

FAZIA collaboration

$\begin{array}{c} Collaboration \\ \circ \bullet \circ \end{array}$	FAZIA	Physics cases	Future at FRIB	Conclusions
	0000	000	000000000000	00
Future of HIC				

IN2P3 and INFN are going into the same direction

IRL-NPA

NUSDAF

IN2P3 and INFN are going into the same direction

Collaboration	FAZIA	Physics cases	Future at FRIB		
000					
SVMEOS initiative					

Letter of Intent

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Giuseppe Verde¹, C. Agodi², M. Battaglieri⁹, M. Bondi¹, M. Cavallaro², M. Colonna², D. Gambacurta², A. Gottardo³, L. Lamia^{4,2}, S. Leoni^{5,6}, L. Marcucci⁷ S. Pirrone¹, G. Pizzone^{2,4}, P. Russotto², S. Valdrè⁸, J.J. Valiente³, M. Viviani⁷

on behalf of the ASFIN, CHIRONE, EPIC, GAMMA, JLAB12, NUCL-EX, NUMEN, MONSTRE and NUCSYS groups of INFN (see Appendix 3 for detailed list of institutes)

Kyle Brown¹⁰, Giordano Cerizza¹⁰, Zbigniew Chajecki¹¹, Alexandra Gade¹⁰, Dean Lee¹⁰, Artemis Spyrou¹⁰, Remco Zeger¹⁰

Local points of contact who agreed to collaborate and support these programs

¹INFN Catania, ²INFN Laboratorio Nazionali del Sud, ³INFN Laboratori Nazionali di Legnaro, ⁴University of Catania, ⁵University of Milan, ⁶INFN Milan, ⁷INFN Pisa, ⁸INFN Florence, ⁹INFN Genova ¹⁰FRIB, Michigan State University, ¹¹Western Michigan University

$\begin{array}{c} Collaboration \\ oo \bullet \end{array}$	FAZIA 0000	Physics cases	<i>Future at FRIB</i> 000000000000000000000000000000000000	
SYMEOS init	tiative			

Letter of Intent

Submitted to FRIB-PAC3 INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

> Giuseppe Verde¹, C. Agodi², M. Battaglieri⁹, M. Bondì¹, M. Cavallaro², M. Colonna², D. Gambacurta², A. Gottardo³, L. Lamia^{4,2}, S. Leoni^{5,6}, L. Marcucci⁷ S. Pirrone¹, G. Pizzone^{2,4}, P. Russotto², S. Valdrè⁸, J.J. $Valiente^3 M Viviani^7$

on behalf of the ASFIN, CHIRONE, EPIC, GAMMA, JLAB12, NUCL-EX, NUMEN, MONSTRE and NUCSYS groups of INFN (see Appendix 3 for detailed list of institutes)

Kyle Brown¹⁰, Giordano Cerizza¹⁰, Zbigniew Chajecki¹¹, Alexandra Gade¹⁰, Dean Lee¹⁰, Artemis Spyrou¹⁰, Remco Zeger¹⁰

Local points of contact who agreed to collaborate and support these programs

¹INFN Catania, ²INFN Laboratorio Nazionali del Sud, ³INFN Laboratori Nazionali di Legnaro, ⁴University of Catania, ⁵University of Milan, ⁶INFN Milan, ⁷INFN Pisa, ⁸INFN Florence, ⁹INFN Genova ¹⁰FRIB, Michigan State University, ¹¹Western Michigan University

Submitter					
i mitted to	FRIB-PAC3	Letter of Intent			
SYMEOS in	nitiative				
Collaboration $\circ \circ \bullet$	FAZIA 0000	Physics cases	Future at FRIB 000000000000	Conclusions	

Letter of Intent

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Six scientific initiatives

```
SYMEOS EoS and E_{sym} with HIC
  GASPEC \gamma spectroscopy and Collective excitations
  RIBDCE RIB-induced Double Charge Exchange
   NUSYC NUcleoSYnthesis and Clustering
   THEOF THEOretical physics @ FRIB
SYSTERSE SYnergic Stategy for future ElectRonics and Streaming
            rEadout solutions
```

Submitted to FRIE	3-PAC3	Letter of Intent		
SYMEOS initia	tive			
$\begin{array}{c} Collaboration \\ \circ \circ \bullet \end{array}$	FAZIA 0000	Physics cases 000	<i>Future at FRIB</i> 000000000000	Conclusions 00

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Six scientific initiatives

 SYMEOS EoS and $\mathit{E}_{\rm sym}$ with HIC

more details already given by G. Verde's talk

FAZIA Forward A and Z Identification Array

FAZIA Forward A and Z Identification Array

FAZIA Forward A and Z

Identification Array

Transportable

FAZIA Forward A and Z

Identification Array

Transportable

Modular

FAZIA Forward A and Z

Identification Array

Transportable

Modular

Couplable

 Collaboration
 FAZIA
 Physics cases
 Future at FRIB
 Conclusions

 000
 0000
 000
 000
 00
 00

FAZIA modularity

Collaboration	FAZIA	Physics cases	Future at FRIB	
000	0000	000	000000000000	
FAZIA modula	rity			

Collaboration	FAZIA	Physics cases	Future at FRIB	
000	0000	000	000000000000	
FAZIA modula	rity			

Collaboration	FAZIA	Physics cases	Future at FRIB	
	0000		000000000000	
INDDA actors				

Original configuration (1992-2016)

- 90% of the solid angle covered
- 17 telescope rings (8-24 sectors per ring)
 - ring 1: IC + plastic scintillators
 - rings 2-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

J. Pouthas et al, Nucl. Instr. and Meth. A 357 (418), 1995

Collaboration	FAZIA	Physics cases	Future at FRIB	
000	0000	000	000000000000	00

INDRA setup

Present configuration (2017-today)

- FAZIA at forward angles!
- 12 telescope rings (8-24 sectors per ring)
 - rings 1-5: removed!
 - rings 6-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

Collaboration	FAZIA	Physics cases	Future at FRIB	
000	0000	000	000000000000	00
	1			

INDRA setup

Collaboration	<i>FAZIA</i>	Physics cases	<i>Future at FRIB</i>	
000	0000	●00	000000000000	
Quasi-projectile	"chemistry"			

C. Ciampi et al. Phys. Rev. C 106, 024603 (2022)

C. Ciampi et al. Phys. Rev. C 106, 024603 (2022)

Collaboration FAZIA Physics cases Future at FRIB Conclusions of New results on Quasi-projectile breakup

Quasiprojectile breakup and isospin equilibration at Fermi energies: Potential indication of longer projectile-target contact times

<u>C. Ciampi</u> ^{1,*}, <u>S. Piantelli²</u>, <u>G. Casini²</u>, <u>A. Ono³</u>, <u>J. D. Frankland¹</u>, <u>L. Baldesi^{2,4}</u>, <u>S. Barlini^{2,4}</u>, <u>B. Borderie⁵</u>, <u>R. Bougault⁶ et al.</u> (INDRA-FAZIA Collaboration)

Show more

Phys. Rev. C 108, 054611 - Published 28 November, 2023

DOI: https://doi.org/10.1103/PhysRevC.108.054611

Quasi_project	ile breakun			
		000	000000000000	
Collaboration	FAZIA	Physics cases	Future at FRIB	

S. Piantelli et al. Phys. Rev. C 101, 034613 (2020) based on A. Jedele et al. Phys. Rev. Lett. 118, 062501 (2017) and citations therein

Quani proinctilo	hreakun			
000	0000	000	00000000000	00
Collaboration	FAZIA	Physics cases	Future at FRIB	

S. Piantelli *et al.* Phys. Rev. C **101**, 034613 (2020) based on A. Jedele *et al.* Phys. Rev. Lett. **118**, 062501 (2017) and citations therein

Quasi_project	ile breakun			
		000	000000000000	
Collaboration	FAZIA	Physics cases	Future at FRIB	

only 4 blocks (low statistics) but large-Z fragments could be isotopically identified

S. Piantelli *et al.* Phys. Rev. C **101**, 034613 (2020) based on A. Jedele *et al.* Phys. Rev. Lett. **118**, 062501 (2017) and citations therein

Collaboration	FAZIA	Physics cases	Future at FRIB Co		
000	0000	000	000000000000	00	
-					

Invariant mass spectroscopy

courtesy of D. Gruyer (FAZIACOR experiment)

Collaboration 000	FAZIA 0000	Physics cases 000	$\begin{array}{c} Future \ at \ FRIB \\ \bullet $	
FAZIA future				

$Present\ status$

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15-50 AMeV)

Collaboration 000	FAZIA 0000	Physics cases 000	$\begin{array}{c} Future \ at \ FRIB \\ \bullet $	
FAZIA future				

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15-50 AMeV)

Future at GANIL

There are still many physics cases to be explored 2 experiments just concluded in 2025! 1 experiment approved for 2026/27!

Collaboration	FAZIA	Physics cases	Future at FRIB	
			00000000000	
FAZIA faitar	rρ			

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

Collaboration	FAZIA	Physics cases	Future at $FRIB$	
000	0000	000	000000000000000000000000000000000000	
FAZIA future				

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

• Thicker sensors with the same FAZIA electronics

Collaboration	FAZIA	Physics cases	Future at $FRIB$	Conclusions
FAZIA future				

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
000	0000	000		00

FAZIA future

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

Collaboration	<i>FAZIA</i>	Physics cases	<i>Future at FRIB</i>	
000	0000	000	000000000000000000000000000000000000	

FAZIA future

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

Collaboration	FAZIA	Physics cases	Future at FRIB	
			00000000000	
New observ	ables			

The next years will be crucial to find how to access observables to constraint EoS parameters with radioactive beams

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
000	0000	000	000000000000	00
Now obcorr	ablee			

The next years will be crucial to find how to access observables to constraint EoS parameters with radioactive beams

NUSDAF LoI proposals:

- Neutron and proton flow parameters
- Isospin diffusion, stopping and transparency
- Pygmy Dipole Resonances
- Femtoscopy
- Invariant Mass Spectroscopy

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
			00000000000	
Now obcorr	ablee			

The next years will be crucial to find how to access observables to constraint EoS parameters with radioactive beams

NUSDAF LoI proposals:

- Neutron and proton flow parameters
- Isospin diffusion, stopping and transparency
- Pygmy Dipole Resonances
- Femtoscopy
- Invariant Mass Spectroscopy

Collaboration	FAZIA	Physics cases	Future at FRIB	
			00000000000	

Femtoscopy and Invariant Mass Spectroscopy

Experimental conditions

- medium charge (Z < 30) radioactive beam, close to the proton-drip line, on a light target
- decay by one or two-proton emission from its loosely bound ground state
- useful information on the structure,
 - e.g. the one- or two-proton separation energies

- protons detected by silicon strips array (HiRA and/or FARCOS)
- heavier residue can be identified by FAZIA blocks
 - also providing a measurement of kinetic energy and angle

 Collaboration
 FAZIA
 Physics cases
 Future at FRIB
 Conclusions

 000
 000
 000
 000
 00
 00

Simultaneous measurement of multiple observables

Elliptic flow

Flow parameters of free neutron and proton emissions are among the most sensitive probes of the symmetry energy

Choice of reactions in order to enhance isospin asymmetries

- 54,56 Ni ${+}^{58}$ Ni and 70 Ni ${+}^{64}$ Ni at E/A = 150 400 MeV
- 106 Sn+ 112 Sn and 132 Sn+ 124 Sn at E/A = 150 400 MeV

 Collaboration
 FAZIA
 Physics cases
 Future at FRIB
 Conclusions

 000
 000
 000
 000
 00
 00

Simultaneous measurement of multiple observables

Elliptic flow

Flow parameters of free neutron and proton emissions are among the most sensitive probes of the symmetry energy

Choice of reactions in order to enhance isospin asymmetries

- 54,56 Ni $+{}^{58}$ Ni and 70 Ni $+{}^{64}$ Ni at E/A = 150 400 MeV
- 106 Sn+ 112 Sn and 132 Sn+ 124 Sn at E/A = 150 400 MeV

at the same time FAZIA-like blocks can measure projectile spectators (extension of topics already measured at Fermi energies)

- breakup of projectile spectators
- isospin diffusion

Collaboration 000	FAZIA 0000	Physics cases 000	Future at $FRIB$ 000000000000000000000000000000000000	
FAZIA @ 23058	3			

- As a first test, FAZIA will measure at FRIB coupled with other apparatuses
- We started a 2-weekly technical meeting cycle to prepare the setup

Mechanics

- The scattering chamber is too small to host FAZIA
- A "nose" will be build to host a FAZIA block at 80 cm distance from target
- Another block will measure in air, outside the chamber

DAQ and electronics

- FRIB experts received the full description of the FAZIA data flow protocol
- FAZIA data will be merged with other setups and handled by FRIB people
- independent acquisition to store FAZIA data in the old format

Collaboration 000	FAZIA 0000	Physics cases 000	$Future \ at \ FRIB$	
Developing a	new detector			

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

Proposed solution in the LoI

- setups constituted by coupling INFN detector systems to equipment already operating at FRIB
- FAZIA upgrade without re-designing a new apparatus from scratch!
- complex setup which may introduce a bias

Collaboration 000	FAZIA 0000	Physics cases 000	Future at $FRIB$ 000000000000000000000000000000000000	
Developing a	a new detector			

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

AZIMUTH solution

- A single apparatus with capabilities typical of correlators, $\Delta E - E$ telescopes, and particle trackers
- **Modular** and **portable** setup, capable to measure fragments emitted in collisions at *E*/*A* from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)

Collaboration	<i>FAZIA</i> 0000	Physics cases	$Future \ at \ FRIB$	
Developing	a new detector.			

European Research Council

Established by the European Commission

AZIMUTH solution

- A single apparatus with capabilities typical of correlators,
 - $\varDelta E-E$ telescopes, and particle trackers
- **Modular** and **portable** setup, capable to measure fragments emitted in collisions at *E*/*A* from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)
- Project submitted to ERC-CoG 2025!

Collaboration	FAZIA	Physics cases	Future at FRIB	
			00000000000	
Developing	a new detecto	<i>n</i>		

AZIMUTH solution

- A single apparatus with capabilities typical of correlators,
 - $\varDelta E-E$ telescopes, and particle trackers
- **Modular** and **portable** setup, capable to measure fragments emitted in collisions at *E*/*A* from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)
- Project submitted to ERC-CoG 2025! not funded!

Even if not funded by ERC, we still may think to build a FAZIA/AZIMUTH-like setup for future measurements at FRIB and FAIR.

More details on the proposed AZIMUTH detector could be found in my talk at previous FAZIAdays (March 12th, 2025) and in "S. Valdré, J. Inst. **20**, C06060 (2025)" I will summarize here the main characteristics.

Collaboration	FAZIA	Physics cases	Future at FRIB	
			000000000000	
	colution			

A and Z Identification

the detector shall discriminate **in charge and mass** ions in a broad range of energies to guarantee the best isotopic discrimination ever achieved for a telescope-based detector

Modular

several telescope configurations shall be available, all of them with the **same connection standard** to front-end electronics and with the **same data acquisition protocol**

Universal

the apparatus shall be **multipurpose**, apt to measure multiple observables at the time, **couplable with other detectors**, and it shall also be used with a large variety of beams

Tracking Hodoscope

the telescopes shall implement **particle tracking** features through the layers in order to maximize the efficiency of light and energetic particle identification

Collaboration	FAZIA	Physics cases	$Future \ at \ FRIB$	Conclusions
000	0000	000		00
AZIMUTH	challenges			

Main obstacles are related to fast particles energy loss profile

Energy straggling

energy loss of ions inside materials happens through a series of scatterings. The more interactions we have, the large variance in energy loss (straggling) we get^a

^aS. Kumar and P. K. Diwan, J Radiat Res Appl Sci 8, 538 (2015)

Incomplete energy deposition (IED)

as ions react inside large volume crystals, or they scatter, punching-through the crystal surfaces, identification isn't feasible anymore b

^bC. Frosin *et al.*, Nucl. Instrum. Meth. A **951**, 163018 (2020)

Collaboration 000	FAZIA 0000	Physics cases	$Future \ at \ FRIB$	
Tracking feat	ures			

Energy loss + position tracking

5 5

- "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSSD (or pixel detectors)

A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A

Collaboration 000	FAZIA 0000	Physics cases	$Future \ at \ FRIB$	
Tracking feat	ures			

Energy loss + position tracking

- "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSSD (or pixel detectors)

A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A

FAZIA

- 1x position (telescope)
- up to 3x partial energy release (Si-Si-Csl)

AZIMUTH

- up to 3x positions (3 stacked modules)
- up to 9x partial energy release (Si-Si-Csl-Si-Si-Csl-Si-Si-Csl)

Collaboration 000	FAZIA 0000	Physics cases	Future at $FRIB$ 000000000000000000000000000000000000	
<i>a</i>	7 (

Streaming readout

Traditional triggered DAQ VS Streaming Readout

picture from F. Rossi's talk at SRO-XII workshop (2024)

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
			00000000000	
Streaming r	readout			

Streaming Readout Workshop SRO-XII

02–04 dic 2024 University of Tokyo Asia/Tokyo fuso orario

Increased interest to SRO! CERN, EIC, **JLAB**, **FRIB**, and SPADI alliance (Japan) involved

MSU-JLab Streaming Data Acquisition System Meeting

12 febbraio 2025 JLAB US/Eastern fuso orario

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
				••
	faituro			

AZIMUTH

- Telescope approach + tracking features
- Position sensitive good for correlations
- Designed for elliptic flow measurements and invariant mass spectroscopy
- Good for FRIB, but also for FAIR (full setup) or low energy Spiral2, SPES, and **LNS-FRAISE** beams (1- or 2-module blocks)

Next steps

- Start testing of sensor layers and tracking algorithms
- Improve the design after first FRIB experiments
- Strengthen sinergies among HIC collaborations

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
				00
EDID time of				
	LTLP.			

- IN2P3 created the IRL-NPA facility
- 9 INFN programs submitted a LoI which received appreciation by the PAC

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
				00
EDID time of				
евів ште	10e			

- IN2P3 created the IRL-NPA facility
- 9 INFN programs submitted a LoI which received appreciation by the PAC
- A MoU between INFN and FRIB is currently been written
- Preparation of experiment 23058 is ongoing

Collaboration	FAZIA	Physics cases	Future at FRIB	Conclusions
				00
FRIR timeline				

- IN2P3 created the IRL-NPA facility
- 9 INFN programs submitted a LoI which received appreciation by the PAC
- A MoU between INFN and FRIB is currently been written
- Preparation of experiment 23058 is ongoing
- Implementing streaming readout acquisition
- Many plans for future detectors:
 - AZIMUTH / FAZIA-like detector
 - a new TPC

Thanks for your attention

Backup slides

The telescope stages

- 300 μm reverse-mounted Si detector;
- Ø 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

The telescope stages

- 300 µm reverse-mounted Si detector;
- Ø 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

The telescope stages

- 300 µm reverse-mounted Si detector;
- Ø 500 μm reverse-mounted Si detector;
- ◎ 10 cm Csl(Tl) cristal read by a photodiode.

$The \ telescope \ stages$

- 300 µm reverse-mounted Si detector;
- Ø 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

R. Bougault et al., Eur. Phys. J. A 50, 47 (2014)

The FAZIA block

Backup

16 telescopes, together with **front-end electronics**, form a **block** operating in **vacuum**.

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - $\bullet\,$ energy resolution is better than 1 $\%\,$ from 5 MeV to 4 GeV

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

₩

- Compactness and modularity
- Very good isotopic discrimination capabilities
- \bullet Thresholds (${\lesssim}10\,\text{MeV}/\text{u})$ suited for Fermi energies

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Backup

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - on-line processed on FPGAs
 - energy resolution is better than 1 % from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

₩

- Compactness and modularity
- Very good isotopic discrimination capabilities
- \bullet Thresholds (${\lesssim}10\,\text{MeV}/\text{u})$ suited for Fermi energies

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019