rm elas}$ 

- $\hookrightarrow$  Probability of hadrons  $A_1$  and  $A_2$  to remain intact after the interaction at given impact parameters  $\mathbf{b}_1$  and  $\mathbf{b}_2$
- Photon number density  $N_{\gamma_i/Z_i}$ 
  - $\hookrightarrow$  Probability of  $\gamma_i$  being emitted with an energy  $E_{\gamma_i}$ 
    - by  $A_i$  at impact parameter  $\mathbf{b}_i$
  - $\hookrightarrow$  Can be parameterized using the Charge Form Factor (ChFF) or the Electric Dipole Form Factor (EDFF) of the ion A<sub>i</sub>

# Photon flux

- Photon flux
  - $\hookrightarrow$  Probability of  $\gamma_1$  being emitted by  $A_1$  with an energy  $E_{\gamma_1}$  and  $\gamma_2$  being emitted by  $A_2$  with an energy  $E_{\gamma_2}$  without breaking up the ions

$$\frac{\mathrm{d}^{2}N^{(\mathrm{A}_{1}\mathrm{A}_{2})}_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}{\mathrm{d}E_{1}\mathrm{d}E_{2}} = \int \mathrm{d}^{2}\mathbf{b}_{1}\mathrm{d}^{2}\mathbf{b}_{2} \, \boldsymbol{P}_{elas}(\mathbf{b}_{1},\mathbf{b}_{2}) \, N_{\gamma_{1}/Z_{1}}(E_{\gamma_{1}},\mathbf{b}_{1}) \, N_{\gamma_{2}/Z_{2}}(E_{\gamma_{2}},\mathbf{b}_{2})$$

- Probability of elastic scattering  $P_{\rm elas}$ 
  - $\hookrightarrow$  Probability of hadrons  $A_1$  and  $A_2$  to remain intact after the interaction at given imput parameters  $b_1$  and  $b_2$
- Photon number density  $N_{\gamma_i/Z_i}$ 
  - $\hookrightarrow$  Probability of  $\gamma_i$  being emitted with an energy  $E_{\gamma_i}$ 
    - by  $A_i$  at impact parameter  $\mathbf{b}_i$
  - $\hookrightarrow$  Can be parameterized using the Charge Form Factor (ChFF) or the Electric Dipole Form Factor (EDFF) of the ion A<sub>i</sub>

# Photon flux

- Photon flux
  - $\hookrightarrow$  Probability of  $\gamma_1$  being emitted by  $A_1$  with an energy  $E_{\gamma_1}$  and  $\gamma_2$  being emitted by  $A_2$  with an energy  $E_{\gamma_2}$  without breaking up the ions

$$\frac{\mathrm{d}^{2}N^{(\mathrm{A}_{1}\mathrm{A}_{2})}}{\mathrm{d}E_{1}\mathrm{d}E_{2}} = \int \mathrm{d}^{2}\mathbf{b}_{1}\mathrm{d}^{2}\mathbf{b}_{2} P_{\mathrm{elas}}(\mathbf{b}_{1}, \mathbf{b}_{2}) N_{\boldsymbol{\gamma}_{1}/\boldsymbol{Z}_{1}}(\boldsymbol{E}_{\boldsymbol{\gamma}_{1}}, \mathbf{b}_{1}) N_{\boldsymbol{\gamma}_{2}/\boldsymbol{Z}_{2}}(\boldsymbol{E}_{\boldsymbol{\gamma}_{2}}, \mathbf{b}_{2})$$

- Probability of elastic scattering  $P_{\rm elas}$ 
  - $\hookrightarrow$  Probability of hadrons  $A_1$  and  $A_2$  to remain intact after the interaction at given imput parameters  $\mathbf{b}_1$  and  $\mathbf{b}_2$
- Photon number density  $N_{\gamma_i/Z_i}$ 
  - $\hookrightarrow$  Probability of  $\gamma_i$  being emitted with an energy  $E_{\gamma_i}$ by  $A_i$  at impact parameter  $\mathbf{b}_i$
  - $\hookrightarrow$  Can be parameterized using the Charge Form Factor (ChFF) or the Electric Dipole Form Factor (EDFF) of the ion A<sub>i</sub>

- Different parametrization of the photon flux:  $\Delta_{\rm PF} = \frac{\sigma_{\rm EDFF}^{\rm LO} \sigma_{\rm ChFF}^{\rm LO}}{\sigma_{\rm ChFF}^{\rm LO}}$ 
  - Fiducial cross section

|      | $\sigma^{\rm LO} [{\rm nb}]$ | $\Delta_{\rm PF}$ [%] |
|------|------------------------------|-----------------------|
| ChFF | 45.87(1)                     | -                     |
| EDFF | 34.61(1)                     | -24.55(1)             |

- Different parametrization of the photon flux:  $\Delta_{\rm PF} = \frac{\sigma_{\rm LOFF}^{\rm LO} \sigma_{\rm ChFF}^{\rm LO}}{\sigma_{\rm ChFF}^{\rm LO}}$ 
  - Fiducial cross section

|      | $\sigma^{\rm LO} [{\rm nb}]$ | $\Delta_{\rm PF}$ [%] |
|------|------------------------------|-----------------------|
| ChFF | 45.87(1)                     | -                     |
| EDFF | 34.61(1)                     | -24.55(1)             |

- Differential distributions



- Different parametrization of the photon flux:  $\Delta_{\rm PF} = \frac{\sigma_{\rm EDF}^{\rm LO} \sigma_{\rm ChFF}^{\rm LO}}{\sigma_{\rm CDFF}^{\rm LO}}$ 
  - Fiducial cross section

|      | $\sigma^{\rm LO} [{\rm nb}]$ | $\Delta_{\rm PF}$ [%] |
|------|------------------------------|-----------------------|
| ChFF | 45.87(1)                     | -                     |
| EDFF | 34.61(1)                     | -24.55(1)             |

- Differential distributions



Largest source of uncertainty ~25 %
 → Reduce it by using ratios of cross sections

## Auxiliary observable

- The parametrization of the photon flux as largest source of uncertainty
  - $\hookrightarrow$  Define observables based on ratios of cross sections

$$\mathcal{O} = \frac{\sigma^{\rm LO}}{\sigma^{\rm LO}_{\mu\mu}} \qquad \qquad \frac{\mathrm{d}\mathcal{O}}{\mathrm{d}X} = \frac{1}{\sigma^{\rm LO}_{\mu\mu}} \frac{\mathrm{d}\sigma^{\rm LO}}{\mathrm{d}X}$$

-  $\sigma_{\mu\mu}^{\rm LO}$ : LO cross section for  $\gamma\gamma \to \mu^+\mu^-$  induced by UPCs of lead ions



# Auxiliary observable

- The parametrization of the photon flux as largest source of uncertainty
  - $\hookrightarrow$  Define observables based on ratios of cross sections

$$\mathcal{O} = \frac{\sigma^{\rm LO}}{\sigma^{\rm LO}_{\mu\mu}} \qquad \qquad \frac{\mathrm{d}\mathcal{O}}{\mathrm{d}X} = \frac{1}{\sigma^{\rm LO}_{\mu\mu}} \frac{\mathrm{d}\sigma^{\rm LO}}{\mathrm{d}X}$$

-  $\sigma_{\mu\mu}^{\rm LO}$ : LO cross section for  $\gamma\gamma \to \mu^+\mu^-$  induced by UPCs of lead ions



- Numerical results  $\sigma_{\mu\mu}^{\rm LO}$ 

|      | $\sigma^{ m LO}_{\mu\mu} \left[ \mu { m b}  ight]$ | $\Delta_{\rm PF}[\%]$ |
|------|----------------------------------------------------|-----------------------|
| ChFF | 57.24(2)                                           | -                     |
| EDFF | 45.64(1)                                           | -20.28(1)             |

- Different parametrization of the photon flux:  $\Delta_{\rm PF} = \frac{\sigma_{\rm EDFF}^{\rm LO} \sigma_{\rm ChFF}^{\rm LO}}{\sigma_{\rm ChFF}^{\rm LO}}$ 
  - Auxiliary observable

|      | $\mathcal{O}^{\mathrm{LO}} \cdot 10^4$ | $\Delta_{\rm PF}[\%]$ |
|------|----------------------------------------|-----------------------|
| ChFF | 8.013(3)                               | -                     |
| EDFF | 7.584(3)                               | -5.36(5)              |

- Different parametrization of the photon flux:  $\Delta_{\rm PF} = \frac{\sigma_{\rm LOFF}^{\rm LO} \sigma_{\rm ChFF}^{\rm LO}}{\sigma_{\rm ChFF}^{\rm LO}}$ 
  - Auxiliary observable

|      | $\mathcal{O}^{\mathrm{LO}} \cdot 10^4$ | $\Delta_{\rm PF}  [\%]$ |
|------|----------------------------------------|-------------------------|
| ChFF | 8.013(3)                               | -                       |
| EDFF | 7.584(3)                               | -5.36(5)                |

- Differential distributions



- Different parametrization of the photon flux:  $\Delta_{\rm PF} = \frac{\sigma_{\rm EDFF}^{\rm LO} \sigma_{\rm ChFF}^{\rm LO}}{\sigma_{\rm CDFF}^{\rm LO}}$ 
  - Auxiliary observable

|      | $\mathcal{O}^{LO} \cdot 10^4$ | $\Delta_{\rm PF}  [\%]$ |
|------|-------------------------------|-------------------------|
| ChFF | 8.013(3)                      | -                       |
| EDFF | 7.584(3)                      | -5.36(5)                |

- Differential distributions



• Uncertainty reduce to  $\sim 5\%$ 

#### Introduction

- **2** Description of the process
- **3** Spin-correlation effects
- Next-to-leading-order electroweak corrections
- **6** Parametrization of the photon flux

#### **6** Conclusion and outlook

# Conclusions

- In this talk
  - $\hookrightarrow \tau$ -pair production in UPCs  $\rightarrow$  determination of  $a_{\tau}$
  - $\hookrightarrow$  We provide state-of-the-art SM prediction assuming leptonic  $\tau\text{-decays}$
  - $\hookrightarrow$  Predictions used in the on-going ATLAS analyses
  - $\hookrightarrow {\rm Spin-correlation\ effects\ } \sim 5\,\%$
  - $\hookrightarrow$  NLO EW corrections  $\sim\!\!1\,\%$
  - $\hookrightarrow$  Parametrization of the photon flux  $\sim\!25\,\%$   $\rightarrow$   $\sim\!5\,\%$

# Conclusions

- In this talk
  - $\hookrightarrow \tau$ -pair production in UPCs  $\rightarrow$  determination of  $a_{\tau}$
  - $\hookrightarrow$  We provide state-of-the-art SM prediction assuming leptonic  $\tau\text{-decays}$
  - $\hookrightarrow$  Predictions used in the on-going ATLAS analyses
  - $\hookrightarrow {\rm Spin-correlation\ effects\ } \sim 5\,\%$
  - $\hookrightarrow$  NLO EW corrections  $\sim\!\!1\,\%$
  - $\hookrightarrow$  Parametrization of the photon flux  $\sim\!25\,\%$   $\rightarrow$   $\sim\!5\,\%$
- Further studies in our paper [2504.11391]
  - $\hookrightarrow \text{Finite-mass effects}$
  - $\hookrightarrow$  Importance of a proper input-parameter scheme
  - $\hookrightarrow$  Gauge-invariant subsets of the NLO EW corrections
  - $\hookrightarrow$  Non-inclusive treatment of collinear radiation

# Outlook

- Include a model-independent parametrization of the  $\gamma \tau \tau$  vertex  $\hookrightarrow$  Study the sensitivity to  $a_{\tau}$ 
  - In the literature:

$$\Gamma^{\mu}(k^2) = \gamma \underbrace{\gamma}_{k} \underbrace{\gamma}_{\tau^-}^{\tau^+}$$

$$= F_{\rm E}(k^2)\gamma^{\mu} + F_{\rm A}(k^2) \Big(\gamma^{\mu} - \frac{2m}{k^2}k^{\mu}\Big)\gamma_5 + F_{\rm M}(k^2)\frac{{\rm i}\sigma^{\mu\nu}k_{\nu}}{2m} + F_{\rm D}(k^2)\frac{\sigma^{\mu\nu}k_{\nu}}{2m}\gamma_5$$

- ·  $F_{\rm E}(k^2)$ : Electric charge form factor  $\rightarrow F_{\rm E}(0) = 1$
- ·  $F_{\rm A}(k^2)$ : Anapole moment (P violating)  $\rightarrow F_{\rm A}(0) = 0$
- ·  $F_{\rm M}(k^2)$ : Magnetic form factor  $\rightarrow F_{\rm M}(0) = a_{\tau}$
- ·  $F_{\rm D}(k^2)$ : Dipole form factor (CP violating)  $\rightarrow F_{\rm D}(0) = -2md_{\tau}$

# Outlook

- Include a model-independent parametrization of the  $\gamma \tau \tau$  vertex  $\hookrightarrow$  Study the sensitivity to  $a_{\tau}$ 
  - In the literature:

$$\Gamma^{\mu}(k^{2}) = \gamma \underbrace{\gamma}_{k} \underbrace{\gamma}_{\mu} \underbrace{\gamma}_{\tau^{-}} = F_{\rm E}(k^{2})\gamma^{\mu} + F_{\rm A}(k^{2}) \Big(\gamma^{\mu} - \frac{2m}{k^{2}}k^{\mu}\Big)\gamma_{5} + F_{\rm M}(k^{2})\frac{\mathrm{i}\sigma^{\mu\nu}k_{\nu}}{2m} + F_{\rm D}(k^{2})\frac{\sigma^{\mu\nu}k_{\nu}}{2m}\gamma_{5}$$

- Problem: Assumes both  $\tau$ -leptons to be on-shell



# Outlook

- Include a model-independent parametrization of the  $\gamma \tau \tau$  vertex  $\hookrightarrow$  Study the sensitivity to  $a_{\tau}$ 
  - In the literature:

$$\Gamma^{\mu}(k^{2}) = \gamma \underbrace{\gamma}_{\mu} \underbrace{\gamma}_{\nu}^{\mu} \underbrace{\gamma}_{\tau^{-}}^{\tau^{+}} = F_{\rm E}(k^{2})\gamma^{\mu} + F_{\rm A}(k^{2}) \Big(\gamma^{\mu} - \frac{2m}{k^{2}}k^{\mu}\Big)\gamma_{5} + F_{\rm M}(k^{2})\frac{\mathrm{i}\sigma^{\mu\nu}k_{\nu}}{2m} + F_{\rm D}(k^{2})\frac{\sigma^{\mu\nu}k_{\nu}}{2m}\gamma_{5}$$

- Problem: Assumes both  $\tau\text{-leptons}$  to be on-shell



- Solution:
  - $\hookrightarrow$  More general decomposition of the  $\gamma\tau\tau$  vertex function
  - $\hookrightarrow$  Classify form factors according to CP properties
  - $\hookrightarrow$  Look for kinematical configurations in which  $F_{\rm M}(0)$  is dominant

José Luis Hernando Ariza

IPHC Strasbourg 2025

### Leading-order contributions

• Process:  $\gamma \gamma \to e^+ \mu^- \bar{\nu}_\tau \nu_\tau \bar{\nu}_\mu \nu_e$ 



## Importance of a proper input-parameter scheme

- Input-parameter schemes for  $\alpha$ :
  - $\alpha(0)$ -scheme:  $\alpha = \alpha(0), \ \alpha^{-1}(0) \approx 137$ 
    - · Processes without internal gauge-boson lines and external photons  $\hookrightarrow$  No universal corrections from coupling renormalization  $\propto \alpha \ln m_f$
    - Processes with internal gauge-boson lines and no external photons  $\hookrightarrow$  Large logarithmic corrections  $\propto \alpha \ln m_f$  from the running of  $\alpha$  $\hookrightarrow$  Corrections to the  $\rho$ -parameter from the renormalization of  $\theta_w$
  - $G_{\mu}$ -scheme:  $\alpha = \alpha_{G_{\mu}} = \frac{\sqrt{2}}{\pi} G_{\mu} M_{W}^{2} \left( 1 \frac{M_{W}^{2}}{M_{Z}^{2}} \right), G_{\mu} \approx 1.17 \times 10^{-5} \,\text{GeV}^{-2}$ 
    - · Processes without internal gauge-boson lines and external photons  $\hookrightarrow$  Corrections to the  $\rho$ -parameter erroneously absorbed into  $\alpha$
    - $\cdot$  Processes with internal gauge-boson lines and no external photons
      - $\hookrightarrow$  Absorbs universal corrections to  $\alpha(M_Z^2)/\sin\theta_{\rm w}$  into the value of  $\alpha$

### Importance of a proper input-parameter scheme

| $\gamma\gamma \to \tau^+ \tau^-$     | $\alpha(0)$ -scheme                             |                         | $G_{\mu}$ -scheme                               |              |
|--------------------------------------|-------------------------------------------------|-------------------------|-------------------------------------------------|--------------|
|                                      | $\sigma \text{ or } \Delta \sigma \text{ [mb]}$ | $\delta$ [%]            | $\sigma \text{ or } \Delta \sigma \text{ [mb]}$ | $\delta$ [%] |
| $\sigma^{LO}$                        | 1.063(2)                                        | -                       | 1.136(3)                                        | -            |
| $\Delta \sigma_{\rm QED}^{\rm NLO}$  | 0.010(3)                                        | 0.94(3)                 | 0.012(1)                                        | 1.08(6)      |
| $\Delta \sigma_{\rm weak}^{\rm NLO}$ | $9.1(7) \times 10^{-8}$                         | $8.5(6) \times 10^{-6}$ | -0.009(3)                                       | -0.84(1)     |
| $\Delta \sigma_{\rm ferm}^{\rm NLO}$ | $6.6(1) \times 10^{-7}$                         | $6.2(6) \times 10^{-5}$ | -0.058(1)                                       | -5.10(2)     |
| $\sigma^{\rm NLO}$                   | 1.073(2)                                        | 0.94(3)                 | 1.081(3)                                        | -4.86(6)     |

| $\tau^- \to e^- \nu_\tau \bar{\nu}_e$ | $\alpha(0)$ -scheme                            |              | $G_{\mu}$ -scheme                                    |                         |
|---------------------------------------|------------------------------------------------|--------------|------------------------------------------------------|-------------------------|
|                                       | $\Gamma~{\rm or}~\Delta\Gamma~[{\rm ns}^{-1}]$ | $\delta$ [%] | $\Gamma \text{ or } \Delta \Gamma \text{ [ns}^{-1]}$ | $\delta$ [%]            |
| $\Gamma^{LO}$                         | 573.35(8)                                      | -            | 615.28(9)                                            | -                       |
| $\Delta \Gamma_{\rm bos}^{\rm NLO}$   | 2.18(1)                                        | 0.38(1)      | -2.69(1)                                             | -0.44(1)                |
| $\Delta \Gamma_{\rm ferm}^{\rm NLO}$  | 28.18(3)                                       | 4.92(1)      | $1.1(1) \times 10^{-2}$                              | $1.9(1) \times 10^{-3}$ |
| $\Gamma^{\rm NLO}$                    | 603.71(9)                                      | 5.30(1)      | 612.60(9)                                            | -0.44(1)                |

# Effects

• Effects: 
$$\Delta_{\text{LO}} = \frac{\sigma^{\text{LO}} - \sigma^{\text{LO}}_{\text{Best}}}{\sigma^{\text{LO}}_{\text{Best}}}$$

|                     | $\sigma^{\rm LO}[{\rm nb}]$ | $\Delta_{\rm LO}[\%]$ |
|---------------------|-----------------------------|-----------------------|
| Best                | 45.869(4)                   | -                     |
| No spin corr.       | 43.282(4)                   | -5.64(1)              |
| $m_e = 0$           | 45.873(4)                   | 0.01(1)               |
| $m_{\mu} = m_e = 0$ | 46.446(4)                   | 1.26(1)               |

José Luis Hernando Ariza

 $25 \, / \, 25$ 

#### Effects



### Parametrization of the photon flux

• Effects: 
$$\Delta_{\rm PF} = \frac{\sigma_{\rm EDFF}^{\rm LO} - \sigma_{\rm ChFF}^{\rm LO}}{\sigma_{\rm ChFF}^{\rm LO}}, \ \mathcal{O}_i \equiv \frac{\sigma_i^{\rm LO}}{\sigma_{\mu\mu,i}^{\rm LO}}$$

|                                        | ChFF     | EDFF     | $\Delta_{\rm PF}[\%]$ |
|----------------------------------------|----------|----------|-----------------------|
| $\sigma^{\rm LO}[\rm nb]$              | 45.87(1) | 34.61(1) | -24.55(1)             |
| $\sigma_{\mu\mu}^{ m LO}[\mu { m b}]$  | 57.24(2) | 45.64(1) | -20.28(4)             |
| $\mathcal{O}^{\mathrm{LO}} \cdot 10^4$ | 8.013(3) | 7.584(3) | -5.36(5)              |
# Parametrization of the photon flux



# Parametrization of the photon flux



# NLO EW correction

• Relative correction:  $\delta = \frac{\sigma^{\text{NLO}} - \sigma^{\text{LO}}}{\sigma^{\text{LO}}}$ 

|                                           |                           |            | $\sigma [{\rm nb}]$ |                                    | $\delta$ [%] |            |
|-------------------------------------------|---------------------------|------------|---------------------|------------------------------------|--------------|------------|
|                                           | LO                        |            | 45.869(4)           |                                    | -            |            |
|                                           | NLO EW                    |            | 45.327(4)           |                                    | -1.182(      | 1)         |
|                                           |                           | I          |                     | • NLOTAL                           |              | S [07]     |
| subprocess                                |                           | correction |                     | $\Delta \sigma^{\rm NLO} [\rm nb]$ |              | ð [%]      |
| $\gamma \gamma \rightarrow \tau^+ \tau^-$ |                           | QED        |                     | 0.1733(3)                          |              | 0.3778(7)  |
|                                           |                           | weak       |                     | 0.00082(1)                         |              | 0.0018(1)  |
| // / <b>/</b>                             |                           | fermionic  |                     | 0.00005(1)                         |              | 0.0001(1)  |
|                                           |                           | sum        |                     | 0.1741(3)                          |              | 0.3797(7)  |
|                                           |                           | bosonic    |                     | -0.3342(4)                         |              | -0.7286(8) |
| $\tau^- \rightarrow \mu^-$                | $ u_{	au} \bar{ u}_{\mu}$ | fermionic  |                     | 0.0010(1)                          |              | 0.0023(1)  |
|                                           |                           | sum        |                     | -0.3332(3)                         |              | -0.7263(8) |
| $\tau^+ \rightarrow e^+$                  |                           | bosonic    |                     | -0.3840(4)                         |              | -0.8372(9) |
|                                           | $\bar{\nu}_{\tau}\nu_{e}$ | fermionic  |                     | 0.0010(1)                          |              | 0.0023(1)  |
|                                           |                           | sum        |                     | -0.3830(4)                         |              | -0.8349(9) |
| sum                                       |                           |            |                     | -0.5421(6)                         |              | -1.182(1)  |

# NLO EW correction



# NLO EW correction

• Relative correction:  $\delta = \frac{\sigma^{\text{NLO}} - \sigma^{\text{LO}}}{\sigma^{\text{LO}}}$ 2.5 2.5 - $\delta_{\overline{D}} \\ \delta_{NLO}$  $\delta_{\rm P}$  $--\delta_{\overline{D}}$  $\delta_P$  — 2.0 2.0 δ  $\delta_{\rm D} - \delta_{\rm NLO}$ 1.5 1.5 1.0 1.0 0.5 0.5 δ[%] δ[%] 0.0 0.0 -0.5 -0.5 -1.0-1.0-1.5-1.5-2.0 -2.0 -2.5 ↓ 0.0 -2.5 ↓ 4 8 ρ<sub>T,μ</sub>[GeV] 14 16 0.5 1.0 1.5 2.0 6 18 2.5  $|\eta_{\mu}|$ 2.5 2.5  $\delta_{\overline{D}} \\ \delta_{NLO}$  $\delta_{\overline{D}} \\ \delta_{NLO}$  $\delta_P$  $\delta_P$ 2.0 2.0  $\delta_{\rm D}$  $\delta_{\Gamma}$ 1.5 1.5 1.0 1.0 0.5 0.5 δ[%] δ[%] 0.0 0.0 -0.5 -0.5 -1.0 -1.0 -1.5 -1.5 -2.0 -2.0-2.5 -2.5 2.80 2.85 2.90 2.95 3.00 3.05 3.10 -2 -1 ò i. ż ŝ á. 5  $\Delta \eta_{e\mu}$  $\Delta \phi_{eu}$ 

#### Non-inclusive treatment of collinear radiation

• Effects: 
$$\Delta_{\text{drs/bare}} = \frac{\sigma_{\text{drs}}^{\text{NLO}} - \sigma_{\text{bare}}^{\text{LO}}}{\sigma^{\text{LO}}} = \delta_{\text{drs}} - \delta_{\text{bare}}$$

#### - Massive muons

| subprocess                               | $\Delta \sigma_{\rm bare}^{\rm NLO} [{\rm nb}]$ | $\delta_{ m bare}  [\%]$ | $\Delta \sigma_{\rm drs}^{\rm NLO} [{\rm nb}]$ | $\delta_{ m drs}[\%]$ | $\Delta_{\rm drs/bare}$ [%] |
|------------------------------------------|-------------------------------------------------|--------------------------|------------------------------------------------|-----------------------|-----------------------------|
| $\gamma\gamma \to \tau^+\tau^-$          | 0.1666(3)                                       | 0.363(1)                 | 0.1745(3)                                      | 0.380(1)              | 0.017(1)                    |
| $\tau^- 	o \mu^- \nu_\tau \bar{\nu}_\mu$ | -0.4799(2)                                      | -1.046(1)                | -0.3332(2)                                     | -0.726(1)             | 0.320(1)                    |
| $\tau^+ \to e^+ \bar{\nu}_\tau \nu_e$    | -0.3821(3)                                      | -0.833(1)                | -0.3828(3)                                     | -0.835(1)             | -0.002(1)                   |
| sum                                      | -0.6954(5)                                      | -1.516(1)                | -0.5417(5)                                     | -1.181(1)             | 0.335(2)                    |

- Massless limit,  $m_{\mu} \rightarrow 0$ 

| subprocess                               | $\Delta \sigma_{\rm bare}^{\rm NLO} [{\rm nb}]$ | $\delta_{ m bare}  [\%]$ | $\Delta \sigma_{\rm drs}^{\rm NLO} [{\rm nb}]$ | $\delta_{ m drs}[\%]$ | $\Delta_{\rm drs/bare}$ [%] |
|------------------------------------------|-------------------------------------------------|--------------------------|------------------------------------------------|-----------------------|-----------------------------|
| $\gamma\gamma \to \tau^+\tau^-$          | 0.1685(2)                                       | 0.363(1)                 | 0.1762(2)                                      | 0.379(1)              | 0.017(1)                    |
| $\tau^- 	o \mu^- \nu_\tau \bar{\nu}_\mu$ | -0.4531(3)                                      | -0.976(1)                | -0.3595(3)                                     | -0.774(1)             | 0.202(1)                    |
| $\tau^+ \to e^+ \bar{\nu}_\tau \nu_e$    | -0.3594(3)                                      | -0.774(1)                | -0.3597(3)                                     | -0.774(1)             | 0.001(1)                    |
| sum                                      | -0.6440(5)                                      | -1.387(1)                | -0.5429(5)                                     | -1.169(1)             | 0.218(2)                    |

### Non-inclusive treatment of collinear radiation

