# **POLARIS**

POLarized Target Advancements
Refinements and InnovationS

Town Meeting
Hadron Physics in Horizon Europe
July 1–3, 2025
IMT Atlantique



Presenter: Victoria Lagerquist Victoria Lagerquist, Stefan Goertz (Uni Bonn), Gerhard Reicherz (RUB), Andreas Thomas (KPH Mainz), Giuseppe Ciullo (INFN Ferrara), Dan Watts (York)

#### The POLARIS Consortium



Polarized Target Advancements Refinements and Innovations:

The **POLARIS** consortium aims to significantly progress fixed polarized target (PT) experiments by improving accuracy, performance, and versatility.

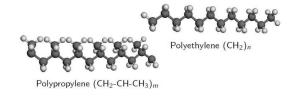
We hope to **advance** high-temperature superconductors for magnetic field generation, **refine** polarized solid-state target materials, and **innovate** novel hyperpolarization techniques.

These initiatives bring together five projects across six institutions as well as reach across fields into medical physics and clean energy development.

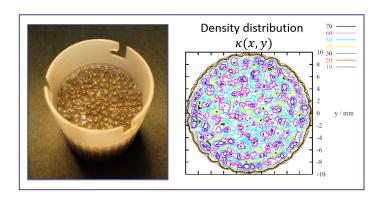
# **Institutions:**

- University of Bonn (Bonn)
- Ruhr-Universität Bochum (Bochum)
- **Johannes Gutenberg University** (Mainz)
- University of Ferrara, INFN (Ferrara)
- University of York (York)

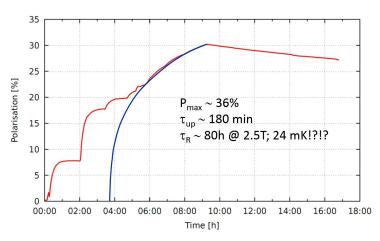
# **Transnational Access**

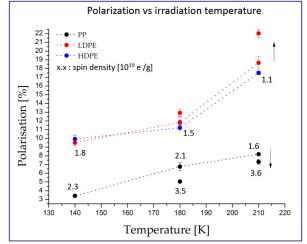

# Infrastructures:

- ELSA
- MAMI
- CERN
- JLab



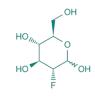

# Polarized solid-state target materials: C<sub>m</sub>H<sub>n</sub> chains


- Debated as targets for 30+ years
- Advantages
  - Filling Factor
  - Handling
  - Geometry

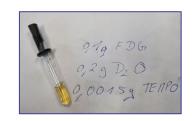



- New opportunity at Uni Bonn: Test under realistic experiment conditions
- Achieving high polarization would be a major advance towards an ideal target

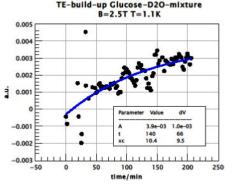


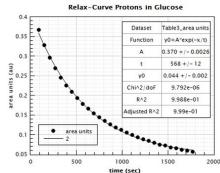


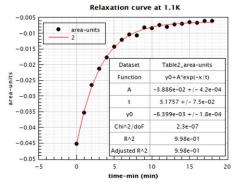



# Polarized solid-state target materials: Fluorinated Hydrocarbons


- High nuclear polarization is vital for advanced nuclear physics.
- Radiation Detected NMR (RD-NMR):
  - Boosts conventional NMR sensitivity by up to 10 orders of magnitude using asymmetric decay.
  - Enables ultra-precise measurement of unstable nuclei magnetic moments.
  - Holds potential for new medical imaging with biologically active nuclei (18F, 11C).
- Dynamic Nuclear Polarization (DNP): Growing interest in the NMR/MRI community for significantly enhancing sensitivity and resolution of conventional NMR.
- Proven expertise in RD-NMR and DNP, with support from CERN medical applications funding.







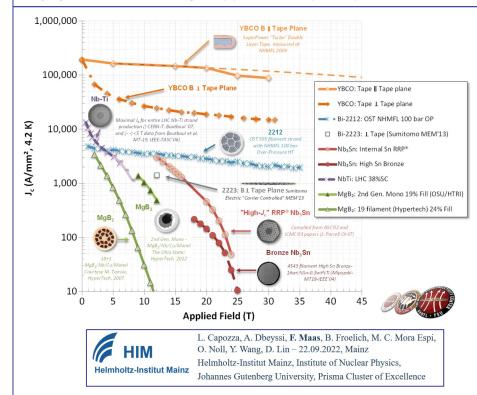






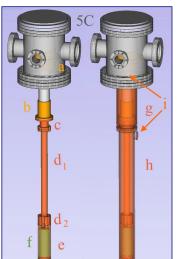

### High-temperature superconductors: BISCO and YBCO

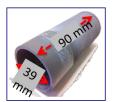
- Current targets use coils, increasing heat load and limiting field flexibility
- CryPTA explored HTS (BISCO, YBCO) to supplement coils via shielding
- We propose using HTS as primary "frozen spin" fields, removing traditional coils
- Testing will use Mainz materials and Bonn's cryo-magnetic infrastructure

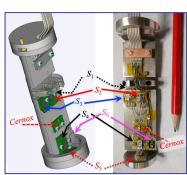


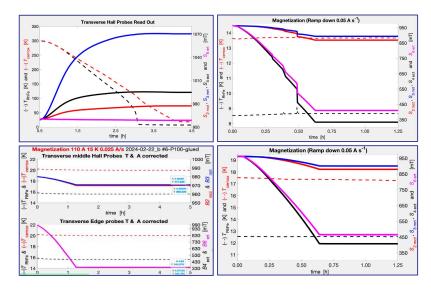


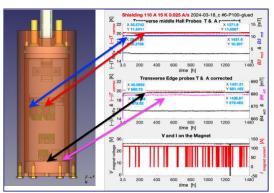


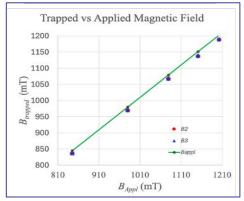


#### **Taken From:**


Annual meeting of the STRONG 2020 Joint Research Activity "Cryogenic Polarized Target Applications" (WP28)



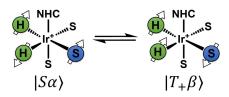


# High-temperature superconductors: MgB<sub>2</sub>


- Magnesium Diboride (MgB<sub>2</sub>) is a promising superconductor: easily shaped, 39 K critical temperature, magnetic field holding and blocking proven
- System in Ferrara: 8 K temperatures, 1.2 T fields, 1-day turnaround, detailed mapping
- Key to developing polarized fusion fuel and exploring polarized nuclear targets.

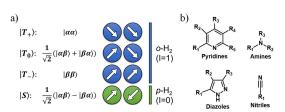




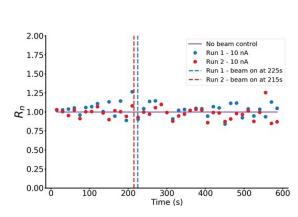





# Chemical hyperpolarisation (ChHP)


- Novel, room-temperature method to polarize nuclei in liquid targets using parahydrogen, cm<sup>3</sup> volumes proven
- Continuous polarization and longer relaxation times show promise
- Deployment in EU infrastructures, foster collaboration with beam/target experts
- High-intensity electron beams (JLAB, MESA, MAMI) and ionizing environments where cryogenics are ineffective



Spin transfer mechanism with SABRE ChHP. Conversion of para-H2 to ortho-H2 and polarization of an unpolarized spin.



a) Spin states of H<sub>2</sub>. b) Example classes of molecule polarizable by SABRE ChHP.



In-beam polarization decay results from MAMI, showing no increase to the relaxation rate.

#### Prototype SABRE ChHP target apparatus.

pressure

regulator

p-H<sub>2</sub> outlet

p-H<sub>2</sub> generator

Polarization (%)

16

12

Mass flow

controller

×40 scc/min

×100 scc/min

×200 scc/min

×300 scc/min

valve 1

Polarizing

X

Victoria Lagerquist, University of Bonn

Halbach array

regulator

gauge

X

X

Pressure (bar)

Performance of prototype polarized target with varying

pressure and flow rate within the polarization cell.

Solenoid

Exhaust

# **Budget Request**



# €200k:

- €35k: Conference organization
  - Two workshops during funding period
- €165k (shared between 5 projects):
  - Travel between consortium institutions
  - Personnel (undergraduate and graduate students)
  - Consumable material investments





Annual meeting of the STRONG2020 Joint Research Activity **CryPTA** "Cryogenic Polarized Target Applications" (WP28) 2022

# THANK YOU

# **POLARIS**

POLarized Target Advancements Refinements and InnovationS

