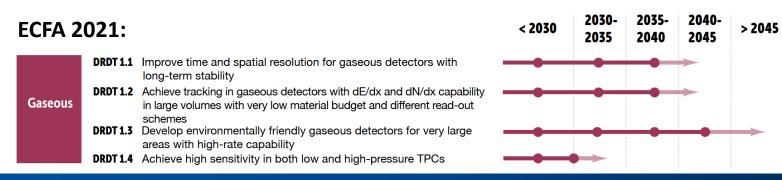
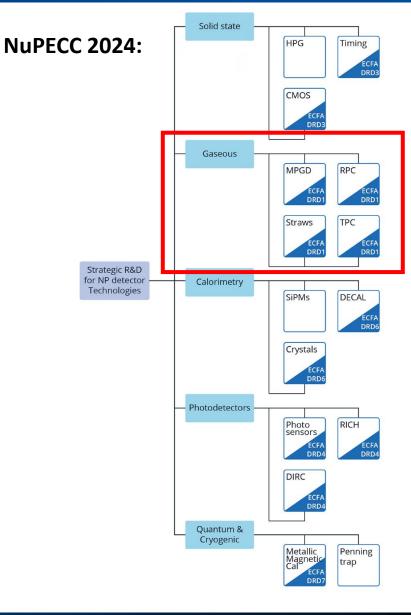
Gaseous Detectors for Hadron Physics Infrastructures

Letter of Intent


Dr. Philip Hauer



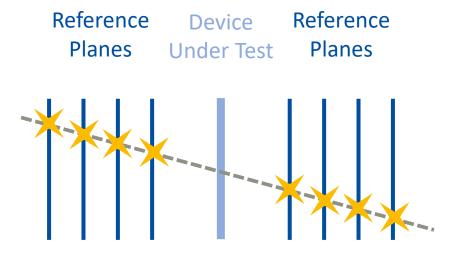
Research Objective – Gaseous Detectors

- Recommendation by
 - European Committee for Future Accelerators 2021 (ECFA)
 - NuPECC Long Range Plan 2024
- Gaseous detectors: One key technology
 - Micropattern Gaseous Detectors (MPGDs)
 - Resistive Plate Chambers (RPCs)
 - Wire-based Detectors (Straws)
 - Time Projection Chambers (TPCs)
- Organization in Europe via CERN-based Collaboration (DRD1)

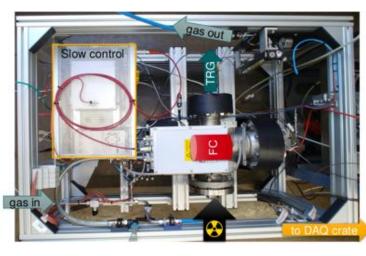
01.07.2025

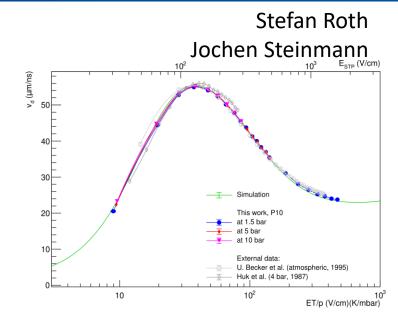
From Laboratory to Experiments

- All gaseous particle detectors started as a small prototype in a laboratory
- Before using them in a big experiment: Test in a beam required!
- Common DRD1 testbeams are typically heavily booked
- Need for more testbeam sites

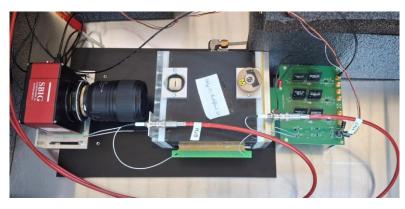


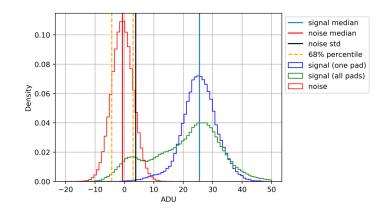
Motivation for a Beam Telescope


- We propose to set up a common beam telescope based on gaseous detectors
- 8 layers of MPGD-based tracking detectors (reference planes)
 - Each: Spatial resolution of 50 μm
 - Track resolution for DUT is then 20 μm
- Cover large area of 20 x 20 cm²
 - Comparison: Silicon-based telescopes have a size in the order of 2 x 2 cm²
- Readout possible via
 - VMM3a (ATLAS NSW)
 - CTR16 (GSI)
 - ToRa (Torino)
- RPCs or Szintillators for timing
 - Time resolution better than 1 ns
- Rate capability > 50 kHz/cm²
- Modular design
 - Can be used at various accelerator sites

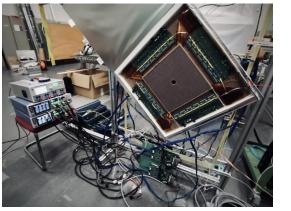


Involved Institutes – Aachen


- R&D for high pressure TPC (HPTPC)
 - Parameters for suitable gas mixtures
 - Optical readout
- Profits from the common beam telescope:
 - Test of HPTPC prototypes, e.g. measurement of spatial resolution and dE/dx resolution
- Contribution:
 - Gas system for telescope
 - Reconstruction software

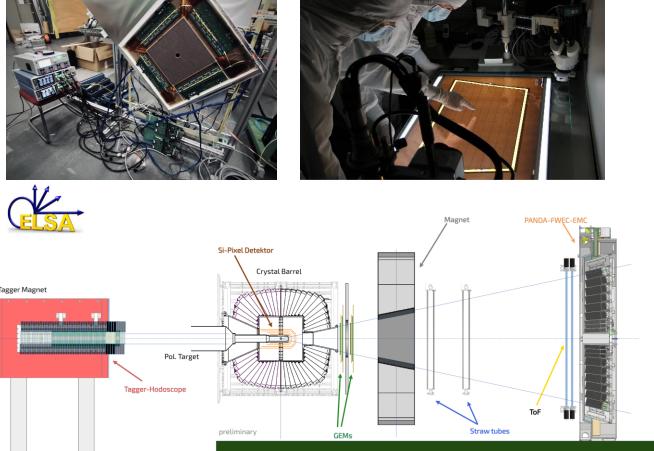

Gas Parameters:

Optical Readout:



Involved Institutes – Bonn

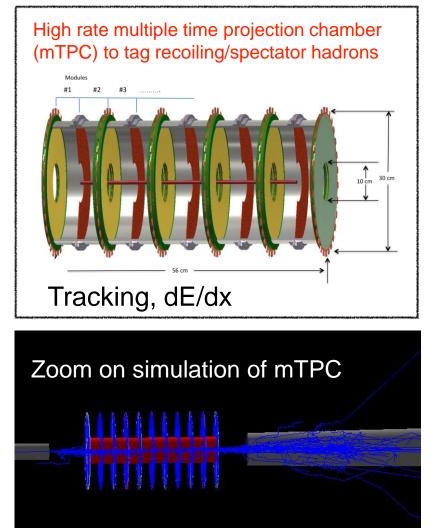
- Experience with GEM detectors
 - ALICE TPC
 - Trackers for COMPASS/AMBER
 - FOPI TPC
- Currently involved in the detector development for
 - AMBER
 - INSIGHT
- Common requirements:
 - Large area coverage (typ. $30 \times 30 \text{ cm}^2$), high rates, low material budget
- Need to test detectors in a beam before installation in experiment


AMBER GEMs:

ALICE GEMs:

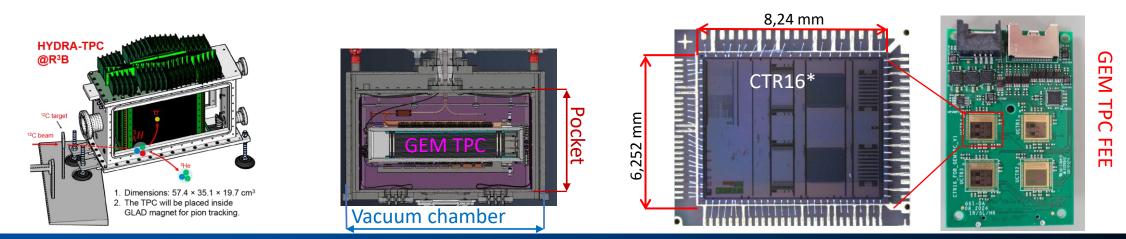
Bernhard Ketzer Michael Lupberger

PH

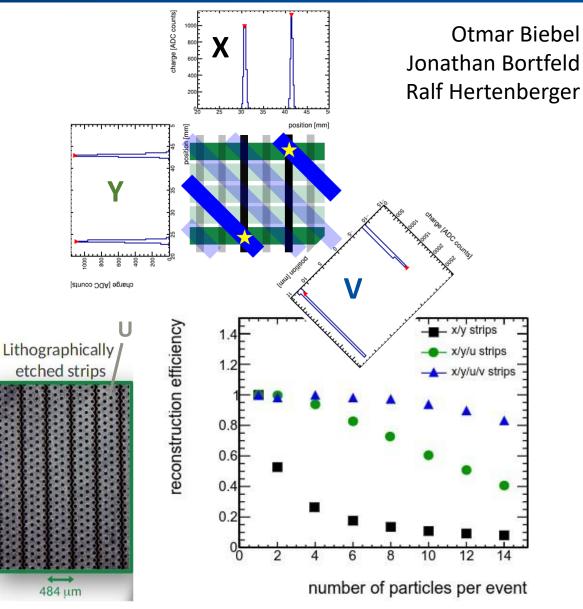

Sketch of the future INSIGHT detector

01.07.2025

Involved Institutes – Glasgow


- Current focus on gaseous detectors for:
 - Tagged Deep Inelastic Scattering (TDIS) for Jefferson Lab
 - R&D of high-rate multiple time projection chamber (mTPC)
 - Tracking recoil hadrons of momenta 100-400 MeV/c
 - Low density gas detector needed for low momenta hadrons
 - High-rate capabilities needed due to high backgrounds from high-luminosity running
- Access to common beam telescope:
 - Provide data to test gaseous detector design elements
 - Tune TDIS simulations
 - Benchmark and test TDIS tracking algorithms
- TDIS prototypes could be tested as DUT within the beam telescope
 - TDIS has several test beams and prototype planned in future

Involved Institutes – GSI


- Current focus on gaseous detectors for:
 - Beam diagnostics, beam particle tracking accelerator chain, FRagment Separator @ GSI and Super-FRagment Separator @ FAIR
 - Experiments CBM, Hades, R³B @ FAIR, ALICE TPC, ALICE TPC Upgrade, ALICE TRD
- Common requirements:
 - Low material budget, several kHz/mm² hit rate, trigger- and triggerless- mode operation
- Mixed signal readout ASIC development & design in house
- Tests in beam feasible (from proton to uranium) at FRS and Cave C (R³B)

Elena Rocco Christian Schmidt Piotr Gasik

Involved Institutes – Munich

- Current R&D activities with gaseous detectors:
 - Improve the rate capability of micro structured gaseous detectors
 - Micromegas and GEM detectors using X/Y and U/V strips for readout
- X / Y / U / V strips allow for resolving ≈ 12 particles @ >90% efficiency
 - Further improvement by using charge and time information
- Testbeam with common beam telescope at very high rates

Involved Institutes – Torino

• Experience:

- MWPC & MDT based detectors @ COMPASS
- Large-size resistive bulk Micromegas for AMBER
- ASIC & electronics design (ToRA)
- Currently involved in detector design for:
 - AMBER
 - ePIC (EIC)
- Common requirements:
 - Large areas (up to 50 x 50 cm²)
 - Low material budget
 - High rates
- Beam telescope required to qualify new detectors

Maxim Alexeev, Chiara Alice, Michela Chiosso, Gianni Mazza

Will depend on the FE optimisation results

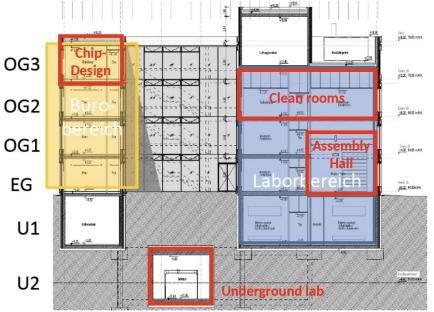

Torino Readout (for) AMBER ASIC (ToRA)

- MPGD and Wire detectors compatible
- Limited complexity

Target specific application

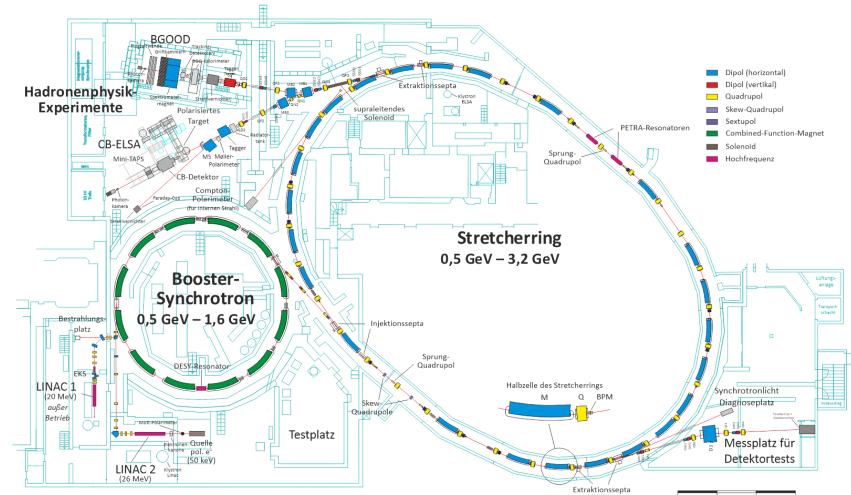
- Reuse existing solutions (ToASt)
- 65nm
- Two step features design v1 (submitted 05.2025), v2

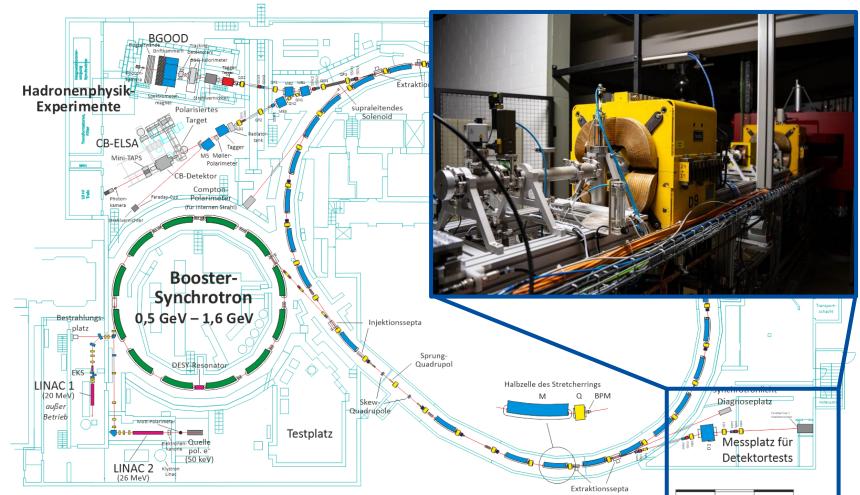
	Detector	MM	Straw	
	Channels/ASIC	64	64	
	Power/channel	≤ 25	≤ 10	mW
	Input capacitance	≤550	20-100	рF
	Input charge	1-100	1-1000	fC
	Input impedance	\leq 50 Ω		Ω
	Max rate	\leq 0.5	≤ 0.18	MHz
	Peaking time	150-500		ns
	Time resolution	1-2	≤ 1	ns
	Charge resolution	8	10	bits
	Gain	10-20	2	mV/fC
	ENC @10 pF	500-1000		e [—]
	ENC ? @550 ? pF	1000-3000		e
1	ENC @60 pF		3000	e
	Threshold range	tbd	0-15	fC
_	Clock frequency	200	200	MHz


01.07.2025

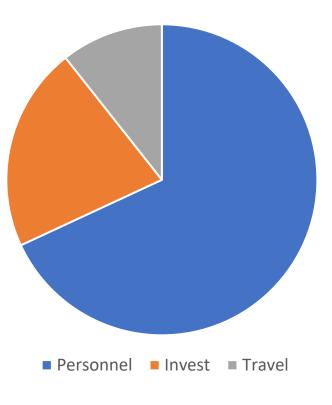
Philip Hauer - GD4HPI

FTD in Bonn


- Forschungs- und Technologie-Zentrum Detektorphysik
 - Research and Technology Center for Detector Physics
- Dedicated research infrastructure for particle detectors
 - 2010 m² in total
 - 360 m² clean room area (ISO5, ISO6 and ISO7)
 - 880 m² office space (also for external users)
- Provides all necessary tools to set up and maintain the telescope
 - Detector assembly in clean room
 - Lab tests in dedicated gaseous detector labs
- Directly next to local accelerator ELSA
 - Planned for commissioning of the telescope


ELSA in Bonn

- Electron accelerator
- Used mainly for hadron spectroscopy
- Max. energy 3.2 GeV
- Dedicated site for detector tests
 - Primary beam
 - Particle rates from 100 Hz to 625 MHz
- Parasitic extraction possible


ELSA in Bonn

- Electron accelerator
- Used mainly for hadron spectroscopy
- Max. energy 3.2 GeV
- Dedicated site for detector tests
 - Primary beam
 - Particle rates from 100 Hz to 625 MHz
- Parasitic extraction possible

Estimated Budget

Category	Туре	Task	Amount
Personnel	PhD (40 k€/year)	GEMs	160 k€
	PhD (40 k€/year)	Micromegas	160 k€
	PhD (40 k€/year)	Electronics	160 k€
	PhD (40 k€/year)	DAQ & Tracking	160 k€
Invest	Detector hardware	Detector components, Support	100 k€
	Electronics	Frontend & DAQ	100 k€
Travel	Common beam times		60 k€
	Workshop, Conferences		40 k€
Total			940 k€

- Over 2/3 of the budget: Training of young scientists
- Travel money: Beam times at ELSA and/or at GSI

 Invest money only for telescope, surrounding infrastructure already exists

Summary

- Proposal: Beam Telescope based on modern gaseous detectors
- Set up and commissioning in Bonn at the FTD and at ELSA
- Contributions from other institutes
- Further testbeams at other accelerator sites e.g. GSI
- Necessary tool for development of future gaseous detectors
- Total budget: 940 k€
 - 640 k€ for PhD students
 - 200 k€ invest (telescope only, infrastucture exists)
 - 100 k€ travel
- Beam time exploitation & efficient using of facilities
- Method and tools development
- Short-term R&D 🗹
- Training of young students

Thanks For Your Attention!

Thanks for your attention!

Dr. Philip Hauer hauer@hiskp.uni-bonn.de

