

Facility for Low-energy Antineutron Physics

Horizon-INFRA-2025 Hadron Physics in Horizon Europe Town Meeting

IMT Atlantique, July 1-3, 2025, Nantes, France

Alessandro Feliciello

Participating Institutions

- Department of Physics, Institute of Science Tokyo (JP) H. Fujioka
- Dipartimento di Fisica, Università degli Studi di Torino (IT) E. Botta
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia (IT)
 L. Venturelli
- Institute for Integrated Radiation and Nuclear Science, Kyoto University (JP)
 T. Higuchi
- Istituto Nazionale di Fisica Nucleare [PV, TO] (IT)
 D. Calvo, A.F., A. Filippi
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (AT)
 C. Amsler
- Trento Institute for Fundamental Physics and Applications (IT)
 R. Caravita

The rationale of FLAP

CERN Accelerator Complex

dynamics of

$$par{p} o nar{n}$$

CEX reaction in the lab. frame

... implement new tools to perform new measurements.

To implement a novel, ultra-low-energy antineutron beam line

at the **CERN AD** facility.

To offer the Community an opportunity

to pursue new physics programs

Letter of Intent submitted to the CERN SPSC on May 1st, 2025: https://cds.cern.ch/record/2930906.

INFN

INFN

The physics case: low-energy np scattering cross-sections

We need \overline{n} cross-section data at the lowest possible energies to improve and deepen our current understanding of low-energy antinucleon interactions

New measurements are essential to determine the *S*-wave scattering length in a model-independent way

estimated $@ p_{ar{p}} = 300 \; {
m MeV}/c$ on the basis of previous measurements at LEAR [PLB 169 (1986) 302]

INFN

a little help from the kinematics of the reaction: 14

by slightly increasing the angular acceptance for backward produced \bar{n} (5°), it will be possible to partially compensate the low cross-section value

• \overline{p} momentum range: 250 – 300 MeV/c • \overline{n} momentum range: 8.5 – 10.4 MeV/c

 $0.44 \text{ g/cm}^2 \equiv 6.2 \text{ cm} (\text{LH}_2)$

• \overline{n} transmission 62%

1 backward \bar{n} per AD cycle $(5 \times 10^7 \, \bar{p} \, / \, 120 \, s)^*$

percent level precision scattering cross section measurement within 1 week

Schematic layout of the FLAP beamline

INFN

21

- test results
- full Proposal to CERN
- groundwork for a complete Technical Design Report

Budget requests one 2-year contract for a Post-Doc, working on the tests of: slow antineutron production feasibility with fast extracted beam travels to CERN for tests and collaboration: (5 k \in /yr/PAX for 5 people) • administrative activities: 10 k€/yr

total:

290 k€

40 k€

150 k€

100 k€

Participating Institutions

- Department of Physics, Institute of Science Tokyo (JP) H. Fujioka
- Dipartimento di Fisica, Università degli Studi di Torino (IT) E. Botta
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia (IT)
 L. Venturelli
- Institute for Integrated Radiation and Nuclear Science, Kyoto University (JP)
 T. Higuchi
- Istituto Nazionale di Fisica Nucleare [PV, TO] (IT)
 D. Calvo, A.F., A. Filippi
- Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (AT)
 C. Amsler
- Trento Institute for Fundamental Physics and Applications (IT)
 R. Caravita