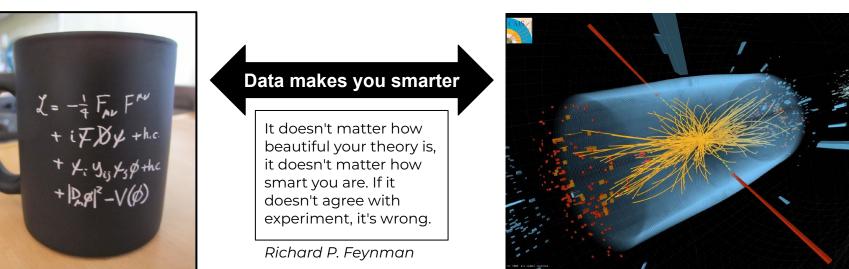


Pier Monni (CERN)

Simon Plätzer (University of Graz)

Andrzej Siodmok (Jagiellonian University)

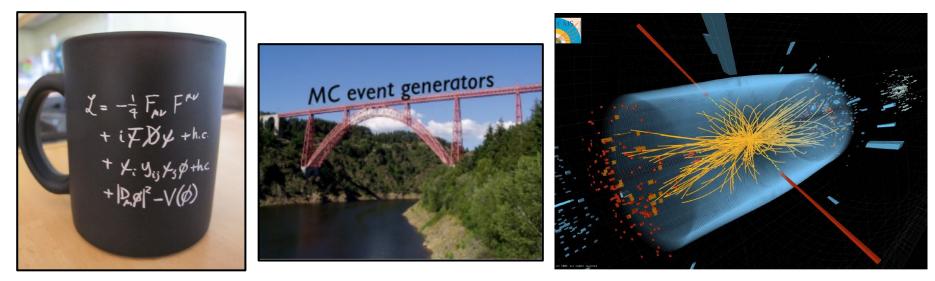

Motivation - Monte Carlo Event Generators (MCEG) Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Standard Model Lagrangian

Experiment LHC event


Motivation - Monte Carlo Event Generators (MCEG) Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Standard Model Lagrangian

Experiment LHC event

- MC event generators are designed to bridge the that gap
- "Virtual collider" ⇒ Direct comparison with data

Almost all **HEP measurements and discoveries** in the modern era have **relied on MCEG**, most notably the discovery of the Higgs boson.

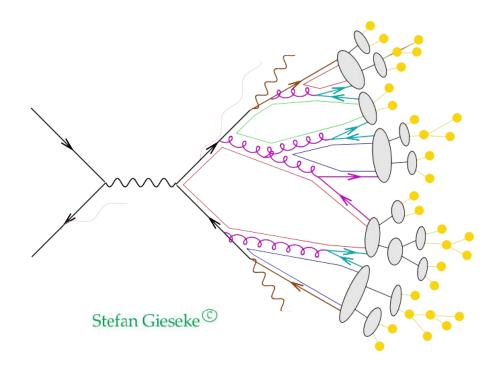
Herwig [AS,SP], Sherpa, Pythia

Published papers by ATLAS, CMS, LHCb: **2252** Citing at least 1 of 3 existing MCEG: **1888** (**84%**)

Town Meeting, Hadron Physics in Horizon Europe, Nantes

Partons2Hadrons

Motivation - Monte Carlo Event Generators (MCEG)


QCD correctly describes strong interactions in each energy range but its complex mathematical structure makes it very difficult to obtain precise predictions (Millennium Prize Problem \$1,000,000)

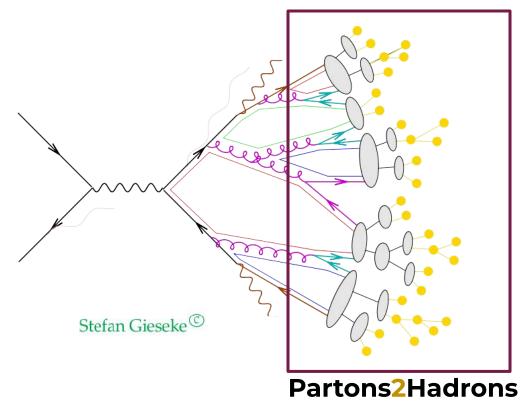
High energy

- perturbative QCD
- in theory we know what to do
- in practice very challenging

Low energy

- non-perturbative QCD
- we don't know what to do
- phenomenological models (with many free parameters)

Why hadronization?


QCD correctly describes strong interactions in each energy range but its complex mathematical structure makes it very difficult to obtain precise predictions (Millennium Prize Problem \$1,000,000)

High energy

- perturbative QCD
- in theory we know what to do
- in practice very challenging

Low energy

- non-perturbative QCD
- we don't know what to do
- phenomenological models (with many free parameters)

one of the least understood elements of MCEG

Motivation - Hadronization

Hadronization:

- \rightarrow Increased control of perturbative corrections \Rightarrow more often LHC measurements are limited by non-perturbative components, such as hadronization.
 - W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
 - Extraction of the strong coupling in [M. Johnson, D. Maître, Phys.Rev. D97 (2018) no.5]
 - Top mass [S. Argyropoulos, T. Sjöstrand, JHEP 1411 (2014) 043]

Pier Moni's talk FCC Physics Workshop 2023

Hgg

Hbb

Hqq

ren.scale

0.4

HWW Zaa

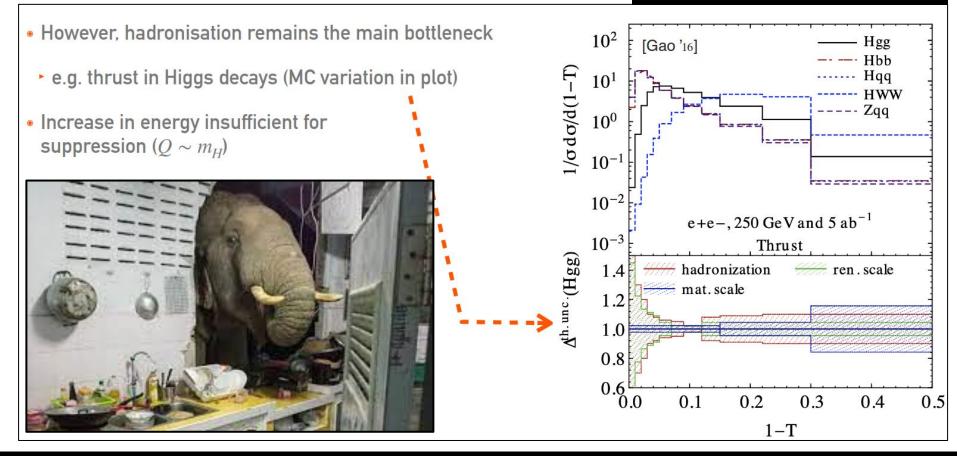
 However, hadronisation remains the main bottleneck 10^{2} [Gao '16] $\left| /\sigma \, d\sigma / d(1 - T) \right|$ e.g. thrust in Higgs decays (MC variation in plot) 10^{1} 10⁰ Increase in energy insufficient for suppression ($Q \sim m_{H}$) 10^{-1} Runs at lower energies are essential for 10^{-2} a robust tuning of NP models in MCs e+e-, 250 GeV and 5 ab^{-1} 10^{-3} Thrust Also crucial for training of ML ∆^{th.unc.}(Hgg) + hadronization 1.4 algorithms for jet tagging, instrumental = mat. scale 1.2 in extraction of Higgs couplings 1.0 0.8 0.6 0.1 0.2 0.0

Town Meeting, Hadron Physics in Horizon Europe, Nantes

0.3

1-T

0.5

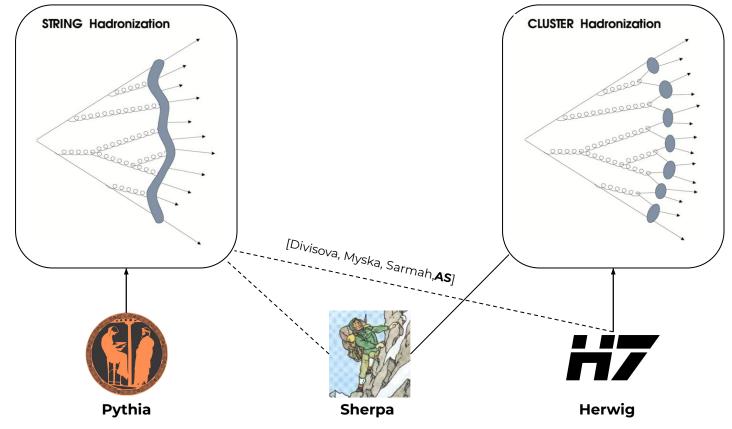

Motivation - Hadronization

Hadronization:

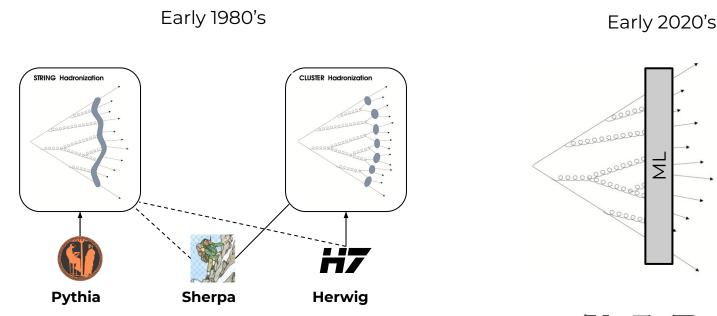
- → Increased control of perturbative corrections ⇒ more often LHC measurements are limited by non-perturbative components, such as hadronization.
 - W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
 - Extraction of the strong coupling in [M. Johnson, D. Maître, Phys.Rev. D97 (2018) no.5]
 - Top mass [S. Argyropoulos, T. Sjöstrand, JHEP 1411 (2014) 043]

- ...

Pier Moni's talk FCC Physics Workshop 2023


Town Meeting, Hadron Physics in Horizon Europe, Nantes

7


Motivation - Hadronization

Hadronization:

- → Increased control of perturbative corrections ⇒ more often LHC measurements are limited by non-perturbative components, such as hadronization.
 - W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
 - Extraction of the strong coupling in [M. Johnson, D. Maître, Phys.Rev. D97 (2018) no.5]
 - Top mass [S. Argyropoulos, T. Sjöstrand, JHEP 1411 (2014) 043]
 - .

. . .

Cluster: [Webber NPB238(1984)492]

...

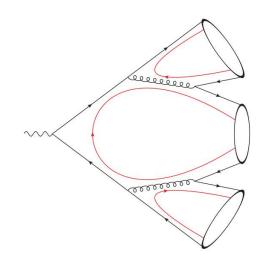
"Phenomenological constraints of the building blocks of the cluster hadronization model" [Gieseke, Kiebacher, **SP,** Priedigkeit 2505.14542]

String:

[Andersson, Gustafson, Ingelman, Sjostrand, Phys.Rept.97(1983)31]

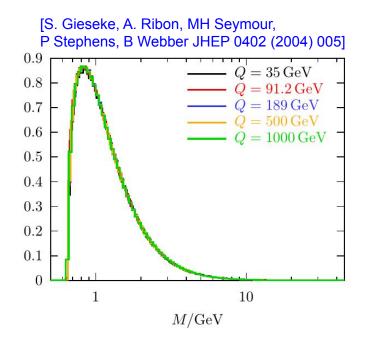
HEDML

[Ghosh, Ju, Nachman **AS**, Phys.Rev.D 106 (2022) 9] [Chan, Ju, Kania, Nachman, Sangli, **AS**, JHEP 09 (2023) 084] [Chan, Ju, Kania, Nachman, Sangli, **AS**, Phys.Rev.D 111 (2025)]


[Ilten, Menzo, Youssef, Zupan, SciPost Phys. 14, 027 (2023)]

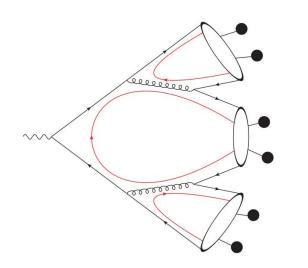
Parton Showers (recent developments): Possibly in the future NNLL becoming the next state-of-the-art NLL is quickly becoming the standard for parton showers

	PanScales	ALARI
Parton showers beyond leading logarithmic accur Mrinal Dasgupta, ¹ Frédéric A. Dreyer, ² Keith Hamilton, ³ Pic Francesco Monni, ⁴ Gavin P. Salam, ^{2,*} and Grégory Soyez ⁵	^{cy} Building a consistent parton shower	A new approach to color-coherent parton evolution
Matching and event-shape NNDL accuracy i showers	parton Jeffrey R. Forshaw, ^{a,b} Jack Holguin, ^{a,b} Simon Plätzer, ^{b,c}	Florian Herren, ¹ Stefan Höche, ¹ Frank Krauss, ² Daniel Reichelt, ² and Marek Schönherr ² ¹ Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA ² Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, UK
Keith Hamilton," Alexander Karlberg, ^{b.c} Gavin P. Salam, ^{b.d} Ludovic S Verheyen"	Jack Holguin ^{1,} Jeffrey R. Forshaw ^{h,1} , Simon Plätzer ^{e,2}	A new approach to QCD evolution in processes with massive par Benoît Assi and Stefan Höche Fermi National Accelerator Laboratory, Batavia, IL, 60510
nScales showers for hadron collisions: all-order idation	¹ Consortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom ² Particle Physics, Faculty of Physics, University of Vienna, 1090 Wien, Austria	The Alaric parton shower for hadron colliders Stefan Höche, ¹ Frank Krauss, ² and Daniel Reichelt ²
ssa van Beekveld," Silvia Ferrario Ravasio," Keith Hamilton, ⁶ Gavin P. Salam, ^{9,4} Soto-Ontoso, ⁴ Gregory Soyez, ⁴ Rob Verheyen ⁶	DEDUCTOR	APOLLO
Spin correlations in final-state parton showers and observables Alexander Karlberg ¹ , Gavin P. Salam ^{1,2} , Ludovic Scyboz ¹ , Rob Verheyen ²	jet Summations of large logarithms by parton showers Zoltán Nagy DESY, Notkestrasse 85, 22007 Hamburg, Germany * Davison E. Soper Institute for Fundamental Science, University of Oregon, Eugene, OR 97403-5203, US. Oracle: 18 August 2021	A partitioned dipole-antenna shower with improved transverse recoil
our and logarithmic accuracy in final-state parton wers	Summations by parton showers of large logarithms in electron-positron annihilation Zohian Nagy DESY, Natherbaux 85, 22007 Hamburg. Germany *	Christian T Preuss Department of Physics, University of Wappertal, 42119 Wappertal, Germany E-mail: preuss@uni-wuppertal.de
Hamilton," Rok Medves, ⁶ Gavin P. Salam, ^{6,4} Ludovic Scyboz, ⁶ Gregory Soye2 ^d	Davison E. Soper Davison E. Soper Institute for Fundamental Science, Theoremathy OProgram, Eugene, OR 974403-52023, USA ⁺ (Dated: 13 November 2020)	Soft spin correlations in final-state parton showers
Next-to-leading-logarithmic PanScales showers for Deep Inelastic Scattering and Vector Boson Fusion	Introduction to the PanScales framework, version 0.1	Keith Hamilton," Alexander Karlberg, ⁶ Gavin P. Salam, ^{8,4} Ludovic Scyboz, ⁶ Rob Verheyen*
Melisa van Beekveld." Silvia Forrario Ravasio. ¹	Melissa van Beekveld ¹ , Mrinal Dasgupta ² , Basem Kamal El-Menoufi ^{2,3} , Silvia Ferrario Ravasio ⁴ , Keith Hamilton ⁵ , Jack Helliwell ⁶ , Alexander Karlberg ⁴ , Rok Medves ⁶ , Pier Francesco Monni ⁴ , Gavin P. Salam ^{6,7} , Ludovic Scyboz ^{3,6} , Alba Soto-Ontoso ⁴ , Gregory Soyze ³ , Rob Verheyen ⁵	slide from Pier Monni [& more]


N(N)LL PS (will be) available for standard MCEG (PY8, HERWIG, SHERPA): Hadronization parameters need to be retuned to match the improved perturbative shower.

The philosophy of cluster m.: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:

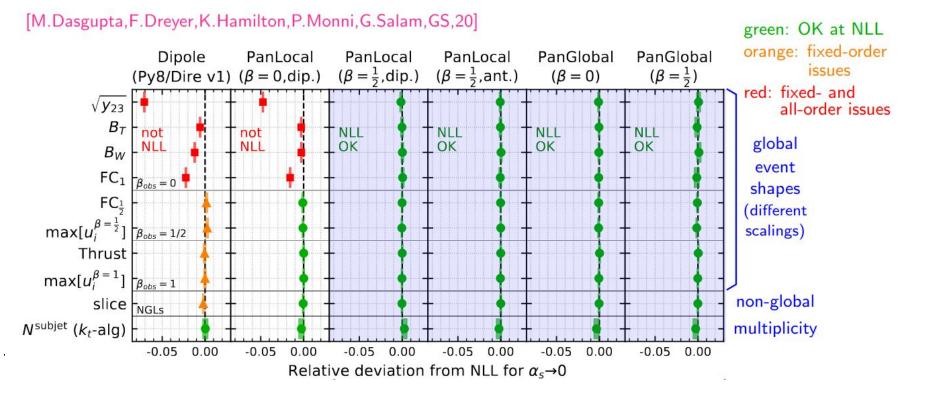
- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters


The philosophy of cluster m.: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:

- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD **pre-confinement** discovered by Amati & Veneziano:


- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons

Other example:

- "Colour Reconnection from Soft Gluon Evolution" [Gieseke, Kirchgaeßer, SP, AS, JHEP 11 (2018)]
- "Matching Hadronization and Perturbative Evolution: The Cluster Model in Light of Infrared Shower Cutoff Dependence" [Hoang, Jin, SM, Samitz, 2404.09856]

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD **pre-confinement** discovered by Amati & Veneziano:

- "Colour Reconnection from Soft Gluon Evolution" [Gieseke, Kirchgaeßer, SP, AS, JHEP 11 (2018)]
- "Matching Hadronization and Perturbative Evolution: The Cluster Model in Light of Infrared Shower Cutoff Dependence" [Hoang, Jin, SM, Samitz]

Plan

- 1. Foster collaborations and discussions across the theoretical and experimental community on the state-of-the-art modelling of non-perturbative aspects in MCPS (everyone is welcome!). [**PM**, CERN natural location]
- 2. Development and implementation of novel hadronization models
 - Build on insights originating from the development of PS with higher logarithmic accuracy see for example: "New Standard for the Logarithmic Accuracy of Parton Showers" [PanScales including PM, Phys.Rev.Lett. 134 (2025) 1]
 - Exploitation of ML techniques see for example: HADML [Chan, Ju, Kania, Nachman, Sangli, AS, Phys.Rev.D 111 (2025)]
- 3. Analysis of publicly available LEP and Belle-II measurements
 - a. Construction of new observables (reanalysis of archived LEP) see for example: "Measurement of parton shower observables with OPAL" [Fischer, Gieseke, Kluth, SP, P. Skands, Eur. Phys. J. C75, 571 (2015)] also [Thaler at al., Phys.Lett.B 856 (2024) 138957 and 2505.11828]
 - b. Using of unbinned data for tuning see for example: "Fitting a deep generative hadronization model" [Chan, Ju, Kania, Nachman, Sangli, AS, JHEP 09 (2023) 084]
- 4. Tuning of the hadronization models interfaced with public NLL and NNLL PS algorithms. [AS and SP a lot of experience]

Budget

Total: 330 kEUR

(accounting also for administrative overheads and conversion rate to CHF)

Personnel:

260 kCHF for a two-years postdoc position (TH or EXP fellowship) at CERN

Others:

50 kCHF to fund:

- the visit of EXP/TH users at CERN for collaboration meetings and studies on-site,
- topical workshops relevant to the development of the proposal
- stays at CERN of the project leaders Simon Plätzer and Andrzej Siodmok, needed to ensure a smooth execution of the proposal.

Pier Monni (CERN)

Simon Plätzer (University of Graz)

Andrzej Siodmok (Jagiellonian University)

Thank you for your attention!