SMART-ReAD: Al-driven detector readout for physics experiments

Carlo Fiorini Politecnico di Milano and INFN

- Goal: Development of an electronics platform to implement an embedded processing of detector signals by means of AI techniques and its deployment in experiments infrastructures
- **Detector types:** segmented detectors where **event signals are distributed over several units**
- Advantages: simplify the event processing still keeping performances, reduction the computational resources and power, compared to event processing by external computational units

Carlo Fiorini

Development approaches

 Processing the detector signals by means of AI algorithms, in particular Machine Learning (ML):

 Moving the processing of the event for feature extraction (position, energy, timing) closer to the detector and FE electronics.
Employment of In-Memory Computing approach:

Carlo Fiorini

Real-time event reconstruction in FPGA

- Implementation of a **Artificial Neural Network in FPGA** for real-time reconstruction of gamma-ray events (energy, position) in thick scintillators
- 2.9mm spatial resolution, 5us/event processing time

Carlo Fiorini

ANNA (Analog Neural Network ASIC)

S. Di Giacomo, et al., in IEEE TRPMS, vol. 9, no. 5, pp. 542-552, 2025.

Carlo Fiorini

Hadron Physics in Horizon Europe, Nantes, 01/07/2025

INFN

POLITECNICO MILANO 1863

LGAD Resistive Silicon Sensors (RDS)

- the resistive implant collecting the charge acts as a signal divider;
- information about position, energy, and timing is encoded in how the signal is split among nearby readout electrodes;
- RSDs reduce the number of readout channels of a factor of ~100 compared to standard sensors;
- machine-learning techniques provide better results than analytical algorithms in reconstructing the events.

Goals:

- Develop a proof-of-concept low-power ML-RSD tracker to be tested in beam test facilities (spatial res. ≠ pixel dimensions!). Low-power 4D detector: an ECFA milestone.
- Prototype of a new telescope detector to be installed in beam test facilities

F. Siviero, et al., JINST, 19 C01028.

Carlo Fiorini

Scintillator detectors for gamma-ray spectroscopy, imaging, calorimetry ⁶

POLITECNICO

ΙΝΓΝ

Carlo Fiorini

Project plan

Project activities

- Development of an electronics platform for AI-processing of detector signals, based on FPGAs and ASICs, available both as stand-alone units and integrated in the detector module
- Compatible with different detector types: LGAD-RDS, scintillators, Ge, CdTe/CZT,..
- Event features extraction (position, energy, timing), particle identification by PSA
- Integration and validation in experiment facilities (see next slide)

Topics of interest in the call

- Short-term R&D, AI technologies, Applications and links with industry.
- Aim to contribute to **improve the efficiency of the infrastructures in complex detection apparatus of hadron physics experiments** (Work programme: .. *improve the services the infrastructures provide and to further develop their on-line services).*
- Potential impact also in **applied physics applications**, as nuclear medical imaging (e.g. PET, Range Verification in Hadron Therapy), as well as towards **innovative industrial instruments**.

RSD detectors

Beam test facilities

- CERN SPS, Geneve
 - 120 GeV/c pions & protons beams
 - Particle tracker available upon request
- LNF, Beam Test Facility, Frascati
 - e+ 50 550 MeV
 - e- 50 750 MeV
- MAMI, Mainz
 - e- 0.2 1.6 GeV

Beam test facilities

Scintillator detectors

- IFIN-HH, Bucarest
 - >10 MeV protons
- LNL, Legnaro
 - 28 MeV protons
- IFJ-PAN, Krakow
 - 70 230 MeV protons

Irradiation facilities

- Neutron irradiation: Liubjiana TRIGA reactor,
- Proton irradiation: IRRAD, CERN
- Low energy hadron: KIT, Karlsruhe

Participating institutions

- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria
- Università degli Studi di Milano, Dipartimento di Fisica
- INFN, Sezione di Milano / INFN Sezione di Torino
- UPO, Università del Piemonte Orientale

Estimated budget request

- 4 FTEs for designers (140k), 1 FTE for detector development (35k)
- ASIC runs (80k), sensors production (60k)
- FPGAs, PCBs, el. components (30k),
- beam tests and travels (40k)
- overheads (60k)
- Tot. 445k

