Augustin Demagny

IIONVRG **Finesse 3 simulation for GW detector**

Using multi-modal simulation to design and prepare the O5 upgrade on Virgo

09/06/25

Workshop "développement des détecteurs" 2025

Finesse 3

- Frequency-Domain interferometer simulation
- Modal model

https://finesse.ifosim.org/

Nodal network

- Model: tree of components (mirror, beamsplitter, etc.)
- Solve ABCD matrices
- Compute HOM

Examples

- Gaussian beam tracing
- Scan with HOM
- Transfer Function
- Control loop

Augustin Demagny

Backscattered light simulation

Some context & simulation with Finesse3

Backscattered noise

Impact of backscattered light on sensitivity

dataDisplay v10r15 : started by gouaty on Oct 31 2024 15:34:51 UTC

Hrec_hoft_20000Hz__FFT

Sensitivity curve with (blue) and without (purple) SNEB vibration

Transfer function

Constructive/Destructive interference :

- \rightarrow change amplitude of the beam
- \rightarrow change radiation pressure

⇒ Named $K_{\frac{\delta P}{P}}$

Quadratic interference :

→ add phase noise

 \rightarrow directly change measurement

 \Rightarrow Named K_{n_q}

TF simulation

- Model already created by M. Was, using Optickle
- Cannot model mirror misalignement:
 - Adding losses on SR
 - Lowering transmission on SR

Physically incorrect

- Unmaintened for more than 5 years
- \Rightarrow Needs for a new simulation

Current model

SWEB

WE_AR

WE

WI

NI_AR

NI

NE

WI_AR

BS

SR_AR

SDB1

• Simple model with :

SNEB

- Laser

NE_AR

- Power Recycling cavity
- Fabry-Perot cavity
- Signal Recycling cavity

- Benches (mirrors here)

PR_AR

Example : How to model SNEB TF

- Define DOF SNEB_z
- Define SNEB_suspension
- Add sgen to SNEB_z
- Add PD at dark fringe
- Sweep sgen frequency into [minfreq, maxfreq]

4	fsig(1)					
	dof> pend>	SNEB_z> SNEB_suspension>	SNEB.dofs.z> SNEB.mech>	-1 mass=42>	fz=0.16>	Qz=40
5						
	sgen> pd1>	sig1> power_detector>	SNEB_z> SDB1.p2.o>	1> f=fsig.f	0	
4 5	xaxis(fsig.f, lo	og, 5, 1e4, 500)	Ŷ			

Two effects

- Two transfer functions for SNEB
- (δ : differential phase of NE SNEB):

$$- \delta \equiv O[\pi] \left(\frac{K_{\delta P}}{P} \right)$$

- $\delta \equiv \pi/4[\pi] \left(K_{n_{\phi}} \right)$
- The TF link bench movement d to differential arm length δl , hence: $TF_{\frac{d}{\delta l}} = \frac{TF_{\frac{d}{DF}}}{TF_{\underline{DF}} \cdot L} = \frac{TF_{\frac{d}{DF}}}{DARM \cdot L} *L : arm length *DF : dark fringe power$

Comparison with Optickle

Same laser power, dark fringe offset, SR aligned, No HOM

HOM & SR misalignment

- Adding HOM
- Rotating SR yaw
- Selecting TEM00 for the power detector

DARM evolution

Results with SR misaligned & HOM

Conclusion

- Successfully model current Virgo interferometer (with misalignment)
- Next step:
 - Model O5 design
 - Add more components
- Result: fraction of backscattered light for benches

Augustin Demagny

Thanks for listening

Any questions ?

