# Precision measurements in the β-decay of <sup>6</sup>He Status of the b-STILED project

Romain Garreau Laboratoire de physique corpusculaire de Caen

GDR-InF Workshop 2025 13th November 2025

















#### Outline

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

R.G

#### Outline

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

R.G

#### Search for New Physics beyond Standard Model (SM)

• Search for  $\varepsilon_s$ ,  $\varepsilon_r$  exotic contributions of weak interaction

Dominant  $Vector - Axial\ vector\ (V - A)$  form established in SM no fundamental reason to exclude  $Scalar\ (S)$  and  $Tensor\ (T)$  contributions

interesting search window for New Physics

#### Search for New Physics beyond Standard Model (SM)

• Search for  $\varepsilon_s$ ,  $\varepsilon_r$  exotic contributions of weak interaction

Dominant *Vector - Axial vector* (*V - A*) form established in SM no fundamental reason to exclude *Scalar* (*S*) and *Tensor* (*T*) contributions interesting search **window for New Physics** 

Measurement at low energy, using β-decay

Precision measurement of Ft, β-spectrum shape

→ Fierz interference term b

 $b \rightarrow \text{linear dependence on } \epsilon_S \text{ (Fermi) and } \epsilon_T \text{ (Gamow-Teller)} \rightarrow \text{sensitive probe to NP}$ 

#### Search for New Physics beyond Standard Model (SM)

• Search for  $\varepsilon_s$ ,  $\varepsilon_r$  exotic contributions of weak interaction

Dominant *Vector - Axial vector* (*V - A*) form established in SM no fundamental reason to exclude *Scalar* (*S*) and *Tensor* (*T*) contributions interesting search **window for New Physics** 

Measurement at low energy, using β-decay

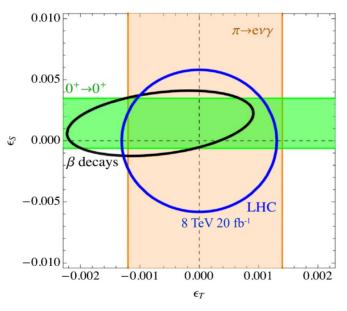
Precision measurement of Ft, β-spectrum shape

→ Fierz interference term b

 $b \rightarrow \text{linear dependence on } \epsilon_s \text{ (Fermi) and } \epsilon_T \text{ (Gamow-Teller)} \rightarrow \text{sensitive probe to NP}$ 

- b-STILED (b : Search for Tensor Interaction in nucLear bEta Decay)
  - → Measurement of b in a pure GT transition

#### Outline


- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

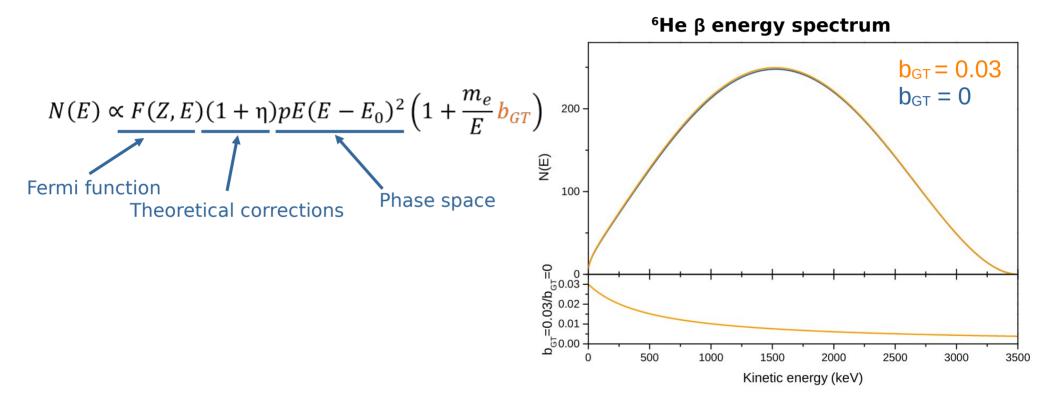
R.G

## bSTILED goal

- bSTILED (b : Search for Tensor Interaction in nucLear bEta Decay)
  - → Measurement of b in a pure GT transition

For pure GT,  $b_{GT} = 6.2 \ \epsilon_T \rightarrow \text{measure } b_{GT} \text{ to improve constraints on } \epsilon_T$ 



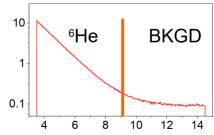

M. González-Alonso, O. Naviliat-Cuncic, N. Severijns, Prog. Part. Nucl. Phys. 104 (2019) 165.

Phase I :  $\Delta b_{GT} = 4 \times 10^{-3}$  (Actual constaints)

Phase II :  $\Delta b_{GT} = 1 \times 10^{-3}$  (competitive with projected LHC)

## Principle of the b-STILED project

• Extract the Fierz term  $b_{GT}$  from the  $\beta$ -spectrum shape in the decay of  $^6$ He



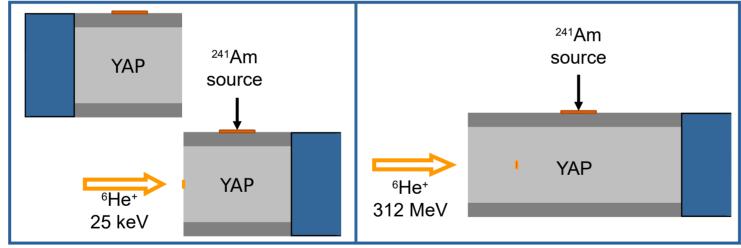

#### Principle of the b-STILED project

- Use <sup>6</sup>He: ideal candidate
  - $\rightarrow$  pure GT transition, convenient  $T_{1/2}=0.8s$ ,  $E_{bmax}=3.5 \text{MeV}$
  - → high sensitivity theoretical corrections precisely known
- Implant <sup>6</sup>He in  $4\pi$  detection setups (scintillators)
  - $\rightarrow$  suppress E<sub>loss</sub> from β backscattering (main systematic effect)

- Use implantation-decay cycles (3 s 12 s)
  - → cst BKGD subtraction
  - $\rightarrow T_{1/2}$  measurement






#### b-STILED: two experiments

- Use simple setups
- Test two techniques (different systematic effects)



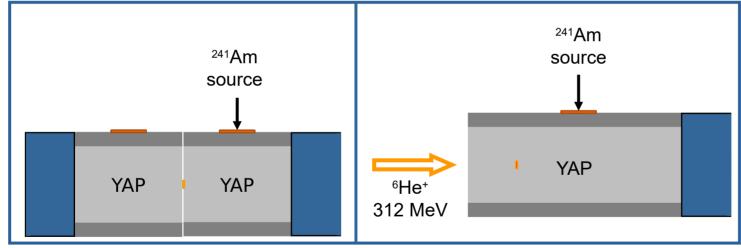
High-energy implantation at LISE/GANIL





Light cross talk between PMTs

Contaminants due to nuclear reactions


#### b-STILED: two experiments

- Use simple setups
- Test two techniques (different systematic effects)

Low-energy implantation at LIRAT/GANIL

High-energy implantation at LISE/GANIL





Light cross talk between PMTs

Contaminants due to nuclear reactions

#### Outline

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

R.G

#### Low-energy experiment

- LIRAT-GANIL line, 25 keV <sup>6</sup>He+
  - Unexpected background : Bremsstrahlung from <sup>6</sup>He implanted on collimator
    - → Complexified the analysis
  - 5 Sets of measurement

Extracted statistical uncertainty after analysis of one set  $\Delta b_{GT(stat)} \sim 3.9 \ 10^{-3}$ 



Φ 5mm collimator

Discrepancies between Sets ( $\Delta b_{GT} \sim 2.10^{-2} > 3 \Delta b_{GT(\text{stat})}$ )

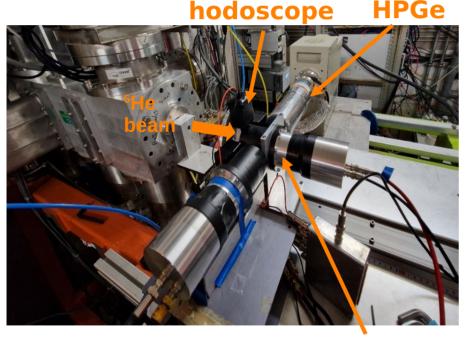
- → strong systematic effect not yet understood
- May be difficult to reach phase I uncertainty goal
- However there are 3 byproducts : -6He halflife measurement

M. Kanafani et al, Phys.Rev. C 106 (2022) 045502

-Precise backscattering measurement

PRC accepted, 10.48550/arXiv.2505.18406

-Bremsstrahlung escape measurement

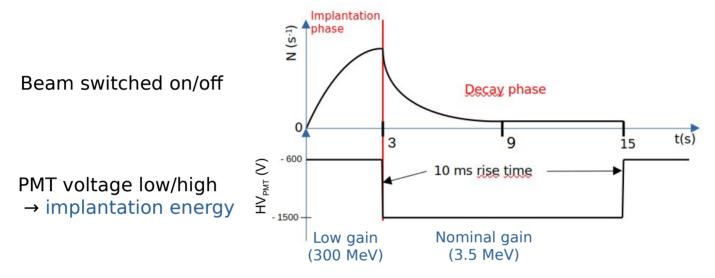

#### Outline

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

R.G

#### High-energy experiment

- Experiment at LISE GANIL
- → implant 312 MeV <sup>6</sup>He nuclei 10 mm deep in the YAP (max β-range 4mm)



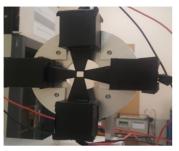

- Simpler main detector (one YAP)
- Control implantation profile (4 thin PVT hodoscope)
- LISE beam purity (measure implantation energy)
- Beam induced contaminants (HPGe)

**YAP** detector

#### High-energy experiment

Measurement cycle



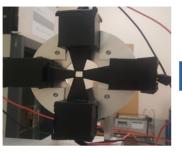

4 sets of measurements

1.1x10<sup>8</sup> good events → expected stat. uncertainty  $\Delta b_{GT(stat)} = 1.2x10^{-3}$ 

(almost ok for phase II)

## High-energy experiment analysis: Beam characteristics

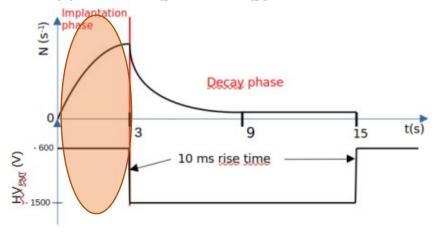
Beam profile (rates from hodoscope)



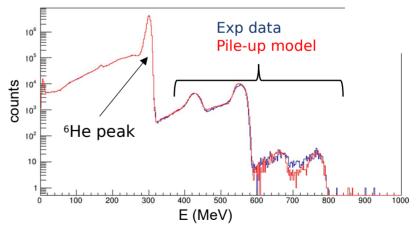



~ 0.4% implantation beyond 6mm from center

#### High-energy experiment analysis: Beam characteristics


Beam profile (rates from hodoscope)






~ 0.4% implantation beyond 6mm from center

Potential contaminants (LISE++): <sup>8</sup>Li & <sup>9</sup>Be Should appear at higher energy

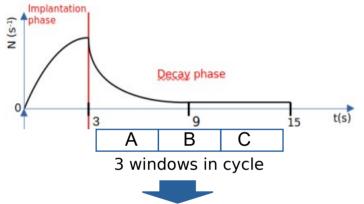


YAP energy spectrum (Implant. phase)



**No visible contaminant** (at the 10<sup>-5</sup> level)

#### High-energy experiment analysis: Beam induced contaminants

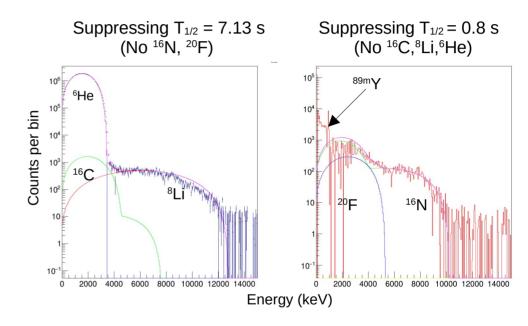

- List potential contaminants (fragmentation and fusion-evaporation)
- Selection of most impacting cases: 50 ms  $< T_{1/2} < 1$  mn
- Identification using:
  - YAP Energy spectrum
  - HPGe in implantation phase → look for excited states of contaminants (+ 6He, Al, O, Y)
  - HPGe in decay phase → look for excited states of daughter nuclei

Contaminants unambiguously identified so far (preleminary):

```
      ^8\text{Li } (T_{1/2} = 840 \text{ ms, } E_{\beta_{\text{max}}} = 12.97 \text{ MeV})        ^{16}\text{C } (T_{1/2} = 747 \text{ ms, } E_{\beta_{\text{max}}} = 4.66 \text{ MeV})        ^{16}\text{N } (T_{1/2} = 7.13 \text{ s, } E_{\beta_{\text{max}}} = 10.42 \text{ MeV})        ^{20}\text{F } (T_{1/2} = 11.163 \text{ s, } E_{\beta_{\text{max}}} = 7.02 \text{ MeV})        ^{89\text{mY}} (T_{1/2} 15.663 \text{ s, } E_{\gamma} = 0.909 \text{ keV})
```

#### <u>High-energy experiment analysis: Beam induced contaminants</u>

lacktriangle Extract contaminant contribution and impact on  $b_{\scriptscriptstyle GT}$ 




Build linear combinations suppressing a specific half life and cst bkgd

Expected fraction of decay (preliminary):

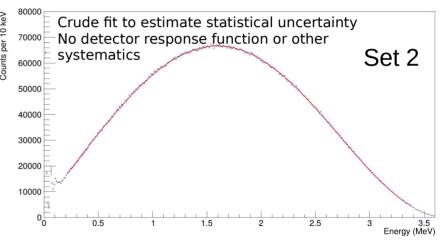
$$^{8}\text{Li} \rightarrow \sim 7 \ 10^{-4}$$
 $^{16}\text{C} \rightarrow \sim 1.2 \ 10^{-3}$ 
 $^{16}\text{N} \rightarrow \sim 2.2 \ 10^{-3}$ 
 $^{20}\text{F} \rightarrow \sim 4 \ 10^{-4}$ 
 $^{89}\text{mY} \rightarrow \sim 1.5 \ 10^{-3}$ 





 $\Delta b_{GT(syst)} \sim 10^{-3}$  (assuming 20% error on contaminant fraction)

## Summary and conclusions


- Sufficient statistics for phase I and almost for phase II
- Excellent beam purity

Beam induced contaminants does not seem to be a problem

(need to finalize the analysis)

Next step : → Create fit templates

→ Study systematics (pileup, detector response...)



**Extracted statistical uncertainty of one set**  $\Delta b_{GT(stat)} \sim 2.2 \ 10$ 

- Non-proportionality of YAP is the limit with  $\Delta b_{GT} \sim 10^{-2}$ 
  - → requires efforts to reach goal of phase I and beyond.

## THANKS FOR YOUR ATTENTION!



D. Etasse

X. Fléchard

R. Garreau

L. Hayen

M. Kanafani

F. Lebourgeois

E. Liénard

J. Lory

O. Naviliat-Cuncic

J. Perronnel

A. Rani

Ch. Vandamme



X. Mougeot

S. Leblond

G. Craveiro



T.E. Haugen

O. Naviliat-Cuncic





S. Vanlangendonck



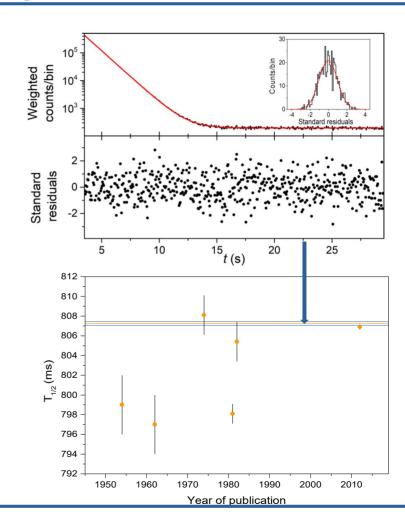
J.C. Thomas

V. Morel

F. Marie-Saillenfest

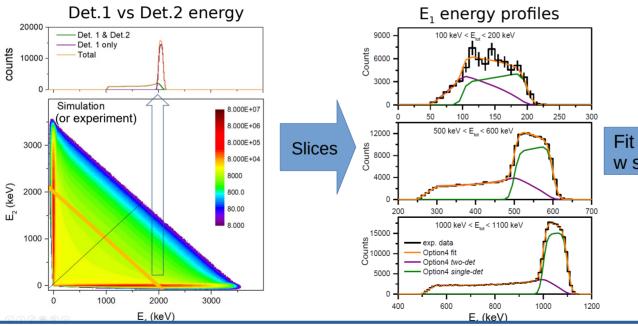
## Backup slides

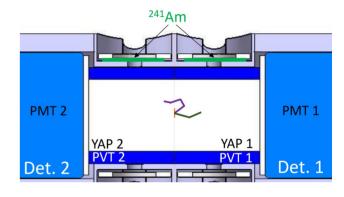
#### BP 1: Half life measurement of <sup>6</sup>He


- LIRAT experiment is an ideal setup:
  - Use adapted cycles
  - High rates, high purity beam
  - Gain and baseline corrections
  - Data Time stamp for offline analysis (not simple scalers)



Most precise half life measurement for <sup>6</sup>He


$$T_{1/2} = 807.25 \pm 0.16_{stat} \pm 0.11_{syst} ms$$

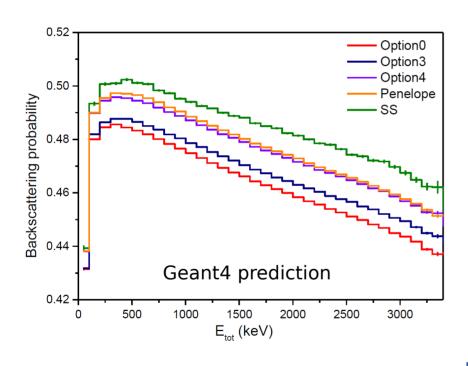

M. Kanafani et al, Phys.Rev. C 106 (2022) 045502



#### BP 2: Precise measurement of electron backscattering

- Lack of experimental data in the 100 keV- few MeV range
  - → Poor benchmarking of Geant4
  - → Conservative systematic error on BS (10%-20%) in data analysis
- 6He decay electrons of LIRAT experiment
  - → Backscattering probability up to 3.5 MeV






Fit exp w sim

Experimental vs Geant4
Backscattering probability

#### BP 2: Precise measurement of electron backscattering

#### Comparison with Geant4, several EM low energy options



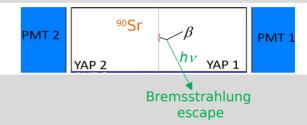


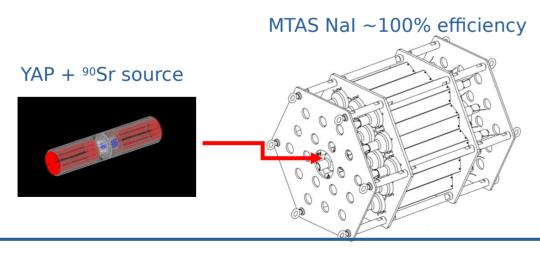
Relative deviations below 4% (Option4 & Penelope)!

Article in preparation...

#### BP 3: Measurement of Bremsstrahlung escape

#### Basic idea:


LIRAT-like geometry with 90Sr beta source


Inserted in High efficiency  $\gamma$  detector for escaping photons Record single  $\beta$  events and coincidences with photons

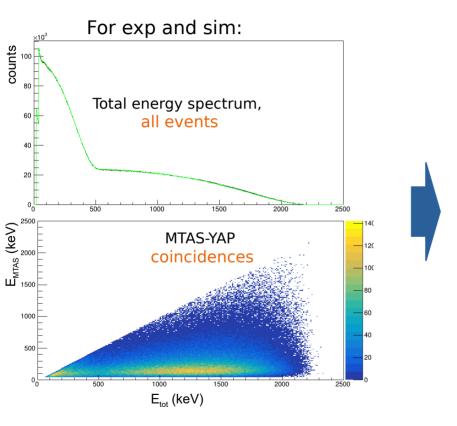
#### Measurement at FRIB in April 2024

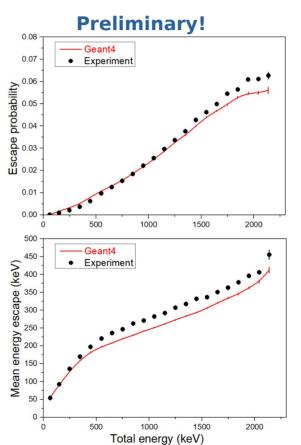
Collaboration with ORNL and IRL
Use of ORNL MTAS detector

#### Photon detector





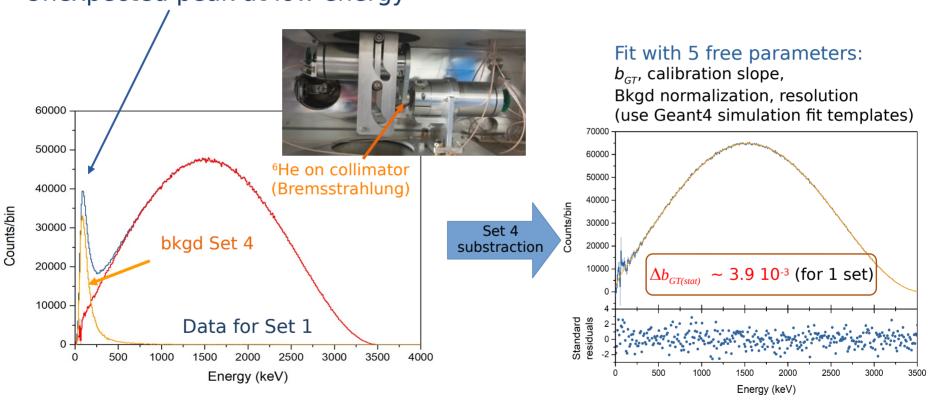



B.C. Rasco Th. Ruland K.P. Rykaczewski

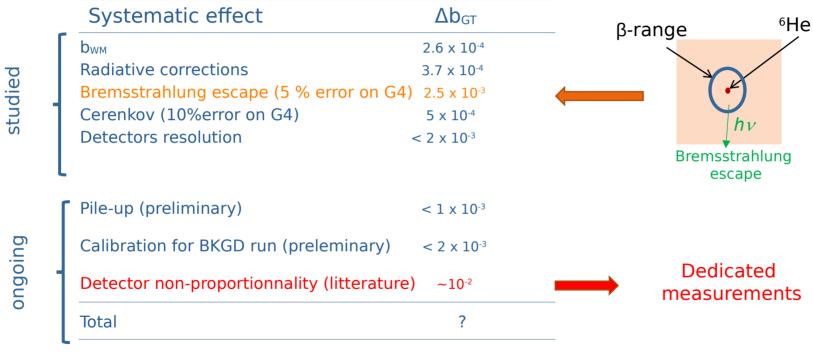
#### BP 3: Measurement of Bremsstrahlung escape

#### Comparison with Geant4 (EM option4):





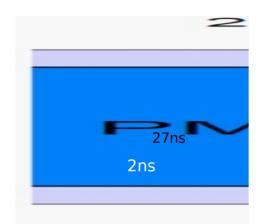

Deviations up to 10%


#### Low-energy experiment analysis

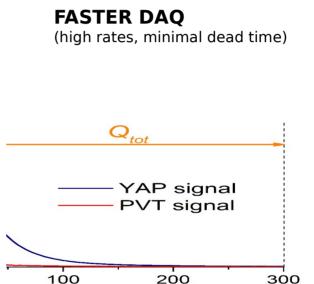




#### Low-energy experiment analysis


#### Sources systematic errors




M. Kanafani, PhD Thesis, UniCaen (2023)

#### Choices for the experiment

Use YAP:Ce as main scintillator → fast, linear, less Bremsstrahlung escape
 + plastic scintillator (veto) and <sup>241</sup>Am source (gain monitoring)







- 3 integration windows for signals
  - → baseline monitoring, pulse shape analysis and pile-up
- timestamp (2ns)
  - → event time within implantation/decay cycle

time (ns)