

FITTED

- **FITs to Electroweak, Hadronic and Nuclear Precision Data PI: Jens Erler** Presented by Mikhail Gorshteyn
 - Hadron Physics in Horizon Europe INFRASERV Town Meeting, Nantes, July 2025 0.228 0.227

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Introduction

- * Standard Model (SM) unreasonably successful
- * Still no sign of physics beyond the SM (BSM) at the LHC
 - \rightarrow Look for small deviations
 - only possible if SM is overconstrained
 - need maximal number of precision observables for which experimental and theoretical uncertainties can be controlled simultaneously
- * very high precision reached
 - reevaluate all sources of uncertainties and correlations, including theoretical
 - the higher the precision, the more issues enter interpretation of precision measurements
- 💢 welcome bonus: brings previously disjoint physics communities together

expect novel synergetic effect

WALE STRATE OF SOL HUG ST DE CONT low-energy precision

- * global fits to electroweak precision data including those with $\sqrt{Q^2} \leq \Lambda_{QCD}$
- * assess & include theoretical uncertainties
- * assess & include theoretical correlations between otherwise independent observables
- * most notorious sources of theory uncertainty are of hadronic nature
 - form factors, parton distribution functions, hadronic and nuclear corrections etc.
 - ➡ PVES P2, MREX@MESA (Mainz) and MOLLER, SOLID@CEBAF (JLab)
 - → Weak charges of proton, electron, ¹²C, heavier nuclei
 - ➡ Neutron and nuclear beta decays, V_{ud} and CKM unitarity
 - Precise nuclear radii are necessary, typically from atomic data
 - $\Rightarrow \gamma Z_{\gamma} \gamma \gamma_{\gamma}$ and γW_{γ} -boxes contribute non-negligibly to error budget

This proposal

Running MS weak mixing angle

updated from Ferro-Hernández & JE JHEP 12 (2023) 131

$sin^2\theta^{\ell}_{eff}$ anno 2024

$M_W - m_t$

 $m_t = 175.2 \pm 1.8 \text{ GeV}$ (indirect) **I.4** σ above $m_t = 172.61 \pm 0.58 \text{ GeV}$ (Tevatron + LHC)

Freitas & JE, PDG (2024) figure: Rodolfo Ferro

7

$M_H - m_t$

Freitas & JE, PDG (2024) figure: Rodolfo Ferro

g_{μ} -2, $\alpha(M_Z)$ and $\sin^2\theta_W(0)$

- $\Delta \alpha_{\text{had}}(2 \text{ GeV}) = (58.84 \pm 0.51) \times 10^{-4}$
- $\Delta \alpha_{\text{had}}(2 \text{ GeV}) = (60.30 \pm 0.43) \times 10^{-4}$

$$\Delta M_W = -2.7 \text{ MeV}$$

 $\Delta M_H = -7.0 \text{ GeV}$

Ferro-Hernàndez, Kuberski, JE Phys. Rev. Lett. 133 (2024) 17

Cabibbo unitarity: anomaly detected

Seng, MG, Patel, Ramsey-Musolf arXiv:1807.10197; 1812.03352; 1812.04229

- Reevaluation of hadron structure-dependent
- RC to beta decays —> 2.5-4 σ deficit!

Cabibbo unitarity: is there an anomaly?

But size of anomaly depends on hadronic and nuclear corrections!

Careful account on nuclear size effects; Reanalysis of theory ingredients in radii extracted from atomic data (ISOLDE + μ X-rays)

Improved uncertainties and correlations

CKM unitarity deficit halved 2.5 σ —> 1.3 σ

MG, Ohayon, Sahoo, Seng arXiv:2502.17070

Goals & Impact

- * Discrepancies (tensions) are the result of SM being overconstrained
- * Significance of discrepancies based on (hadronic/nuclear) SM corrections
- * Alleviating tensions by removing some of the constraints beyond SM
- * global analysis of all relevant electroweak data permits interpretation within systematic framework of the SM effective field theory (SMEFT)
- * This project will address all these issues simultaneously
 - connection with measurements at high-energy frontier, e.g., mass measurements and Drell-Yan processes at the LHC
 - Ink high-energy, hadronic, nuclear, and atomic physics communities
 - establish and exploit connections with mathematical physics (Calabi-Yau manifolds - multi loop Feynman integral analogy)

Participating groups

* JGU Mainz (Jens Erler, Mikhail Gorchtein, Hans Jockers, Hubert Spiesberger, Stefan Weinzierl) Global fit in SM (JE), Radiative and hadronic corrections to LE obs. (MG,HS), Amplitudes & multiloop RC (SW), Mathematical Physics (HJ)

- * ETH Zürich and PSI (Adrian Signer) Radiative corrections
- University of Pittsburgh (Ayres Freitas) Global fit in SM, two-loop RC
- * University of Tennessee at Knoxville (Chien-Yeah Seng) Radiative and hadronic corrections to LE observables
- University of Freiburg (Stefan Dittmaier) EW corrections at colliders; BSM models
- University of Alberta (Andrzej Czarnecki) EW corrections at low energies

Jens Erler and Ayres Freitas have contributed to the EW review in PDG for many years through 2024

- * 245 k€: to train a PhD student over a 4-year period to become an expert in the area of global fits to electroweak, hadronic and nuclear precision data
- * 20 k€ (5 k€ per year) for traveling to schools, conferences and workshops
- * we plan to organize two workshops related to FITTED, where we hope to benefit from support by the ECT* and the MITP (Mainz)

