# Identification techniques and transfer channels

Fazia Days 2025 - Andrea De Rosa

# **Telescope stages and stopped particles**



- a) Heavy or slow ions identified via PSA
- b) Ions up to Li id via  $\Delta E$ -E
- c) Light ions and gammas id via PSA in CsI or  $\Delta E$ -E

# **Pulse Shape Analysis**





- E loss profile depends on Z and A
- Heavier particles have smaller range
- Energy released in a smaller volume
- Slower signals because of collection time
- Reverse-mounted detectors

#### SI1\_0133:QL1.Amplitude vs. SI1\_0133:I1.Amplitude



# **Identification procedure**



- Cutline for slow particles
- One line for each Z
- PID value is assigned to each particle  $PID = Z + \delta Z$
- Info region for mass ID

# **PID distribution and Mass ID**



# **Identified particles**

N vs. Z [Z&A identified]



We can check the position of each particle in the Segrè Chart

After this procedure we can analyse the events in which we have only the particles of interest

#### **ΔE-E Identification**

# From Bethe-Bloch formula $\Delta E \propto \frac{Z^2 A}{E}$



# **Identified particles in FAZIA**

**General performances** 

ΔΕ-Ε

Charge id for every Z Mass id up to Z=25

PSA Charge id for every Z Mass id up to Z=20 **Particles observed in E881** 

ΔΕ-Ε

**Charge and Mass id up to Z=3** 

PSA Charge id up to Z=9 Mass id up to Z=6

# **Elastic and inelastic peaks**



When the target or/and the projectile is excited, the detected particle has a lower TKE

We get different peaks:

- ${}^{12}C_0$  Elastic peak
- ${}^{12}C_1$  Inelastic peak to 4.4MeV state
- ${}^{12}C_1^*$  Double inelastic to 4.4MeV
- ${}^{12}C_3$  Inelastic to 9.6 MeV

# **One nucleon transfer**



We analyse the transfer peaks in pairs for simmetry reasons

Peaks with no excitations:

• 
$${}^{11}C_0$$
 •  ${}^{13}C_0$ 

$$^{11}B_0 \bullet ^{13}N_0$$

#### **Excited states in transfer channels**



#### **One nucleon transfer**



Peaks with excitation to the third excited state:

• 
$${}^{11}C_3$$
 •  ${}^{13}C_3$   
•  ${}^{11}B_3$ 

There is no  ${}^{13}N_3$  peak because the excited nitrogen decays via proton emission

Peaks in  ${}^{10}B$  and  ${}^{9}Be$ 

# **Further analysis for transfer reactions**

- Calibration needed for computing the excitation energies
- Coincidences to analyse unstable products (example 12C and p coincidences for excited 13N)
- Further investigations into additional peaks (9Be and 10B)

# **Backup slides**

#### **Punch through**



# **Tools for ID matrix**



#### **PID distribution and Mass ID**



#### PID vs E

PID vs. E



# PID vs E in Mass ID region

PID vs. E [Z&A identified]



#### **Segrè chart for ΔE-E**

N vs. Z [Z&A identified]



#### Levels of 13C and 13N

