

02.07.2025.

Phenomenology in HEP

- Research summary of Strong 2020 project
- Determination of α_s in the non-perturbative region

Experimental analysis

 Explore new jet substructure techniques to study jet evolution in vacuum and in presence of the QGP

LHC Phase II Contribution

- The CMS GEM Phase II Detector Control System
- Budget Estimation and Collaboration

Phenomenology

- A powerful phenomenological framework based on Drell-Yan production studies done during Strong 2020
 - Serving as a bridge between theory, precision measurement, and model development

Our key Milestones Achieved:

- Determination of the intrinsic transverse momentum of partons inside hadrons (intrinsic-kT) using the Parton Branching (PB) method based on Transverse Momentum Dependent (TMD) parton densities
- Comparative study of the TMD approach used in the PB method versus collinear parton shower generators in the non-perturbative region
- Interplay of intrinsic transverse motion and soft gluon emissions using the PYTHIA event generator

Parton evolution with α_s at small kT and Drell-Yan (DY) pT

 DY pT dsitribution has region sensitive to Fermi-motion (intrinsic kT), non-perturbative region (all-order gluon resummation) and perturbative regions:

- Intrinsic (Fermi-motion) should be parameterized
- > non-perturbative region: Transverse Momentum Dependent parton densities (or initial state parton showers) \rightarrow sensitive to α_s at small scales
- ▶ perturbative region → higher order calculations → α_s at larger scales

 $\alpha_s(q^2) \sim \frac{1}{\log q^2 / \Lambda_{OCD}^2}$

- Landau pole at $q = \Lambda_{QCD}$
- different treatments for $q < \Lambda_{QCD}$
 - **freeze** α_s for $q < q_0$
 - taming $\alpha_s(q^2) \rightarrow \alpha_s(q^2 + q_0^2)$
 - analytic continuation into non-perturbative region

• $\alpha_{\rm s}$ with extension to small $k_{\rm T}$ region:

o freezing

• with taming parameter:

 $\alpha_s(q^2) \to \alpha_s(q^2+q_0^2)$

• with analytic continuation

Kotikov, A. V. and Zemlyakov, I. A. (2023). Fractional analytic QCD beyond leading order, J. Phys. G, 50(1), 015001

Determination of α_s in the non-perturbative region

- α_s determination from parton density fit to deep-inelastic cross section
 - combined determination of α_s from DIS and DY low pt measurements
 - test different assumptions of extrapolation into the non-perturbative region
 - determination of Fermi motion is it universal or process (DIS, DY) and energy dependent?

Experimental analysis

10

- Jets very important for understanding LHC physics
- Information about radiation pattern of the jets can be obtained by studying their internal structure using jet substructure techniques
- Jet substructure provides numerous innovative new ways to search for new physics and to probe the Standard Model in extreme regions of phase space
- Experimental precision to challenge state-of-theart pQCD analytical calculations and to constrain parton shower & hadronization models of Monte Carlo generators

- Over recent years many experimental and theoretical techniques have been developed to exploit the substructure of jets
- Development of declustering techniques allowed to access the jet splitting tree and using grooming techniques perturbative branches can be isolated
- Number of measurement performed so far by LHC experiments: <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCJetSub</u> <u>structureMeasurements</u>
- Exploit new developments and observables in order to study jet evolution in vacuum and its evolution in presence of the QGP with data collected by CMS experiment

LHC Phase II Contribution

- Triple Gas Electron Multiplier technology
- To cope with High Luminosity-LHC environment, which will deliver proton-proton collisions at 5 - 7.5 times the nominal LHC luminosity

- 36 super-chambers per endcap
- Each chamber spans 10°
- Installation: LS2 (2019-21)

GE2/1:

- 1.55 < |η| < 2.45
- 18 staggered superchambers per endcap
- Each chamber spans 20°
- Installation: YETS 23-24, YETS 24-25, YETS 29-30

ME0: Muon tagger at highest η

- 2.4 < |η| < 2.8
- 6 layers of Triple-GEM
- Each chamber spans 20°
- Installation: LS3

Hardware requirements:

HV system

- 12 x SY4527 MF 0
- 108 x A1515TG \cap HV boards
- 1512 HV channels 0

- 1 x SY4527 MF \cap
- 4 x A1616 Branch Controllers
- 16 x MAOs Ο
- 16 x EASY3000
- 68 x A3009 LV \cap boards = 648 ch.

Gas system

120 pressure 0 sensors

FOS temperature system

etc...

- **Detector Control System (DCS)** main purposes:
 - set a safe and effective configuration
 - provide control and monitoring over the sub-detector

Amar Kapic

- The existing GEM DCS project lacks scalability, and it is not straightforward to add more stations
- The GEM Phase II DCS will be developed from scratch to ensure modularity and full compatibility with all three GEM Stations
 - Ensure system-wide consistency aligned with CMS DCS standards (naming, colors, alarms, code style, etc.).
 - Maximize use of JCOP and CMS framework components to simplify integration and development, making it more maintainable and scalable.

User Interface (UI) component

 Graphical representation of the system status

CAEN component

- HV/LV configuration
- HV compensation for ME0
- Automatic recovery

Initial state (i=

Vscr' = V_{NOM}

Gas component

- Gas difference monitoring
- Gas protection mechanism

Finite State Machine (FSM) component

- Abstract behaviour modelling
- Automation & Error Recovery

Detector Protection component

- Magnet protection
- LHC handshake
- LHC beam

Amar Kapic

Budget Estimation & Collaboration

• Estimated budget request:

	Total:	~ 174 k€
•	Travel support (mainly for participating in conferences)	~ 24 k€
•	TA – 3-4 days per month during 4 years (or cumulatively)	~ 20 k€
•	3 years doctoral student	~ 55 k€
•	3 years post-doctoral	~ 75 k€

Partner institutions:

19

Thank you for your attention! Questions?