FAZIA days

Ilham Dekhissi & Andrea DeRosa

June 25, 2025

 \rightarrow Hoyle state radius should be **remeasured**

- A resonant state of ¹²C that lies at an energy approximately 7.65 MeV above the ground state
- According to all theoretical frameworks, the Hoyle State is larger than the Ground State by at least 20%
- No consensus on the Hoyle State Radius
- Experimentally, Hoyle State 0.5 fm larger than the Ground state radius

Main purpose of the experiment :

Measuring the single- and doubleexcitation of the Hoyle State cross section at low scattering angles.

• Experiment e881 :

A ¹²C target was irradiated with a ¹²C beam at an energy of 8.75 MeV/u. The emitted ¹²C or three α particles resulting from the decay of the projectile-like detected in FAZIA.

• FAZIA Multidetector : :

12 Blocks: Cover angles from 2° to 13° . 192 Telescopes: Composed of Si-Si-CsI

Direct missing mass

Invariant & Indirect missing mass

When the projectile-like (excited or not) is scattered without decaying into other particles Direct ¹²C detection Using 2-body kinematics, we extract the excitation energy of the projectile-like Probe excited states below the threshold emission, decaying via radiative transitions When the excited projectile-like decays into 3 α Using the conservation laws applied to the decay product ($3-\alpha$) kinematical properties, we reconstruct the 12 C. We extract the excitation energy of the projectile-like. Probe the angular distribution at angles

where no detection system is placed.

 $d\sigma \,/\, d\Omega$ (no corr, no norm)

5/13

Experiment E881

- ¹²C at 8.75 MeV/A run in GANIL in April
- 8/14 UTs of 12C beam at 8.75 MeV/A on a target (Au, C, CH₂)
- ¹²C at 13.7 MeV/A in order to calibrate the second stage Si2
- 4.5UTs of 12C beam at 13.7 MeV/A delivered last week.

List of tasks - FAZIA

- Possible energy values to be used for the Si1 calibration
 - Ground + First Excited states of ¹²C (¹²C & ¹⁹⁷Au)
 - Ground + Excited states using the transfer channels (¹¹C & ¹³C &
 - $^{11}\mathsf{B} \text{ and } ^{13}\mathsf{N}$)
 - Tri-Alpha source

- Simulates the scattering of particles
- *E*_{lab}(θ) from relativistic two-body kinematics
- Randomizes interaction
 depth
- Apply energy loss in target ΔE_{target}
- Scattering angles weighted by the Rutherford cross section
- Calculates energy loss in each detector alonng the particles path

Calibration - Si2

 Possible energy values to be used for the Si1 calibration

— ¹²C at 13.7 MeV/A
 — Elastic & Inelastic

(4.44 MeV, 9.65 MeV, ...)

 \rightarrow Calibrate the second stage Si2

QL1 (adc units)

Completed Tasks

- PSA- Si1 was completed for 137 detectors
- Si1-Si2 Identification was completed for 173 identification telescopes
- Si1-Csl Identification was completed for 162 identification telescopes
- Si1 Calibration was completed for 135 detectors

• Some Si1 show some issues to be fixed :

- Subtraction of the baseline
- Shapers parameters, etc ..

QL1 (adc units)

 \rightarrow Signal Processing should be performed on these Si1 detectors !!

Thank you for your attention