JetQCD: Multi-Differential Jet Studies of QCD Matter

Liliana Apolinário

Leticia Cunqueiro

Probes of the evolving QGP

- In a heavy-ion collision, QCD jets are usually regarded as probes of the fully integrated Quark-Gluon Plasma (QGP) evolution:
 - QGP-induced effects evaluated on inclusive jet/particle yields (R_{AA}) , Jet-boson or di-jet correlations $(x_{jz},...)$, among others.

Probes of the evolving QGP

- In a heavy-ion collision, QCD jets are usually regarded as probes of the fully integrated Quark-Gluon Plasma (QGP) evolution:
 - QGP-induced effects evaluated on inclusive jet/particle yields (R_{AA}) , Jet-boson or di-jet correlations $(x_{jz},...)$, among others.
 - However, the QGP is a time evolving medium.

QGP Tomography

• Initiated via boosted objects (top initiated jets), but with limited statistics at current colliders...

Decay inside the QGP will create delayed probes of the QGP

⇒ Smaller W-boson mass (More energy loss)

⇒ Larger W-boson mass (Less energy loss) L.A., Milhano, Salam, Salgado, PRL (2018)

QGP Tomography

• Initiated via boosted objects (top initiated jets), but with limited statistics at current colliders...

Decay inside the QGP will create delayed probes of the QGP

⇒ Smaller W-boson mass (More energy loss)

⇒ Larger W-boson mass (Less energy loss) L.A., Milhano, Salam, Salgado, PRL (2018)

How to fully exploit the wealth of PbPb data accumulated by the LHC (~30 nb⁻¹) to learn about QGP evolution and structure?

Multi-Differential Jet Observables

• Some recent examples of novel proposals that try to access a given time or momentum scale of the QGP:

Jet substructure observables across multiple axes — e.g. momentum, time and angle

W-boson initiated jets (Delayed probes)

Jet clustering trees

(QCD formation time)

Energy-Energy Correlators

(QGP scales)

Multi-Differential Jet Observables

Some recent examples of novel proposals that try to access a given time or momentum scale of the QGP:

Jet substructure observables across multiple axes — e.g. momentum, time and angle

W-boson initiated jets (Delayed probes)

Statistical feasibility for an upcoming HI run?

Jet clustering trees

(QCD formation time)

Experimentally applicable Soft-Drop grooming procedures?

Energy-Energy Correlators

(QGP scales)

How to separate among QGPscales and from underlying event?

JetQCD Objectives

- Design, validate, and disseminate jet observables that access different QGP stages,
 from early-time formation to late-time QGP evolution;
- Provide reproducible workflows for these observables, enabling community-wide use;
- Support systematic comparisons across collision systems (PbPb, pPb, OO) through
 MC datasets;
 - Provide further scientific input for a possible upcoming heavy-ion run (lighter ions? More PbPb?)
- Foster collaboration between theory and experiment by sharing benchmarks, facilitating hybrid task teams, and hosting regular coordination workshops.

JetQCD Main Activities

Multi-differential Jet Observables

- **Observable** definition, implementation **guidelines** and usage examples;
- **Report on Physics reach** based on current Monte Carlo models.

System-Scaling Translation

- Theoretical benchmarks to interpret how proposed jet observables evolve across: system size, temperature, and lifetime.

Workshops and Virtual Access

- Modular **open-source** analysis **code**;
- Examples runnable on publicly available CERN data;
- MC datasets with system-scaling options for direct use in feasibility studies;
- Bayesian inference tools for systematic model—data comparison (*if time permitting).

Budget and Institutes

- Total budget: 450k€
 - 2 postdocs (yearly gross cost ~50k€, total~300k€)
 - Workshops & Training: 4 events at ~25k€ each (totalling 100k€)
 - **Travel**: ~50k€

Participating Institutes/Researchers:

Charles University (Czech Republic) Martin Rybar, Martin Spousta (EXP-ATLAS); Czech Technical University (Czech Republic) Jaroslav Bielcik, Barbara Trzeciak (EXP-ALICE); Nuclear Physics Institute of the Czech Academy of Sciences (Czech Republic) Jana Bielcikova, Filip Krizek (EXP-ALICE); IPhT, CEA-Saclay (France) Gregory Soyez (TH/PH); École Polytechnique Paris (France) Carlota Andrés, Cyrille Marquet (TH/PH), Matthew Nguyen (EXP-CMS); La Sapienza Rome University (IT) Leticia Cunqueiro (EXP-CMS); LIP (Portugal) Liliana Apolinário, Guilherme Milhano, Andrey Sadofyev (TH/PH), Helena Santos (EXP-ATLAS); Nikhef (The Netherlands) Marco van Leeuwen, Marta Verweij (EXP-ALICE); SUBATECH, Nantes (France) François Arleo, Paul Caucal (TH/PH); U. Bergen (Norway) Konrad Tywoniuk (TH/PH); U. Granada (Spain) Alba Soto-Ontoso (TH/PH) U. Oxford (UK) Gavin Salam (TH/PH); U. Santiago de Compostela/IGFAE (Spain) Néstor Armesto, Bin Wu (TH/PH); CERN Urs Wiedemann, João Barata (TH/PH), Andreas Morsch, Nima Zardoshti (EXP-ALICE)