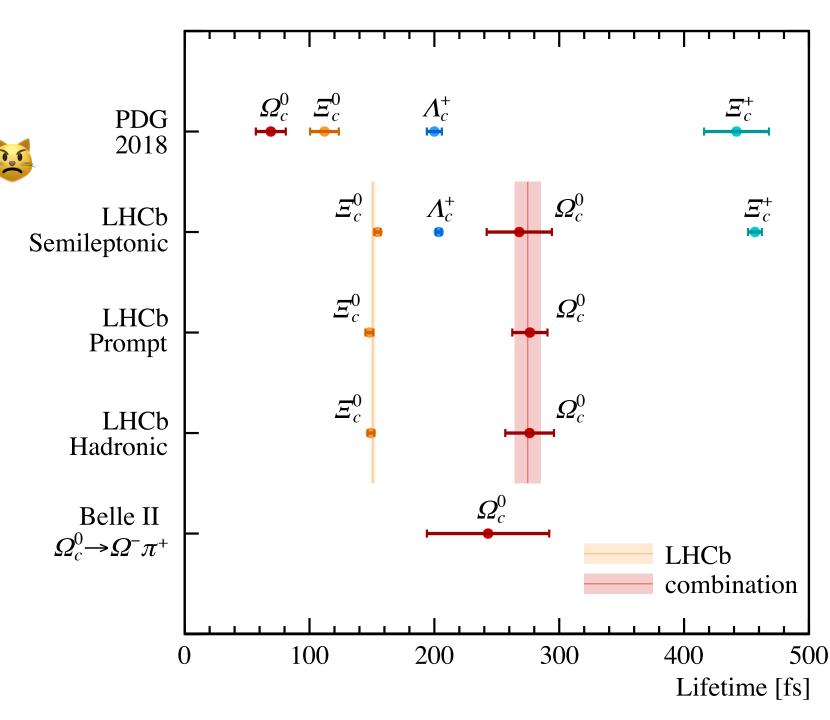
Towards an


inclusive reconstruction of prompt Ξ_c and Ω_c baryons, and measurement of their absolute decay rates at the Belle II experiment

Vitalii Lisovskyi (Aix Marseille Univ, CNRS/IN2P3, CPPM)

GDR InF, 14/November/2025

Setting the scene

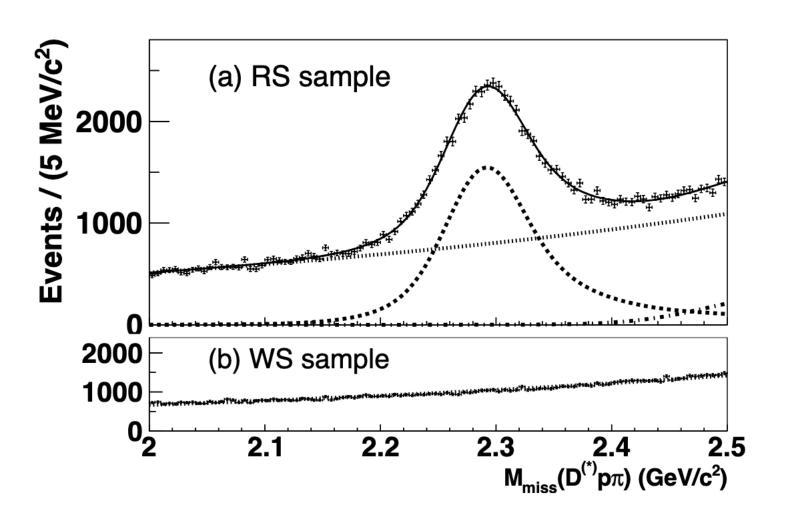
- Our world is made of baryons: a good enough reason to study them!
- There are **four** baryons that contain exactly **one charm quark** and **decay** through the **weak interaction**: $\Lambda_c^+(udc)$; $\Xi_c^+(usc)$, $\Xi_c^0(dsc)$ and $\Omega_c^0(ssc)$
 - Others e.g. $\Sigma_c^0(ddc)$ decay to one of those + pions/photons
 - ullet Out of these four, only the Λ_c^+ is studied satisfactorily well
- Ξ_c^0 : absolute decay rates (branching fractions) known to precision of ~18% 🐸
 - Not sufficient for precision testing of the Standard Model
 - Lifetime poorly known until recently
- Ξ_c^+ : absolute branching fractions known to ~45% 🐼
- Ω_c^0 : absolute branching fractions not known at all $\widetilde{\omega}$, but also
 - lifetime was only properly measured a few years ago
 - less than a dozen decay modes known
 - ullet the BF of the decay mode used at LHCb $\Omega_c^0 o p K^- K^- \pi^+$ never measured even as a relative

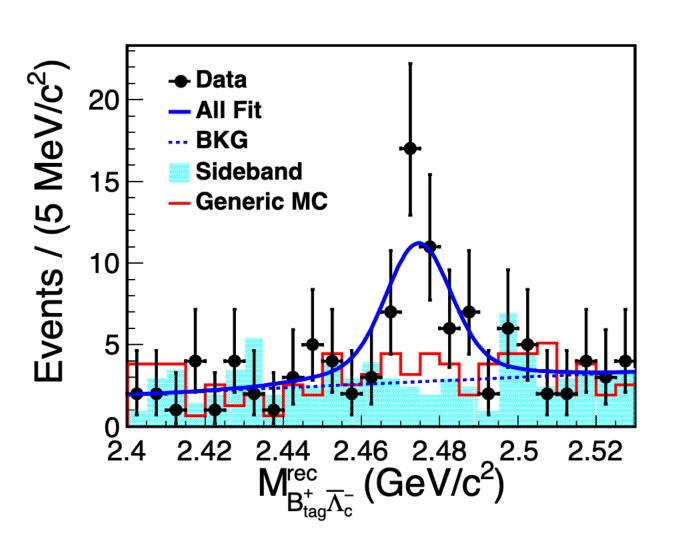
Who cares?

- Enter LHCb with its huge datasets of b baryons
 - Interesting for all kinds of BSM searches ($b \to s\ell^+\ell^-, b \to c\ell\nu$ etc.)
- How to measure absolute rates of b-baryon decays? Need to know their production rates
 - How to measure production rates without knowing absolute rates?
 - Trick: theoretically, rates of inclusive semileptonic $b \to c \mu \nu$ decays are ~equal for all b-baryons (heavy-quark expansion)
 - Need to measure the experimental rates of $b \to c \mu \nu$ baryon decays in order to know the production cross-sections!
 - So, we need to measure $\Omega_b \to \Omega_c^{(*)} \mu \nu$ in order to know absolute rate of any other Ω_b decay
 - ullet But, this is impossible if the branching fractions of Ω_c are unknown!
- Poor knowledge of charm-baryon decay rates slows down the bbaryon physics
- Can Belle II do something about it?

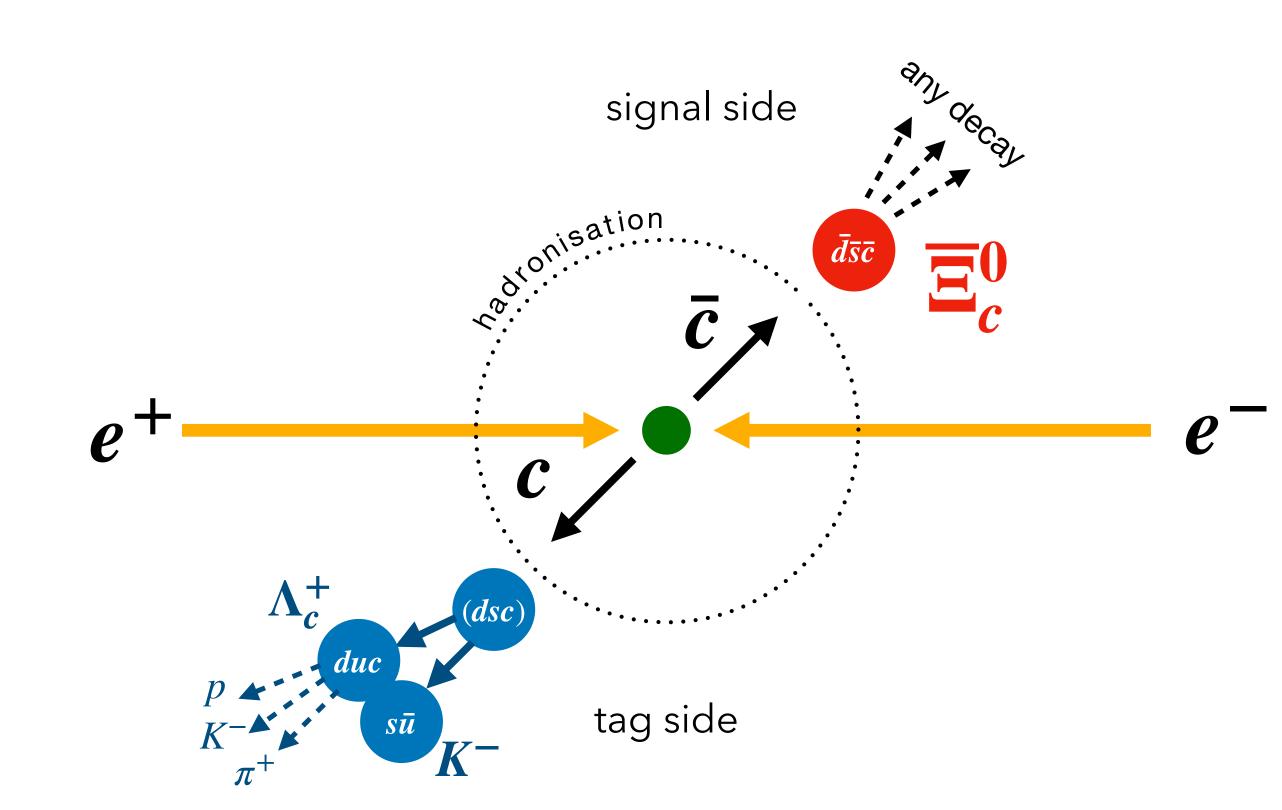
How does one measure an absolute decay rate?

- We need to know:
 - How many baryons have been produced?
 - This is tricky
 - How many, out of those, have decayed to the final state of interest?
 - This is easy: look for a peak in the invariant mass of its decay products


$$\mathcal{B} = \frac{N_{\text{exclusive \& inclusive}}}{N_{\text{inclusive}} \times \epsilon_{\text{exclusive}}}$$


- Problem: charm-baryon production cross-section at Belle II remains unknown!
 - Production mechanisms at Belle II:
 - $e^+e^- \rightarrow c\bar{c}$ (1.3 nb) with hadronisation of c quark into a charm baryon (poorly understood)
 - all Belle(II) datasets, not only $\Upsilon(4S)$, can be used
 - or, from B-meson (1.1 nb) decays such as $B \to \Lambda_c \overline{\Xi}_c$ (rare processes)
 - Use the power of the 4π detector to obtain an inclusive sample of charm baryons, regardless of their production mechanism, by reconstructing all other particles in the event

La Belle Époque


- Absolute BF measurement for Λ_c^+ at Belle [1312.7826]
 - Use prompt $e^+e^- \to c\bar{c}$ with $c_{tag} \to D^{(*)}p\pi$
 - 36000 inclusively tagged Λ_c^+ , out of them 1500 decayed to $pK^-\pi^+=>$ BF measured to ~5% precision
 - Note: ~ 3σ tension between this measurement and BES III result at the $e^+e^-\to \Lambda_c^+\bar{\Lambda}_c^-$ threshold
- Absolute BF measurement for Ξ_c^+ [1904.12093] and Ξ_c^0 [1811.09738] at Belle using $\bar{B}^0 \to \bar{\Lambda}_c^- \Xi_c^+$ and $\bar{B}^- \to \bar{\Lambda}_c^- \Xi_c^0$
 - Very low BF: very small tagged dataset (40 Ξ_c^+ / 20 Ξ_c^0 events)
 - But: no need to fully reconstruct the decay in a tagged dataset (B tagging efficiency known)

This talk: the key idea

- Use conservation of baryon number, charm and strangeness in $e^+e^- \rightarrow c\bar{c}$
- Step 1: reconstruct dozens of tag-side channels [next slide]
 - Use missing mass to measure the inclusive Ξ_c yield
- Step 2: reconstruct **exclusively** the most abundant decay modes of each baryon, and measure their absolute BFs: $\Xi_c^0 \to \Xi^- \pi^+, \Xi_c^+ \to \Xi^- \pi^+ \pi^+, \Omega_c^0 \to \Omega^- \pi^+$
 - Known ratios of other decay modes to these ones will allow to update the PDG for all other decays

Tagging channels

warning: we don't know which one of these hadronisation channels is actually preferred in nature, and whether it is sufficiently clean.

• An incomplete list of possible tagging channels: conserve baryon number, charm, strangeness. Add 1-2 pions to each, if possible.

$\overline{\Xi}^0_c$	$\overline{\Xi}_{\mathcal{C}}^-$	$\overline{\Omega}_c^0$
$\Lambda_c^+ K^-$	$\Lambda_c^+ K^- \pi^+$	$\Lambda_c^+ K^- K_{\mathrm{S}}^0$
$\Lambda_c^+ K_{ m S}^0 \pi^-$	$\Lambda_c^+ K_{\mathrm{S}}^0$	$\Lambda_c^+ K_{\mathrm{S}}^0 K_{\mathrm{S}}^0 \pi^-$
$\Sigma_c^+ K^-$	$\Sigma_c^+ K_{ m S}^0$	$\Sigma_c^+ K^- K_{ m S}^0$
$\Sigma_c^0 K_{ m S}^0$	$\Sigma_c^{++}K^-$	$\Sigma_c^0 K_{ m S}^0 K_{ m S}^0$
$D^{(*)0}\Lambda$	$D^{(*)0}\Lambda\pi^+$	$D^{(*)0} \Xi^0$
$D^{(*)0} \Sigma^0$	$D^{(*)0} \Sigma^0 \pi^+$	$D^{(*)0} \varXi^- \pi^+$
$D^{(*)0} \Sigma^+ \pi^-$	$D^{(*)0} \Sigma^+$	$D^{(*)0}(\Lambda/\Sigma^0)K_{ m S}^0$
$D^{(*)0}pK^{-}$	$D^{(*)0}pK^{-}\pi^{+}$	$D^{(*)0}pK^{-}K_{\rm S}^{0}$
$D^{(*)0} p K_{\rm S}^0 \pi^-$	$D^{(*)0}pK_{\rm S}^{0}$	$D^{(*)0}\Sigma^+K^-$
$D^{(*)+}\Lambda\pi^-$	$D^{(*)+} \Lambda$	$D^{(*)+}\Xi^-$
$D^{(*)+}pK^{-}\pi^{-}$	$D^{(*)+}pK^{-}$	$D^{(*)+}(\Lambda/\Sigma^0)K^-$
$D^{(*)+}pK_{\rm S}^0\pi^-\pi^-$	$D^{(*)+}pK_{\rm S}^{0}\pi^{-}$	$D^{(*)+}pK^{-}K^{-}$
$D_s^{(*)+} \Xi^-$	$D_s^{(*)+} \Xi^- \pi^+$	$D_s^{(*)+}\Omega^-$
$D_{\scriptscriptstyle S}^{(*)+} {\it \Xi}^0 \pi^-$	$D_s^{(*)+} \varXi^0$	$D_{\scriptscriptstyle S}^{(*)+} \varXi^0 K^-$
$D_s^{(*)+} \Lambda K^-$	$D_{\scriptscriptstyle S}^{(*)+} \varLambda K_{\scriptscriptstyle m S}^0$	$\varXi_c^+ K^-$
$D_{\scriptscriptstyle S}^{(*)+}\Omega^-K_{\scriptscriptstyle m S}^0$	$D_s^{(*)+}\Omega^-K^+$	$\varXi_c^0 K_{\mathrm{S}}^0$
$oldsymbol{arXi}_c^+\pi^-$	$\mathcal{\Xi}_{c}^{0}\pi^{+}$	$\mathcal{\Omega}_{c}^{0}$
$oldsymbol{\Xi}_{a}^{0}$	Ξ_c^+	C

Table 2: Dominant decay modes to be considered for the tag-side charm hadrons.

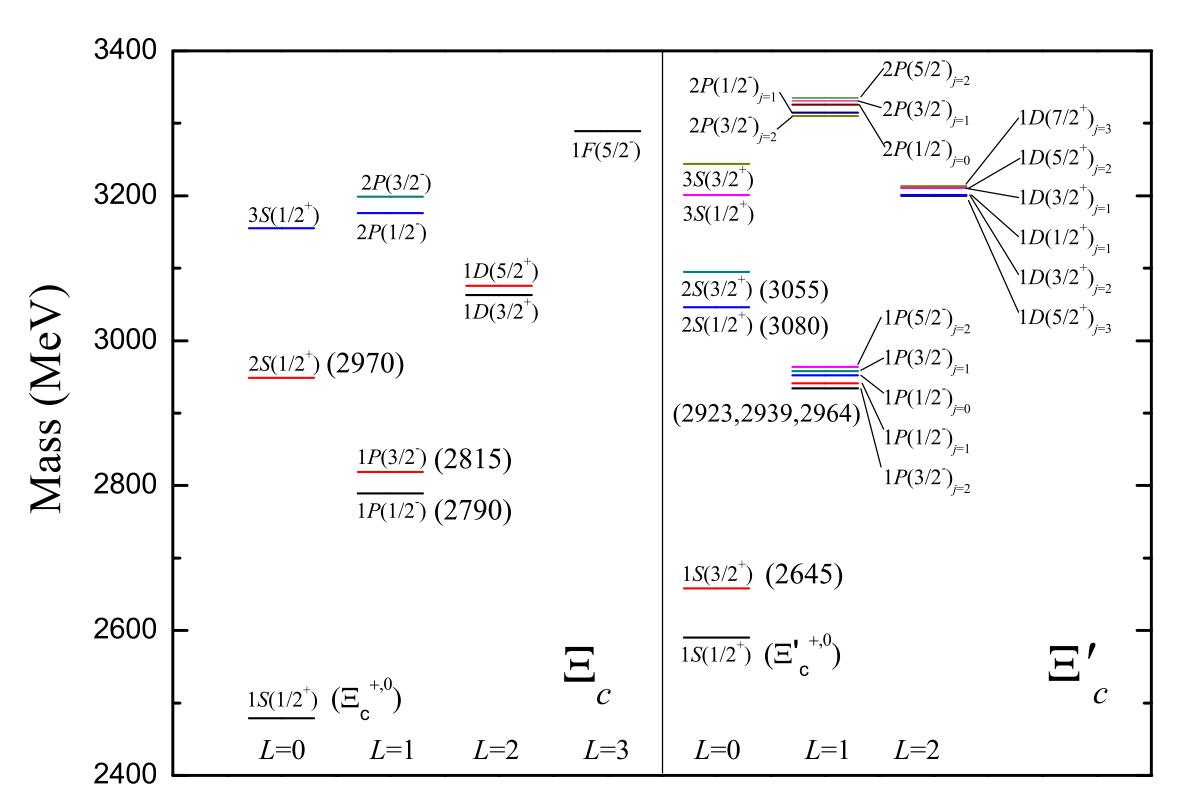
$arLambda_{\mathcal{C}}^+$	D^0	D^+	D_s^+	$\varXi_{c}^{0/+}$ (for $\overline{\Omega}_{c}^{0}$ tag)
$pK^-\pi^+$	$K^-\pi^+$	$K^-\pi^+\pi^+$	$K^-K^+\pi^+$	$\Xi^{-/0}\pi^+$
$pK_{ m S}^0$	$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$	$K_{\mathrm{S}}^{0}K^{+}$	$\varXi^{-/0}\pi^+\pi^+\pi^-$
$pK^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^-$	$K_{ m S}^0\pi^+$	$K^-K^+\pi^+\pi^0$	$\varXi^{-/0}\pi^+\pi^0$
$\Lambda\pi^+$	$K^-\pi^+\pi^-\pi^+\pi^0$	$K_{\mathrm{S}}^0\pi^+\pi^0$	$K_{\mathrm{S}}^{0}K^{+}\pi^{+}\pi^{-}$	$\Lambda K^{-/0}\pi^+$
$\Lambda\pi^0\pi^+$	$K_{ m S}^0\pi^+\pi^-$	$K_{\rm S}^0 \pi^+ \pi^- \pi^+$	$K_{\mathrm{S}}^0K_{\mathrm{S}}^0\pi^+$	$pK_{\rm S}^{0}K^{0/-}$
$\Lambda\pi^+\pi^-\pi^+$	$K_{\rm S}^0 \pi^+ \pi^- \pi^0$	$K^-K^+\pi^+$	$K^+K^0_{ m S}\pi^0$	$pK^-(K^-)\pi^+$

This talk: focus on the inclusive reconstruction of the Ξ_c^0

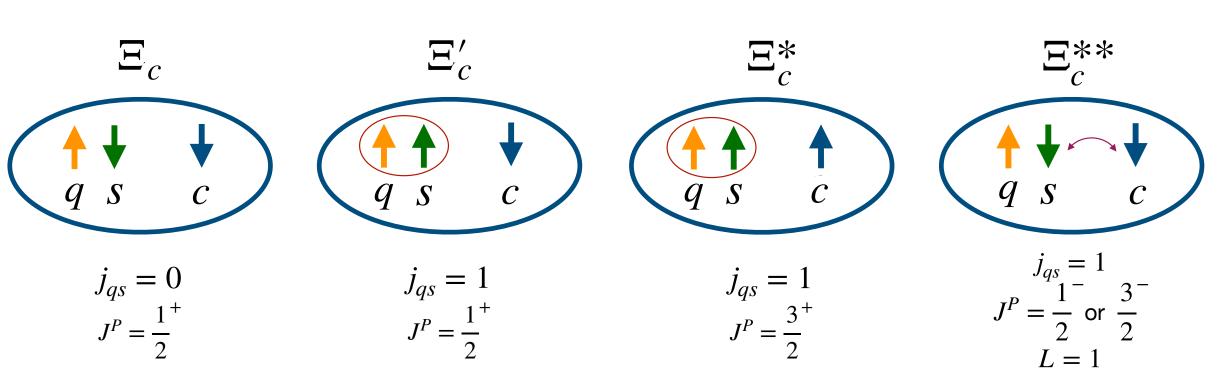
The absolute BF measurement

• Our denominator is the number of events tagged by their production mechanism

- Two ways to define our **numerator**:
- (A) Only consider the **tagged events** that are in our denominator, and reconstruct the signal decay of interest inside this dataset. $\mathscr{B} = \frac{N_{\text{double tag}}}{N_{\text{single tag}} \times \varepsilon_{\text{exclusive}}}$
 - Challenge: BF ~1%, so need the size of denominator to be $O(10^4)$ events to reach a stat precision of 10% on our measurements might be tricky
 - Possible trick: measure a sum of several decays
- (B) **Untagged** reconstruction of a specific signal decay mode. Sufficient statistics.
 - How to calibrate the tagging efficiency without knowing the absolute BFs? Systematic challenge.

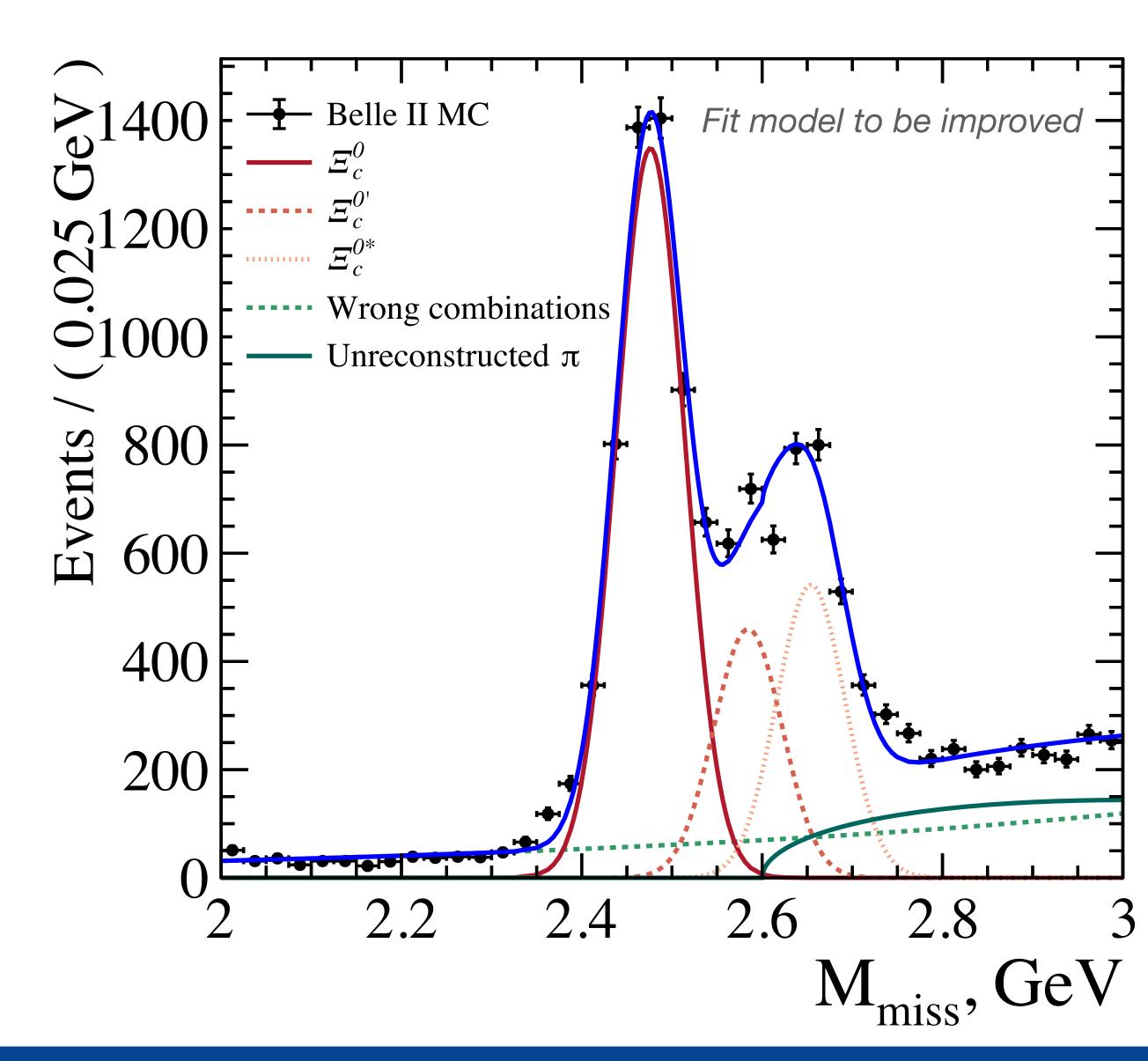

$$\mathcal{B} = \frac{N_{\text{exclusive}} \times \varepsilon_{\text{single tag}}}{N_{\text{single tag}} \times \varepsilon_{\text{exclusive}}}$$

not considered in this talk.

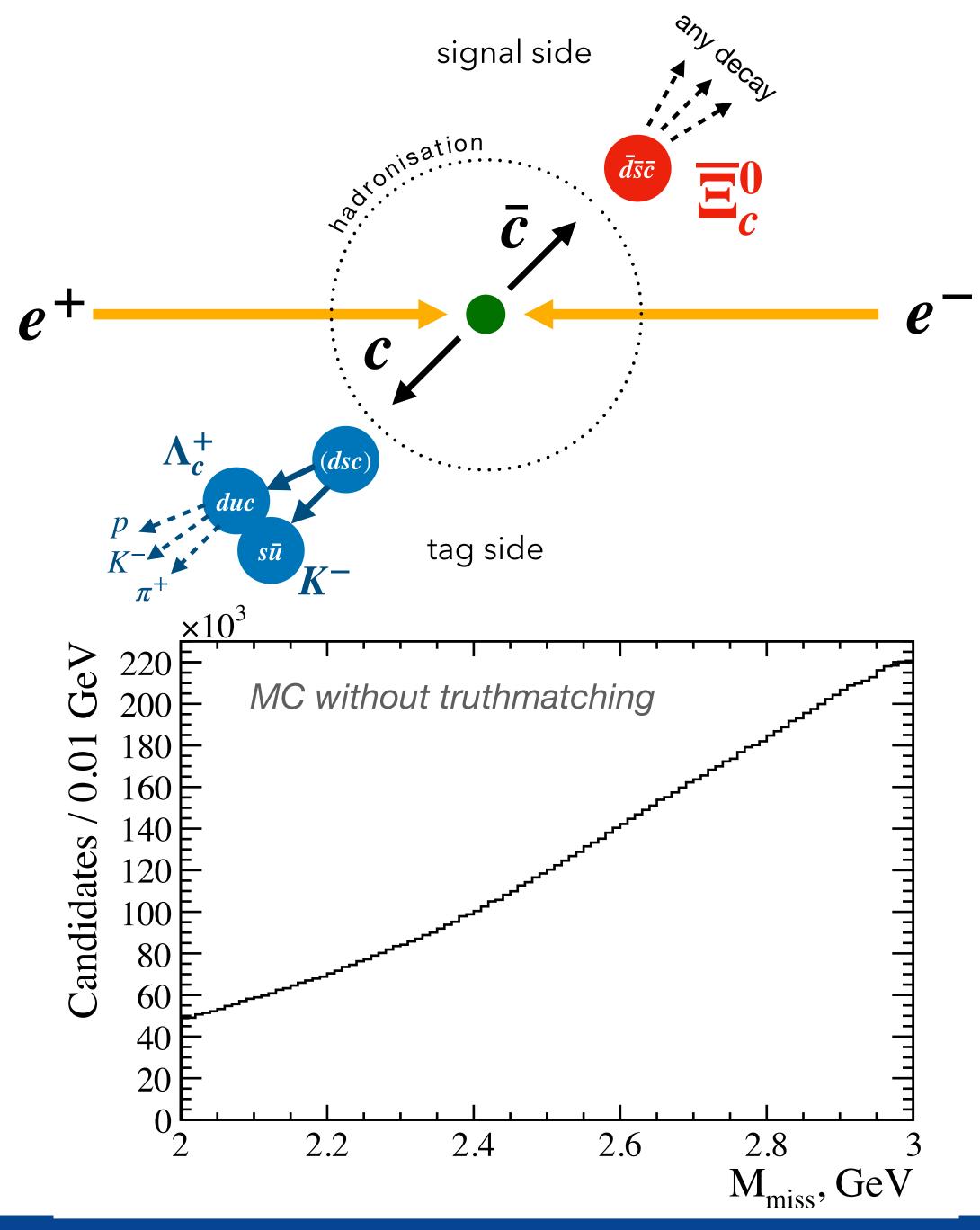

Expected yield

- ullet Using the efficiency-corrected yields of Belle datasets of Λ_c and Ξ_c decays:
 - $\Lambda_c^+ \to p K^- \pi^+$ [2503.04371], efficiency-corrected yield 9.57 million events, $\mathscr{B}_{PDG} \sim 6\%$
 - $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ [2503.17643], efficiency-corrected yield 0.43 million events, $\mathscr{B}_{PDG} \sim 3\%$
 - $\Xi_c^0 \to \Xi^- \pi^+$ [2406.04642], efficiency-corrected yield 0.26 million events, \mathscr{B}_{PDG} ~1.4%
 - Summary: prompt Ξ_c cross-section is **about 8...11%** of the Λ_c cross-section
 - Possible worry: signal/background ratio suffers from low cross-section = low signal-to-background ratio
- Inclusive Λ_c yield 36 000 in the Belle paper [1312.7826] (can do better with modern tools) so using the same technique/dataset leads to expected 3000-4000 Ξ_c (once again, can do better)
 - assumes a similar tagging efficiency (could be not true, tag channels need to have a decent purity)
- ullet Typical branching fractions of the leading decays are a few %: **statistical precision of ~10%** is realistic for Ξ_c
- Eventually, plan to consider Belle + Belle II for the largest statistical power
 - Today's plots only Belle II simulation

A side note: what do we expect?

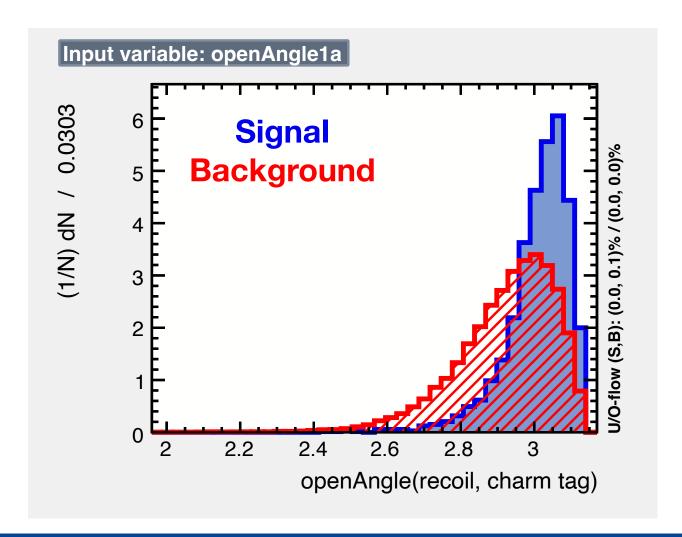


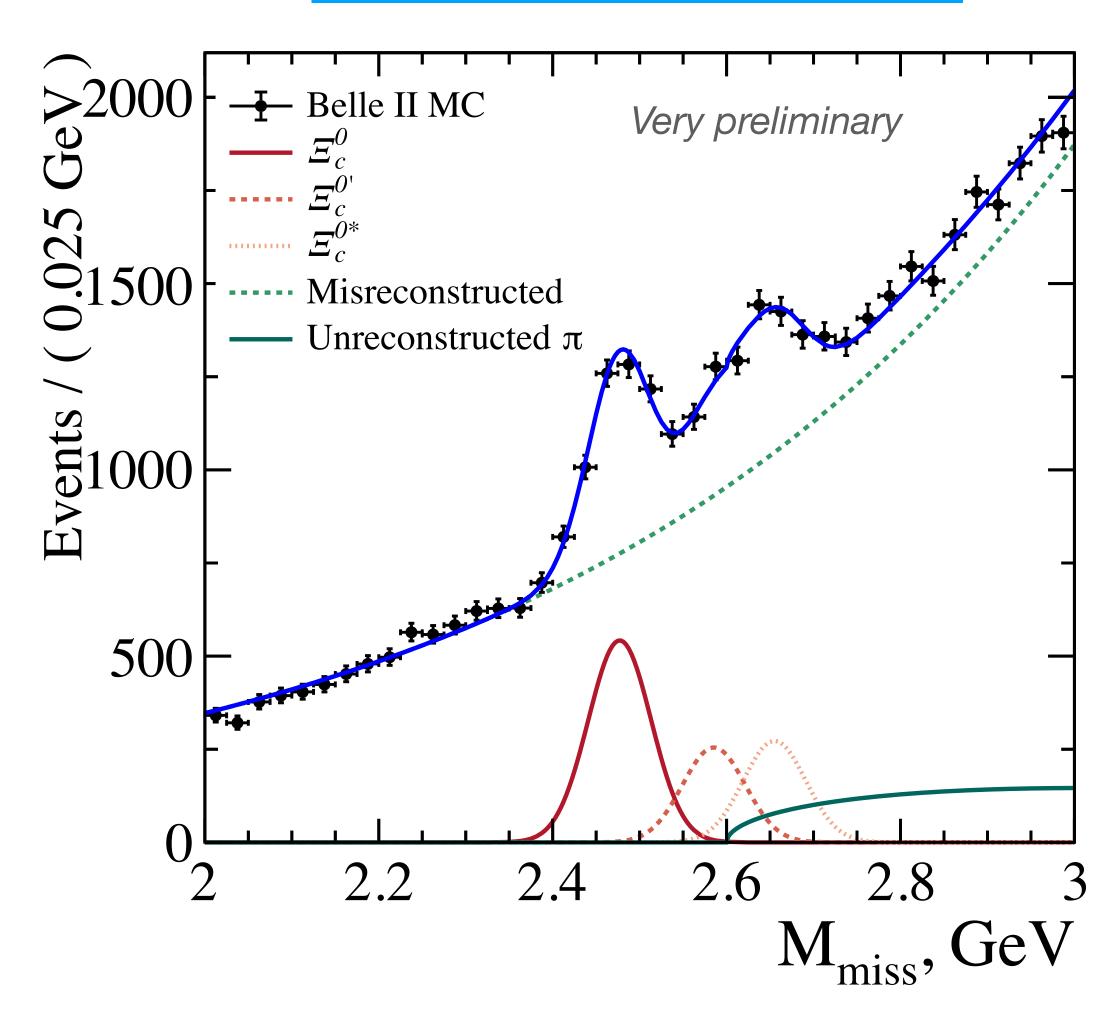
- ullet The tagged dataset will contain not only Ξ_c , but also its excited states
- ullet Notably, Ξ_c' and Ξ_c^* with mass splittings only 110 and 175 MeV from the ground state
 - Resolution matters!


Proof of concept: simulation

- At first: require that the tag side is reconstructed correctly (truthmatching)
- About 5000 ground-state Ξ_c^0 , and ~2000 of each excited state
 - Resolution is OK to distinguish them
- Decent statistical power for our measurement, but:
 - This is simulation: production cross-sections might be too optimistic
 - Note: the Belle dataset not yet included here
 - Background from non- Ξ_c processes not included; suppressing it would lead to lower efficiency

Types of background


- Processes other than $e^+e^- \to c\bar{c}$, such as $e^+e^- \to q\bar{q}$ with light quarks (continuum background)
- Fake tag-side charm hadron candidate: adds to the continuum background
- Misidentified tag-side particles: e.g. $e^+e^-\to \bar D^0\Lambda_c^+\bar p$ can mimic $e^+e^-\to \bar \Xi_c^0\Lambda_c^+K^-$ and produce a peaking background
- Partially reconstructed tag (some tag-side particles left out): bump in the upper sideband
- Over-reconstructed tag (e.g. picking particles from beam background): bump in the lower sideband
 - Had to exclude π^0 from the hadronisation tag system, due to high background levels


Background suppression

- A BDT classifier aimed at separating properly reconstructed tag from mis-reconstructed tag
 - Use kinematics, displacement and geometry of the tagside hadrons, as well as the decay-tree-fit χ^2 , and the momentum of the recoil (signal-side Ξ_c), etc
 - This suppresses both mis-reconstructed $c\bar{c}$ and the light-quark pairs such as $s\bar{s}$
- Future plans: separate BDT classifiers for each tag category; quantify residual peaking backgrounds

Example input variable: opening angle between the recoil (i.e. signal Ξ_c) and the tag-side charm hadron

Simulated dataset after applying the optimal BDT requirement:

Summary and next steps

- A promising method to deliver world's most precise measurements of the absolute branching fractions of the leading decays of Ξ_c^0 , Ξ_c^+ and Ω_c^0 baryons
- Still in early stages; next steps:
 - a more thorough investigation of peaking backgrounds
 - look at data, not just simulation
 - reconstruction of the signal-side decay
 - inclusion of the Belle data
- Possible spin-offs from this method:
 - (inclusive) semileptonic decays of charm baryons: important background for low-mass Drell-Yan measurements at the LHC, and general theoretical interest
 - Inputs to charm-baryon spectroscopy
 - Improved knowledge on charm-baryon fragmentation (e.g. proportion of ground/excited states)
 - etc

