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Table 9.1: Unweighted and weighted pre-averages of αs(m2
Z) for each sub-

field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the χ2 averaging method.
The same χ2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
τ decays & low Q2 0.1173± 0.0017 0.1174± 0.0009 0.1177± 0.0013
QQ̄ bound states 0.1181± 0.0037 0.1177± 0.0011 0.1175± 0.0011
PDF fits 0.1161± 0.0022 0.1168± 0.0014 0.1179± 0.0011
e+e− jets & shapes 0.1189± 0.0037 0.1187± 0.0017 0.1174± 0.0011
hadron colliders 0.1168± 0.0027 0.1169± 0.0014 0.1177± 0.0011
electroweak 0.1203± 0.0028 0.1203± 0.0016 0.1171± 0.0011
PDG 2023 (without lattice) 0.1175± 0.0010 0.1178± 0.0005 n/a

αs(mZ
2) = 0.1180 ± 0.0009

August 2023
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Figure 9.5: Summary of determinations of αs as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
αs(m2

Z) = 0.1180± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value
of αs(m2

Z), but also a clear signature and proof of the energy dependence of αs in full agreement

31st May, 2024

4

Obs. Value αλ > 0 αλ,eff > 0
PDG 2024 [69]:

Mh/GeV 125.20(11) 127.97 +25.2σ 127.85 +24.0σ
Mσ

t /GeV 172.4(7) 171.04 − 1.9σ 171.10 − 1.9σ
MMC

t /GeV 172.57(29) − 5.3σ − 5.1σ
mt/GeV 162.5(+2.1

−1.5) 161.3 − 0.8σ 161.4 − 0.7σ

α
(5)
s (MZ) 0.1180(9) 0.1215 + 3.9σ 0.1213 + 3.7σ

PDG 2023 [9]:
Mh/GeV 125.25(17) 128.17 +17.2σ 128.05 +16.5σ
Mσ

t /GeV 172.5(7) 171.06 − 2.1σ 171.13 − 2.0σ
MMC

t /GeV 172.69(30) − 5.4σ − 5.2σ
mt/GeV 162.5(+2.1

−1.5) 161.4 − 0.8σ 161.4 − 0.7σ

α
(5)
s (MZ) 0.1180(9) 0.1217 + 4.1σ 0.1215 + 3.9σ

CMS [10]:
Mt/GeV 170.5(8) 169.25 − 1.6σ 169.31 − 1.5σ

α
(5)
s (MZ) 0.1135(+21

−17) 0.1167 + 1.5σ 0.1165 + 1.4σ

TABLE I. Strong coupling, Higgs or top mass and their un-
certainty from PDG 2024 [69] and 2023 [9] updates as well
as CMS analysis [10] (gray fields). For each observable, the
shift around the central values from required to stabilize the
tree level (αλ > 0) or quantum effective potential (αλ,eff > 0)
in the SM before the Planck scale is given. In the PDG, top
masses from cross-section measurements (Mσ

t ), Monte-Carlo
generators (MMC

t ) as well as MS mass of the top at the scale
(mt) are distinguished. For the study [10], other input ob-
servables are taken from [69].

µref and dominate the running. To stabilize the Higgs,
α

(5)
s (MZ) requires an 3.7σ upward shift from the 2024

PDG world average. Note however that many individual
studies summarized in [9] quote much larger uncertain-
ties. The critical role of the strong coupling may appear
surprising given that its influence on the effective po-
tential as well as the running is loop-suppressed. This
suppression, however, is effectively compensated by α3
(and αt) being numerically large compared to the other
SM gauge and Yukawa couplings.4

Alternatively, a smaller value of the top mass may
also entail vacuum stability in the SM. The PDG pro-
vides three world averages for the top mass. The pole
mass extracted from cross section measurements, Mσ

t =
(172.4 ± 0.7) GeV, implies that a 1.9σ downward shift
from its central value stabilizes the Higgs potential. A
secondary top mass estimate MMC

t = (172.57±0.29) GeV
stems from template fits of kinematic distributions sensi-
tive to the top-quark pole mass [98]. These template fits
are based on a modeling of top-quark production and
decay dynamics in Monte Carlo event generators. The
small uncertainty requires a 5.1σ shift to achieve stabil-
ity. The recent update [99] suggests that the difference
in uncertainties of both pole mass predictions is similar
to the uncertainty differences among the various Monte-
Carlo generators. Finally, the PDG also quotes an MS

4 This effect has previously been noticed in the context of the
strong gauge portal for stability [2].

FIG. 2. Regions of stability for the SM Higgs potential as a
function of the top mass Mt and the strong coupling constant
α

(5)
s (MZ). Color-coding indicates stability (αλ,eff(µ) ≥ 0,

green) or otherwise (red/gray). Upper panel: 2024 PDG val-
ues with top mass Mσ

t (gray background) and uncorrelated
uncertainties in 1σ intervals (solid black rings) as well as CMS
analysis [10] with correlated uncertainties in 1σ rings (dashed
lines). Lower panel: PDG 2024 central value for the top mass
MMC

t (black dot) and the first five 1σ uncertainty intervals
(black rings). For comparison, we also show Mσ

t (blue dot)
and its 1σ uncertainty range (blue crosshair).

top mass value mt(µ = mt), which has a large uncer-
tainty of about 1% that would allow stabilization of the
Higgs potential with a 0.7σ shift.

If PDG uncertainties in both top mass Mσ
t and strong

coupling are combined in quadrature less then a 2σ de-
viation from the central values is required to achieve sta-
bility, see Fig. 2. However, this neglects correlations be-
tween the observables, which may play a critical role in
determining the stability of the SM Higgs vacuum.

The correlation was taken into account by the CMS
analysis [10]. Here the central value of α

(5)
s (MZ) and Mt

are smaller than the PDG world averages, and the un-
certainty for α

(5)
s (MZ) is significantly larger. Moreover,

α
(5)
s (MZ) and Mt in [10] are individually more than 1σ

but in combination less than 1σ away from the region of
absolute stability.

General motivation
Beside the quark masses, αs(mZ) is
the single free parameter of QCD.
The αs is the least well-known
interaction coupling in the SM.
−→ Its large uncertainty propagates to all
calculations of observables at LHC [1].

Its running is predicted by QCD.
−→ Any deviation could provide a hint to
new physics [2].

“Improving the precision of αs and
mt by a factor of two to three
could be sufficient to establish or
refute SM vacuum stability at the
5σ level” [3].
−→ Is that reachable at LHC?
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Table 9.1: Unweighted and weighted pre-averages of αs(m2
Z) for each sub-

field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the χ2 averaging method.
The same χ2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
τ decays & low Q2 0.1173± 0.0017 0.1174± 0.0009 0.1177± 0.0013
QQ̄ bound states 0.1181± 0.0037 0.1177± 0.0011 0.1175± 0.0011
PDF fits 0.1161± 0.0022 0.1168± 0.0014 0.1179± 0.0011
e+e− jets & shapes 0.1189± 0.0037 0.1187± 0.0017 0.1174± 0.0011
hadron colliders 0.1168± 0.0027 0.1169± 0.0014 0.1177± 0.0011
electroweak 0.1203± 0.0028 0.1203± 0.0016 0.1171± 0.0011
PDG 2023 (without lattice) 0.1175± 0.0010 0.1178± 0.0005 n/a

αs(mZ
2) = 0.1180 ± 0.0009

August 2023
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Figure 9.5: Summary of determinations of αs as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
αs(m2

Z) = 0.1180± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value
of αs(m2

Z), but also a clear signature and proof of the energy dependence of αs in full agreement

31st May, 2024

4

Obs. Value αλ > 0 αλ,eff > 0
PDG 2024 [69]:

Mh/GeV 125.20(11) 127.97 +25.2σ 127.85 +24.0σ
Mσ

t /GeV 172.4(7) 171.04 − 1.9σ 171.10 − 1.9σ
MMC

t /GeV 172.57(29) − 5.3σ − 5.1σ
mt/GeV 162.5(+2.1

−1.5) 161.3 − 0.8σ 161.4 − 0.7σ

α
(5)
s (MZ) 0.1180(9) 0.1215 + 3.9σ 0.1213 + 3.7σ

PDG 2023 [9]:
Mh/GeV 125.25(17) 128.17 +17.2σ 128.05 +16.5σ
Mσ

t /GeV 172.5(7) 171.06 − 2.1σ 171.13 − 2.0σ
MMC

t /GeV 172.69(30) − 5.4σ − 5.2σ
mt/GeV 162.5(+2.1

−1.5) 161.4 − 0.8σ 161.4 − 0.7σ

α
(5)
s (MZ) 0.1180(9) 0.1217 + 4.1σ 0.1215 + 3.9σ

CMS [10]:
Mt/GeV 170.5(8) 169.25 − 1.6σ 169.31 − 1.5σ

α
(5)
s (MZ) 0.1135(+21

−17) 0.1167 + 1.5σ 0.1165 + 1.4σ

TABLE I. Strong coupling, Higgs or top mass and their un-
certainty from PDG 2024 [69] and 2023 [9] updates as well
as CMS analysis [10] (gray fields). For each observable, the
shift around the central values from required to stabilize the
tree level (αλ > 0) or quantum effective potential (αλ,eff > 0)
in the SM before the Planck scale is given. In the PDG, top
masses from cross-section measurements (Mσ

t ), Monte-Carlo
generators (MMC

t ) as well as MS mass of the top at the scale
(mt) are distinguished. For the study [10], other input ob-
servables are taken from [69].

µref and dominate the running. To stabilize the Higgs,
α

(5)
s (MZ) requires an 3.7σ upward shift from the 2024

PDG world average. Note however that many individual
studies summarized in [9] quote much larger uncertain-
ties. The critical role of the strong coupling may appear
surprising given that its influence on the effective po-
tential as well as the running is loop-suppressed. This
suppression, however, is effectively compensated by α3
(and αt) being numerically large compared to the other
SM gauge and Yukawa couplings.4

Alternatively, a smaller value of the top mass may
also entail vacuum stability in the SM. The PDG pro-
vides three world averages for the top mass. The pole
mass extracted from cross section measurements, Mσ

t =
(172.4 ± 0.7) GeV, implies that a 1.9σ downward shift
from its central value stabilizes the Higgs potential. A
secondary top mass estimate MMC

t = (172.57±0.29) GeV
stems from template fits of kinematic distributions sensi-
tive to the top-quark pole mass [98]. These template fits
are based on a modeling of top-quark production and
decay dynamics in Monte Carlo event generators. The
small uncertainty requires a 5.1σ shift to achieve stabil-
ity. The recent update [99] suggests that the difference
in uncertainties of both pole mass predictions is similar
to the uncertainty differences among the various Monte-
Carlo generators. Finally, the PDG also quotes an MS

4 This effect has previously been noticed in the context of the
strong gauge portal for stability [2].

FIG. 2. Regions of stability for the SM Higgs potential as a
function of the top mass Mt and the strong coupling constant
α

(5)
s (MZ). Color-coding indicates stability (αλ,eff(µ) ≥ 0,

green) or otherwise (red/gray). Upper panel: 2024 PDG val-
ues with top mass Mσ

t (gray background) and uncorrelated
uncertainties in 1σ intervals (solid black rings) as well as CMS
analysis [10] with correlated uncertainties in 1σ rings (dashed
lines). Lower panel: PDG 2024 central value for the top mass
MMC

t (black dot) and the first five 1σ uncertainty intervals
(black rings). For comparison, we also show Mσ

t (blue dot)
and its 1σ uncertainty range (blue crosshair).

top mass value mt(µ = mt), which has a large uncer-
tainty of about 1% that would allow stabilization of the
Higgs potential with a 0.7σ shift.

If PDG uncertainties in both top mass Mσ
t and strong

coupling are combined in quadrature less then a 2σ de-
viation from the central values is required to achieve sta-
bility, see Fig. 2. However, this neglects correlations be-
tween the observables, which may play a critical role in
determining the stability of the SM Higgs vacuum.

The correlation was taken into account by the CMS
analysis [10]. Here the central value of α

(5)
s (MZ) and Mt

are smaller than the PDG world averages, and the un-
certainty for α

(5)
s (MZ) is significantly larger. Moreover,

α
(5)
s (MZ) and Mt in [10] are individually more than 1σ

but in combination less than 1σ away from the region of
absolute stability.

General motivation
Beside the quark masses, αs(mZ) is
the single free parameter of QCD.
The αs is the least well-known
interaction coupling in the SM.
−→ Its large uncertainty propagates to all
calculations of observables at LHC [1].

Its running is predicted by QCD.
−→ Any deviation could provide a hint to
new physics [2].

“Improving the precision of αs and
mt by a factor of two to three
could be sufficient to establish or
refute SM vacuum stability at the
5σ level” [3].
−→ Is that reachable at LHC?



ALPHA-S@LHC
Patrick
Connor

Introduction

Research
objectives

State of the art

Plan

Request

Summary &
Conclusions

Back-up

2/9

Introduction

41 9. Quantum Chromodynamics

Table 9.1: Unweighted and weighted pre-averages of αs(m2
Z) for each sub-

field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the χ2 averaging method.
The same χ2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
τ decays & low Q2 0.1173± 0.0017 0.1174± 0.0009 0.1177± 0.0013
QQ̄ bound states 0.1181± 0.0037 0.1177± 0.0011 0.1175± 0.0011
PDF fits 0.1161± 0.0022 0.1168± 0.0014 0.1179± 0.0011
e+e− jets & shapes 0.1189± 0.0037 0.1187± 0.0017 0.1174± 0.0011
hadron colliders 0.1168± 0.0027 0.1169± 0.0014 0.1177± 0.0011
electroweak 0.1203± 0.0028 0.1203± 0.0016 0.1171± 0.0011
PDG 2023 (without lattice) 0.1175± 0.0010 0.1178± 0.0005 n/a
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Figure 9.5: Summary of determinations of αs as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
αs(m2

Z) = 0.1180± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value
of αs(m2

Z), but also a clear signature and proof of the energy dependence of αs in full agreement
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Obs. Value αλ > 0 αλ,eff > 0
PDG 2024 [69]:

Mh/GeV 125.20(11) 127.97 +25.2σ 127.85 +24.0σ
Mσ

t /GeV 172.4(7) 171.04 − 1.9σ 171.10 − 1.9σ
MMC

t /GeV 172.57(29) − 5.3σ − 5.1σ
mt/GeV 162.5(+2.1

−1.5) 161.3 − 0.8σ 161.4 − 0.7σ

α
(5)
s (MZ) 0.1180(9) 0.1215 + 3.9σ 0.1213 + 3.7σ
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t /GeV 172.69(30) − 5.4σ − 5.2σ
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−1.5) 161.4 − 0.8σ 161.4 − 0.7σ

α
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s (MZ) 0.1135(+21

−17) 0.1167 + 1.5σ 0.1165 + 1.4σ

TABLE I. Strong coupling, Higgs or top mass and their un-
certainty from PDG 2024 [69] and 2023 [9] updates as well
as CMS analysis [10] (gray fields). For each observable, the
shift around the central values from required to stabilize the
tree level (αλ > 0) or quantum effective potential (αλ,eff > 0)
in the SM before the Planck scale is given. In the PDG, top
masses from cross-section measurements (Mσ

t ), Monte-Carlo
generators (MMC

t ) as well as MS mass of the top at the scale
(mt) are distinguished. For the study [10], other input ob-
servables are taken from [69].

µref and dominate the running. To stabilize the Higgs,
α

(5)
s (MZ) requires an 3.7σ upward shift from the 2024

PDG world average. Note however that many individual
studies summarized in [9] quote much larger uncertain-
ties. The critical role of the strong coupling may appear
surprising given that its influence on the effective po-
tential as well as the running is loop-suppressed. This
suppression, however, is effectively compensated by α3
(and αt) being numerically large compared to the other
SM gauge and Yukawa couplings.4

Alternatively, a smaller value of the top mass may
also entail vacuum stability in the SM. The PDG pro-
vides three world averages for the top mass. The pole
mass extracted from cross section measurements, Mσ

t =
(172.4 ± 0.7) GeV, implies that a 1.9σ downward shift
from its central value stabilizes the Higgs potential. A
secondary top mass estimate MMC

t = (172.57±0.29) GeV
stems from template fits of kinematic distributions sensi-
tive to the top-quark pole mass [98]. These template fits
are based on a modeling of top-quark production and
decay dynamics in Monte Carlo event generators. The
small uncertainty requires a 5.1σ shift to achieve stabil-
ity. The recent update [99] suggests that the difference
in uncertainties of both pole mass predictions is similar
to the uncertainty differences among the various Monte-
Carlo generators. Finally, the PDG also quotes an MS

4 This effect has previously been noticed in the context of the
strong gauge portal for stability [2].

FIG. 2. Regions of stability for the SM Higgs potential as a
function of the top mass Mt and the strong coupling constant
α

(5)
s (MZ). Color-coding indicates stability (αλ,eff(µ) ≥ 0,

green) or otherwise (red/gray). Upper panel: 2024 PDG val-
ues with top mass Mσ

t (gray background) and uncorrelated
uncertainties in 1σ intervals (solid black rings) as well as CMS
analysis [10] with correlated uncertainties in 1σ rings (dashed
lines). Lower panel: PDG 2024 central value for the top mass
MMC

t (black dot) and the first five 1σ uncertainty intervals
(black rings). For comparison, we also show Mσ

t (blue dot)
and its 1σ uncertainty range (blue crosshair).

top mass value mt(µ = mt), which has a large uncer-
tainty of about 1% that would allow stabilization of the
Higgs potential with a 0.7σ shift.

If PDG uncertainties in both top mass Mσ
t and strong

coupling are combined in quadrature less then a 2σ de-
viation from the central values is required to achieve sta-
bility, see Fig. 2. However, this neglects correlations be-
tween the observables, which may play a critical role in
determining the stability of the SM Higgs vacuum.

The correlation was taken into account by the CMS
analysis [10]. Here the central value of α

(5)
s (MZ) and Mt

are smaller than the PDG world averages, and the un-
certainty for α

(5)
s (MZ) is significantly larger. Moreover,

α
(5)
s (MZ) and Mt in [10] are individually more than 1σ

but in combination less than 1σ away from the region of
absolute stability.

General motivation
Beside the quark masses, αs(mZ) is
the single free parameter of QCD.
The αs is the least well-known
interaction coupling in the SM.
−→ Its large uncertainty propagates to all
calculations of observables at LHC [1].

Its running is predicted by QCD.
−→ Any deviation could provide a hint to
new physics [2].

“Improving the precision of αs and
mt by a factor of two to three
could be sufficient to establish or
refute SM vacuum stability at the
5σ level” [3].
−→ Is that reachable at LHC?
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Table 9.1: Unweighted and weighted pre-averages of αs(m2
Z) for each sub-

field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the χ2 averaging method.
The same χ2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
τ decays & low Q2 0.1173± 0.0017 0.1174± 0.0009 0.1177± 0.0013
QQ̄ bound states 0.1181± 0.0037 0.1177± 0.0011 0.1175± 0.0011
PDF fits 0.1161± 0.0022 0.1168± 0.0014 0.1179± 0.0011
e+e− jets & shapes 0.1189± 0.0037 0.1187± 0.0017 0.1174± 0.0011
hadron colliders 0.1168± 0.0027 0.1169± 0.0014 0.1177± 0.0011
electroweak 0.1203± 0.0028 0.1203± 0.0016 0.1171± 0.0011
PDG 2023 (without lattice) 0.1175± 0.0010 0.1178± 0.0005 n/a
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Figure 9.5: Summary of determinations of αs as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
αs(m2

Z) = 0.1180± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value
of αs(m2

Z), but also a clear signature and proof of the energy dependence of αs in full agreement

31st May, 2024

4

Obs. Value αλ > 0 αλ,eff > 0
PDG 2024 [69]:

Mh/GeV 125.20(11) 127.97 +25.2σ 127.85 +24.0σ
Mσ

t /GeV 172.4(7) 171.04 − 1.9σ 171.10 − 1.9σ
MMC

t /GeV 172.57(29) − 5.3σ − 5.1σ
mt/GeV 162.5(+2.1

−1.5) 161.3 − 0.8σ 161.4 − 0.7σ

α
(5)
s (MZ) 0.1180(9) 0.1215 + 3.9σ 0.1213 + 3.7σ

PDG 2023 [9]:
Mh/GeV 125.25(17) 128.17 +17.2σ 128.05 +16.5σ
Mσ

t /GeV 172.5(7) 171.06 − 2.1σ 171.13 − 2.0σ
MMC

t /GeV 172.69(30) − 5.4σ − 5.2σ
mt/GeV 162.5(+2.1

−1.5) 161.4 − 0.8σ 161.4 − 0.7σ

α
(5)
s (MZ) 0.1180(9) 0.1217 + 4.1σ 0.1215 + 3.9σ

CMS [10]:
Mt/GeV 170.5(8) 169.25 − 1.6σ 169.31 − 1.5σ

α
(5)
s (MZ) 0.1135(+21

−17) 0.1167 + 1.5σ 0.1165 + 1.4σ

TABLE I. Strong coupling, Higgs or top mass and their un-
certainty from PDG 2024 [69] and 2023 [9] updates as well
as CMS analysis [10] (gray fields). For each observable, the
shift around the central values from required to stabilize the
tree level (αλ > 0) or quantum effective potential (αλ,eff > 0)
in the SM before the Planck scale is given. In the PDG, top
masses from cross-section measurements (Mσ

t ), Monte-Carlo
generators (MMC

t ) as well as MS mass of the top at the scale
(mt) are distinguished. For the study [10], other input ob-
servables are taken from [69].

µref and dominate the running. To stabilize the Higgs,
α

(5)
s (MZ) requires an 3.7σ upward shift from the 2024

PDG world average. Note however that many individual
studies summarized in [9] quote much larger uncertain-
ties. The critical role of the strong coupling may appear
surprising given that its influence on the effective po-
tential as well as the running is loop-suppressed. This
suppression, however, is effectively compensated by α3
(and αt) being numerically large compared to the other
SM gauge and Yukawa couplings.4

Alternatively, a smaller value of the top mass may
also entail vacuum stability in the SM. The PDG pro-
vides three world averages for the top mass. The pole
mass extracted from cross section measurements, Mσ

t =
(172.4 ± 0.7) GeV, implies that a 1.9σ downward shift
from its central value stabilizes the Higgs potential. A
secondary top mass estimate MMC

t = (172.57±0.29) GeV
stems from template fits of kinematic distributions sensi-
tive to the top-quark pole mass [98]. These template fits
are based on a modeling of top-quark production and
decay dynamics in Monte Carlo event generators. The
small uncertainty requires a 5.1σ shift to achieve stabil-
ity. The recent update [99] suggests that the difference
in uncertainties of both pole mass predictions is similar
to the uncertainty differences among the various Monte-
Carlo generators. Finally, the PDG also quotes an MS

4 This effect has previously been noticed in the context of the
strong gauge portal for stability [2].

FIG. 2. Regions of stability for the SM Higgs potential as a
function of the top mass Mt and the strong coupling constant
α

(5)
s (MZ). Color-coding indicates stability (αλ,eff(µ) ≥ 0,

green) or otherwise (red/gray). Upper panel: 2024 PDG val-
ues with top mass Mσ

t (gray background) and uncorrelated
uncertainties in 1σ intervals (solid black rings) as well as CMS
analysis [10] with correlated uncertainties in 1σ rings (dashed
lines). Lower panel: PDG 2024 central value for the top mass
MMC

t (black dot) and the first five 1σ uncertainty intervals
(black rings). For comparison, we also show Mσ

t (blue dot)
and its 1σ uncertainty range (blue crosshair).

top mass value mt(µ = mt), which has a large uncer-
tainty of about 1% that would allow stabilization of the
Higgs potential with a 0.7σ shift.

If PDG uncertainties in both top mass Mσ
t and strong

coupling are combined in quadrature less then a 2σ de-
viation from the central values is required to achieve sta-
bility, see Fig. 2. However, this neglects correlations be-
tween the observables, which may play a critical role in
determining the stability of the SM Higgs vacuum.

The correlation was taken into account by the CMS
analysis [10]. Here the central value of α

(5)
s (MZ) and Mt

are smaller than the PDG world averages, and the un-
certainty for α

(5)
s (MZ) is significantly larger. Moreover,

α
(5)
s (MZ) and Mt in [10] are individually more than 1σ

but in combination less than 1σ away from the region of
absolute stability.

General motivation
Beside the quark masses, αs(mZ) is
the single free parameter of QCD.
The αs is the least well-known
interaction coupling in the SM.
−→ Its large uncertainty propagates to all
calculations of observables at LHC [1].

Its running is predicted by QCD.
−→ Any deviation could provide a hint to
new physics [2].

“Improving the precision of αs and
mt by a factor of two to three
could be sufficient to establish or
refute SM vacuum stability at the
5σ level” [3].
−→ Is that reachable at LHC?
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αS(m2

Z)
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Measure consistently a
large number of
observables at the LHC.
Determine αs(mZ) with
the same precision as the
current world average
estimate (< 1%).

Expected impact
Not only reduce the
uncertainty from hadron &
ep colliders...
... but also revisit the way
the world average is
combined across categories.
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Research objectives
QCD interpretation

Factorisation [4]

σpp︸︷︷︸
exp. data

=
∑

ij∈gqq̄
fi(xi, µ

2
F , αs)⊗ fj(xj , µ

2
F , αs)︸ ︷︷ ︸

collinear PDFs

⊗ σ̂ij

(
xi, xj ,

Q2

µ2
F

,
Q2

µ2
R

, αs

)
︸ ︷︷ ︸

FO predictions in pQCD

αs enters both collinear PDFs and the FO prediction.
CMS has relied on NNLOJET+fastNLO+xFitter to extract αs(mZ) from jet
data [5, 6, 7].
Not shown in this formula: non-perturbative (NP) effects.

Inclusive jet at 13 TeV [8]

αs(mZ) = 0.1166± 0.0014 (fit)± 0.0007 (model)± 0.0004 (scale)± 0.0001 (param)
= 0.1166± 0.0017 (total)

−→ dominated by the fit (exp. + NP) uncertainty!
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State of the art
Overview
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EPJC 80:658 (2020) 13  cross sec.tt

EPJC 73:2604 (2013) 7 32R

EPJC 75:288 (2015) 7 Inclusive jet

EPJC 75:186 (2015) 7 3-jet mass

JHEP 03:156 (2017) 8 Inclusive jet

EPJC 77:746 (2017) 8 Dijets (3D)

JHEP 02:142 (2022) 13 Inclusive jet

Submitted to EPJC (2024) 13 Dijets (2D/3D)

Submitted to PRL (2024) 13 Energy correlators

Submitted to EPJC (2024) 13 φ∆R

Prog. Theor. Exp. Phys. 083C01 (2023 update)            : World average

 NLO   NNLL    NNLO

V
ecto

r
b

o
so

n
tt

Jets

Reference  (TeV)s Observable

CMS )
Z

(MsαSummary of 

Combination? (Fig. from Ref. [9])

Inconsistent choices in
analysis strategies may
lead to tensions in the
interpretation.
−→ Different ways to
mitigate the tensions have
been applied, but all reduce
the potential sensitivity.

Statistical correlations
between observables
obtained from the
same data are missing.
−→ e.g. between jet and
dijet spectra.
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State of the art
Latest result
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100 1000

|y| < 0.5

 (2.76 TeV)-15.4 pb

Internal CMS

2024-3-28 17:17:43

Combined inclusive jet [10]

αs(mZ) = 0.11759± 0.0009 (fit)+0.0006
−0.0004 (model)+0.0009

−0.0012 (scale)+0.00000
−0.00004 (param)

= 0.11759+0.0014
−0.0016 (total)

−→ the fit uncertainty was improved
(at the cost of the scale uncertainty & using an aggressive decorrelation scheme among various

systematic uncertainties)
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Work packages
1 Consistently measure a large

number of observables sensitive to
αs [11, 12],

2 Improve the treatment of
non-perturbative (NP) effects [13,
14, 15],

3 Implement “errors on errors” in the
minimisation [16, 17].

4 Provide tools that allow extensions
(additional final states & other
LHC experiments) [18, 19].
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Request
Connection to TA infrastructure and VA projects
TA infrastructure CERN as hosting institute, as host for the LHC and the CMS

experiment.
VA projects Powerful computing clusters (CERN cluster), but also any VAs with

pQCD-related computing resources (e.g. NLOAccess, TMDPortal).

Estimated budget request
Total: 330kEUR (includes administrative overheads & CHF-EUR conversion)

Personnel 130kCHF per year for two years to pay a postdoc at CERN
Others 50kCHF to pay participant users per-diem at CERN, travels, and

on-site organisation of dedicated workshops

Participating and partner institutions
CMS/ATLAS KIT, Ioaninna, HIP, ULB-IIHE, Zhejiang; LPNHE, MPI Munich

theorists P. Monni & A. Huss (CERN), F. Tackmann & G. Marinelli
(DESY), T. Cridge (Antwerp), F. Hekhorn (Jyvaskyla)

QCD PDG editors K. Rabbertz (KIT), G. Zanderighi (MPI Munich)
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number of LHC-based αs(mZ)
extractions, with O(2.3%)
precision.
Task: Simultaneous αs(mZ)
extraction, combining multiple LHC
observables (CMS first, extendable
to other exps.) with proper control
of NP effects, improved
experimental & theoretical
uncertainties, etc.
Partners: leading exp./th. experts
on QCD jets and αs(mZ).
Deliverables: O(1%) αs(mZ)
extraction from LHC data + public
code for analysis & αs(mZ) fitting.

Merci pour votre attention!
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Detailed plan
Simultaneous measurement of many differential observables
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Detailed plan
Upgrade of the fitting tool

“Errors on errors”
Not all systematic uncertainties are
known to the same level of
accuracy.
Novel approach to allow for pulling
parameters without preventing fit
convergence.
Need to implement in chosen
software.
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Detailed plan
Treatment of NP correctionsNature (figure from Ref. [13])

NP =
σME+PS+MPI+HAD

σME+PS
Corrects for HAD and MPI.
Usually obtained from the envelope
of the results obtained with a(n
arbitrary) set of MC generators and
tunes.

Proposed improvements
1 Better identify the set of MC

generators / tunes.
2 Treat effect as migrations rather

than with a bin-by-bin correction.
3 Introduce a breakdown of

uncertainties.
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Expected precision

Wild guess of expected precision
Taking the smallest value in the breakdown of uncertainties from recent
published values:

αs(mZ) = 0.11??± 0.0005 (fit)± 0.0002 (model)
± 0.0004 (scale)± 0.0001 (param)

= 0.11??± 0.0007 (total)

Caveat: theory uncertainty
The theory uncertainty based on variations of the scale is known to be a
poor approximation.
In the recent years, theorists have progressed on getting theory nuisance
parameters.

−→ In this LOI, we focus on the experimental aspects, but plan to collaborate
closely with theorists to apply the most recent developments.
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Partners

Participating and partner institutions
CMS Klaus Rabbertz et al. (KIT), Panagiotis Kokkas et al. (Ioaninna),

Mikko Voutilainen et al. (HIP), Laurent Favart et al. (ULB-IIHE,
Belgium), Xiao Meng et al. (Zhejiang, China)

ATLAS Bogdan Malaescu et al. (LPNHE), Stefan Kluth (MPI)
theorists Pier Monni & Alex Huss (CERN), Frank Tackmann & Giulia

Marinelli (DESY), Thomas Cridge (Antwerp), Felix Hekhorn
(Jyvaskyla)

QCD PDG editors K. Rabbertz (KIT), G. Zanderighi (MPI Munich)
−→ include additional channels (e.g. tt̄ +jets), combining with ATLAS, theory
nuisance parameters



Refs.
√
s value fit unc. PDF unc. scale unc. other unc. PDF order

R32 [20] 7 TeV 0.1148 ±0.0014 ±0.0018 ±0.0050 NNPDF2.1 NLO
2D inclusive jet [21, 22] 7 TeV 0.1185 ±0.0019 ±0.0028 +0.0053

−0.0024 ±0.0004(NP) — NLO
inclusive 3-jet mass [23] 7 TeV 0.1171 ±0.0013 ±0.0024 +0.0069

−0.0040 ±0.0008(NP) CT10 NLO
tt̄ [24] 7 TeV 0.1151 +0.0017

−0.0018
+0.0013
−0.0011

+0.0009
−0.0008 ±0.0013︸ ︷︷ ︸

mt
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Simultaneous unfolding
Typical analysis strategy

Data reduction in a nutshell
1 Apply a common selection to real

and simulated samples.
2 Calibrate the samples.
3 Use simulated samples to construct

a migration matrix.
4 Invert this migration matrix and

apply to real data (unfolding).

Unfolding

Ax = y
x (unknown) unbiased measurement
y biased measurement
A migration matrix
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Application
Migrations
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Application
Pre-unfolding correlations
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Statistical correlations in real data
upper 3× 3 block 1D inclusive jet in

bins of multiplicity.
lower 4× 4 block kinematic bins of 2D

inclusive jet (multi-count
observable).

off-diagonal blocks correlations among
the bins of the respective
observables.

For the present exercise: simple least-square minimisation

χ2 = min
x

[
(Ax− y)ᵀ Vy

−1 (Ax− y)
]

where Vy is the covariance matrix
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Application
Post-unfolding correlations

Result (unless regularisation is needed)

x = (AᵀVy
−1A)−1 AᵀVy

−1 y

Vx = A−1VyAᵀ−1
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From the simulated data
With infinitely large statistics, one
can use independent statistical
samples to construct the different
sectors of the migration matrix.
Else repeat unfolding using
alternative migration matrices with
additional event weights ∼ Pois(1):

V′
x =

(
1

N

N∑
n=1

xn · xᵀ
n

)

− 1

N2

(
N∑

n=1

xn

)
·

(
N∑

n=1

xn

)ᵀ
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Application
Post-unfolding correlations

Result (unless regularisation is needed)

x = (AᵀVy
−1A)−1 AᵀVy

−1 y
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From the simulated data
With infinitely large statistics, one
can use independent statistical
samples to construct the different
sectors of the migration matrix.
Else repeat unfolding using
alternative migration matrices with
additional event weights ∼ Pois(1):

V′
x =

(
1

N

N∑
n=1

xn · xᵀ
n

)

− 1

N2

(
N∑

n=1

xn

)
·

(
N∑

n=1

xn

)ᵀ
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Application
Final correlations

From HT spectra to Rij

Goal is to extract z = f(x) and its
correlations.
Apply a rotation R to diagonalise
Vx and generate N events zn:

δ′n,i ∼ N
(
0,
√

max(0, ki)
)

zn = f
(
x + R−1δ′n

)
Under the Gaussian hypothesis, the
covariance may be obtained using
the formula given on the last slices.

Gain
We now have two observables with
distinct properties obtained from the
same data.
−→ Rij offers additional control on αs.
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Final correlations

From HT spectra to Rij

Goal is to extract z = f(x) and its
correlations.
Apply a rotation R to diagonalise
Vx and generate N events zn:

δ′n,i ∼ N
(
0,
√

max(0, ki)
)

zn = f
(
x + R−1δ′n

)
Under the Gaussian hypothesis, the
covariance may be obtained using
the formula given on the last slices.

Gain
We now have two observables with
distinct properties obtained from the
same data.
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Acronyms I

ATLAS A Toroidal LHC ApparatuS. 21–23, 41

CERN European Organisation for Nuclear Research.
21–23

CMS Compact Muon Solenoid. 10, 11, 20–28, 41

EEC energy energy correlator. 42–46

FO fixed order. 10, 11

HAD hadronisation. 36–38

LHC Large Hadron Collider. 2–9, 17–28
LOI letter of intent. 32–34, 39, 40

MC Monte Carlo. 36–38
ME matrix element. 36–38

MPI multi-parton interaction. 36–38

NP non-perturbative. 10, 11, 17–20, 24–28,
36–38

PDF parton distribution function. 10, 11, 42–46

PDG Particle Data Group. 21–23, 41

pQCD perturbative QCD. 10, 11, 21–23

PS parton shower. 36–38

QCD quantum chromodynamics. 2–5, 21–28, 41

SM standard model. 2–5

TA transnational access. 21–23

VA virtual access. 21–23

WIP work in progress. 32–34
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