

Horizon Europe Town Meeting | 2 July 2025 | VERVE LOI | Domenico Colella

## 

### **Vertexing in Extreme Radiation** & Vacuum Environment

Participating institutes CERN and INFN (Bari, Cagliari, Catania, Frascati, Padova, Torino, Trieste)

> **Project leaders** Domenico Colella (University and INFN Bari, Italy) Jochen Klein (CERN)



What is needed to fully exploit potential of LHC?

- LHC provides ideal and **unique environment to study hot QCD** matter and <u>multi-charmed baryon</u> production is a key tool
- Present devices are insufficient
  - Complex multi-stage decay chain in a track-dense environment
  - → Small signal in large combinatorial background
  - Reconstruction of decay vertices is crucial





What is needed to fully exploit potential of LHC?

- LHC provides ideal and **unique environment to study hot QCD** matter and <u>multi-charmed baryon</u> production is a key tool
- Present devices are insufficient
  - Complex multi-stage decay chain in a track-dense environment
  - → Small signal in large combinatorial background
  - Reconstruction of decay vertices is crucial
- Two required conditions to improve pointing resolution and allow such a measurement:
  - Reduce material budget
  - Reduce distance of first layer from interaction point





What is needed to fully exploit potential of LHC?

- LHC provides ideal and unique environment to study hot QCD matter and <u>multi-charmed baryon</u> production is a key tool
- Present devices are insufficient
  - Complex multi-stage decay chain in a track-dense environment
  - → Small signal in large combinatorial background
  - Reconstruction of decay vertices is crucial
- Two required conditions to improve pointing resolution and allow such a measurement:
  - Reduce material budget
  - Reduce distance of first layer from interaction point



### Move a light-weight vertex detector inside the beam-pipe











- Technical requirements
  - Bent thin sensors supported by light material (e.g. carbon foam) [mastered within the ITS3 project]
  - Sensors and services integrated in vacuum
  - Movable components to reach minimum distance to primary vertex only during stable beams
  - Sensor performance under high radiation flux







- Technical requirements
  - Bent thin sensors supported by light material (e.g. carbon foam) [mastered within the ITS3 project]
  - Sensors and services integrated in vacuum
  - Movable components to reach minimum distance to primary vertex only during stable beams
  - Sensor performance under high radiation flux



### R&D for low-mass silicon sensors in vacuum

Research objectives

- Enhancing radiation tolerance of CMOS pixel sensors
- In-vacuum integration of sensors





Enhancing radiation tolerance of CMOS pixel sensors - In-vacuum integration of sensors

- So far demonstrated close to 99% efficiency after irradiation to 10<sup>15</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
  - ALICE ITS3 test chip (DPTS)
  - Operated at room temperature
  - Pixel pitch: 15 µm



Horizon Europe Town Meeting | 2 July 2025 | VERVE LOI | Domenico Colella



Enhancing radiation tolerance of CMOS pixel sensors - In-vacuum integration of sensors

- What's next?
  - Optimize pixel implant structures
    - $\rightarrow$  variations of existing test chips being submitted
  - Study pitch dependence
    - $\rightarrow$  variations at 10, 12 and 15  $\mu$ m included in submission
  - Explore behavior at low temperatures
    - $\rightarrow$  cryogenic setups

- Cryogenic setup key requirements
  - Thin entrance/exit window
  - Dry air circulation to avoid condensation
  - Temperature range: 15°C to 25°C
  - Monitoring of temperatures and humidity level
  - Based on Peltier elements and liquid cooling
  - Compact to allow use in beam telescopes





# liquid outlet Dry air

Enhancing radiation tolerance of CMOS pixel sensors - In-vacuum integration of sensors

Studying efficiency in detail: in-pixel measurements

 Probing the charge collection and electric field of a pixel via in pixel efficiency measurements at test beam

 Systematic comparison of test beam and laboratory measurement results to simulations of the pixel implant structures carried out prior to the chip submission







Enhancing radiation tolerance of CMOS pixel sensors - In-vacuum integration of sensors

### • UHV setup assembled in Bari

- Characterization campaign ongoing on a large preliminary set of materials



- carbon foam
- 3D printed aluminium nitride (AIN), alumina  $(Al_2O_3)$  and silumin (AlSi)
- optical fiber
- Si wafer
- standard flex circuit







Enhancing radiation tolerance of CMOS pixel sensors - In-vacuum integration of sensors

- What's next?
  - Outgassing studies for a full IRIS prototype  $\rightarrow$  New large volume setup
    - Outgassing studies from internal material (into secondary vacuum) and external wall (into primary vacuum)







Enhancing radiation tolerance of CMOS pixel sensors - In-vacuum integration of sensors

### How to identify and treat outgassing components based on well established procedures:

### <u>Residual Gas Analysis (RGA)</u>

Identify desorbed species from detector materials  $\rightarrow$  Help understanding outgassing due to mechanical movements (e.g. IRIS opening/closure)



Horizon Europe Town Meeting | 2 July 2025 | VERVE LOI | Domenico Colella





### <u>Thermal Desorption Spectroscopy (TDS)</u>

Monitoring the species desorbing during heat treatment under vacuum  $\rightarrow$  Help defining handling procedure during detector construction



| Personnel                       | 85 k€/year  | 2 or 3 PhD (different costs in Italy and at CERN) |                                                                                                                 |       |
|---------------------------------|-------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|
| Travel support<br>and workshops | 10 k€/year  | Start-up and wrap-up workshops                    |                                                                                                                 |       |
| Consumables/<br>Hardware        | 30 k€/year  | Radiation<br>studies                              | <ul> <li>Planning to prepare samples (thinning@dicing, carrier cards, wire<br/>bonding, irradiation)</li> </ul> | 8 k€  |
|                                 |             |                                                   | <ul> <li>Procurement of new readout systems providing higher bandwidth<br/>and sampling rate</li> </ul>         | 60 k€ |
|                                 |             |                                                   | <ul> <li>Mechanics (raw material + work)</li> </ul>                                                             | 20 k€ |
|                                 |             | Vacuum<br>studies                                 | <ul> <li>Large volume vacuum chamber, flanges, gate valves and<br/>consumables</li> </ul>                       | 12 k€ |
|                                 |             |                                                   | <ul> <li>Turbo and ion pumps</li> </ul>                                                                         | 20 k€ |
| Indirect cost                   | 31 k€/year  | 25% of the direct costs                           |                                                                                                                 |       |
| TOTAL per year                  | 156 k€/year |                                                   |                                                                                                                 |       |
| TOTAL (4 year)                  | 624 k€      |                                                   |                                                                                                                 |       |







### Backup

Horizon Europe Town Meeting | 2 July 2025 | VERVE LOI | Domenico Colella



Enhancing radiation tolerance of CMOS pixel sensors

How to study efficiency in detail, based on prior experience with ITS2/3:

- Probing the electric field configuration and the charge collection of pixel via in pixel efficiency through test beam measurements
- Complementing with laboratory measurements with radioactive source (Fe-55, Sr-90)
- Comparison to simulations

New slide: "Studying efficiency in detail"

- In-pixel efficiency plot -> probing the field configuration and charge collection of the pixel
- Comparison to simulations:
  - Pixel implant structure variations have been simulated prior to submission
  - Laboratory measurements with radioactive sources (Fe-55, Sr-90) complementing the test beam measurements

Also saying based on prior experience with ITS2/3







Enhancing radiation tolerance of CMOS pixel sensors

- It has been shown that changing the doping profile of the epitaxial layer, the radiation hardness of MAPS can be improved
  - Standard process  $\rightarrow$  Operational up to 10<sup>13</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
  - Modified process  $\rightarrow$  Operational up to 10<sup>14</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
    - additional deep blanket low doped implant over the full pixel area
  - Modified with gap process  $\rightarrow$  Operational up to 10<sup>15</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
    - ▶ gap in the deep low dose n-implant

well collection electrode PWELL NWELL DFFP Standard DEPLETED ZONE P⁼ EPITAXIAL LAYER SUBSTRATE electrode low dose n-type implant Modified depleted zon epitaxial layer + substrate nwell collection electrode 0.95 0.9 0.85 low dose n-type implan Modified 0.8 with gap 0.65 depleted zone o<sup>-</sup> epitaxial layer

+ substrate













Enhancing radiation tolerance of CMOS pixel sensors

- It has been shown that changing the doping profile of the epitaxial layer, the radiation hardness of MAPS can be improved
  - Standard process  $\rightarrow$  Operational up to 10<sup>13</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
  - Modified process  $\rightarrow$  Operational up to 10<sup>14</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
    - additional deep blanket low doped implant over the full pixel area
  - Modified with gap process  $\rightarrow$  Operational up to 10<sup>15</sup> 1 MeV n<sub>eq</sub>/cm<sup>2</sup>
    - ▶ gap in the deep low dose n-implant





Enhancing radiation tolerance of CMOS pixel sensors

- hardness of MAPS can be improved









### **Research objectives** In-vacuum integration of pixel sensors











