

Searches for New Physics using semileptonic $B^0 \to D^*\ell\nu_\ell$ decays at LHCb

Léa Dreyfus,

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

GdR Intensity Frontier, Carry-Le-Rouet, France

November 13th, 2025

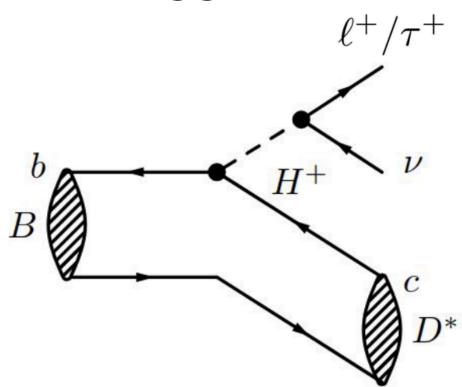
Tree-level $b \to c\ell\nu$ transitions

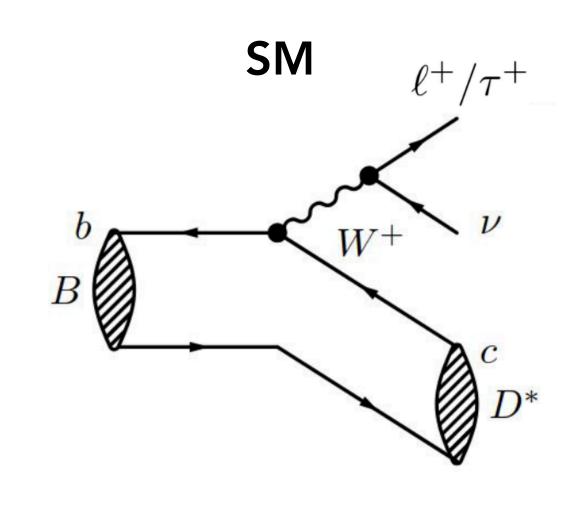
Semileptonic $b \to c \ell \nu$ transition are clean channels from theoretical point of view

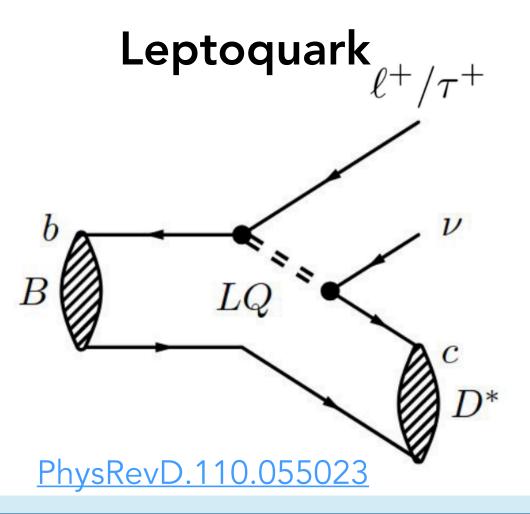
- Powerful tests of the Standard Model (SM) and probe for New Physics (NP) effects!
 - lacktriangle Measurements of $|V_{ch}| \rightarrow \sec \text{Aloïs' talk}$
 - ◆ Tests of Lepton Flavour Universality (LFU)
 - **♦ Study the kinematics of the final state particles: angular analyses!**

Some tree-level NP contributions that can appear in semileptonic decays:

Two Higgs Doublet







New Physics Framework: Effective Field Theory (EFT)

• SM can be described as a low-energy approximation of a heavier NP theory (with scale $\Lambda\gg m_W$) —> « SMEFT » approximation

$$\mathcal{L}_{eff}(b \to c \mathcal{E} \nu) = \frac{4G_F}{\sqrt{2}} V_{cb} (\mathcal{O}_{SM} + \sum_i C_i \mathcal{O}_i)$$

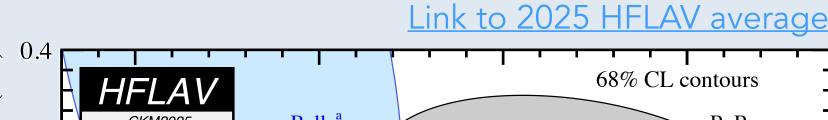
$$\mathcal{L}_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \{ \left[(\mathbf{1} + \mathbf{C}_{V_L}) P_L + \mathbf{C}_{V_R} P_R \right] \gamma_{\mu} P_L + \left[\mathbf{C}_{S} + \mathbf{C}_{P} \gamma^5 \right] P_L + \mathbf{C}_{T} \sigma^{\mu\nu} P_L \sigma_{\mu\nu} P_L + h.c. \}$$

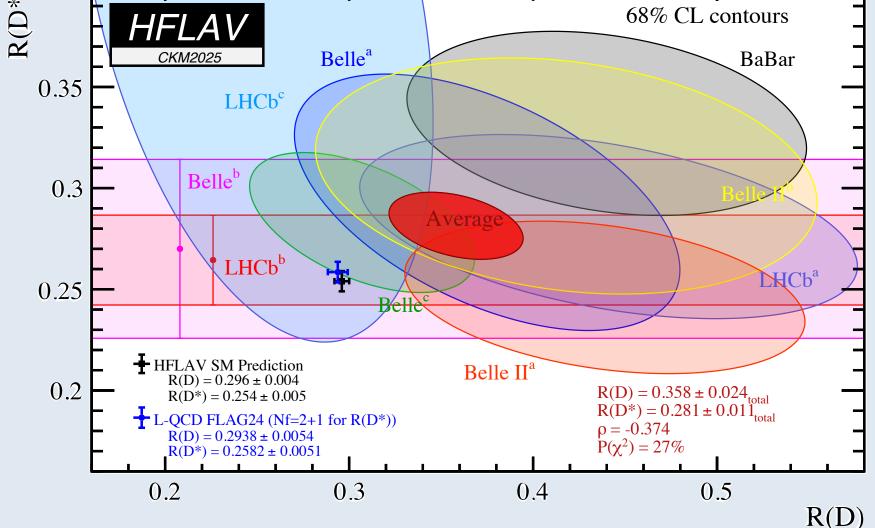
- C_{V_L} , C_{V_R} , C_S , C_P , C_T are complex NP couplings ($\equiv 0$ in SM), called Wilson Coefficients
- Different **NP models** (H+, LQ, . . .) \Rightarrow different **combinations of couplings**

How to test for NP experimentally?

Lepton Flavour Universality - ratio tests

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \nu_{\ell})} \qquad \ell = e, \mu$$

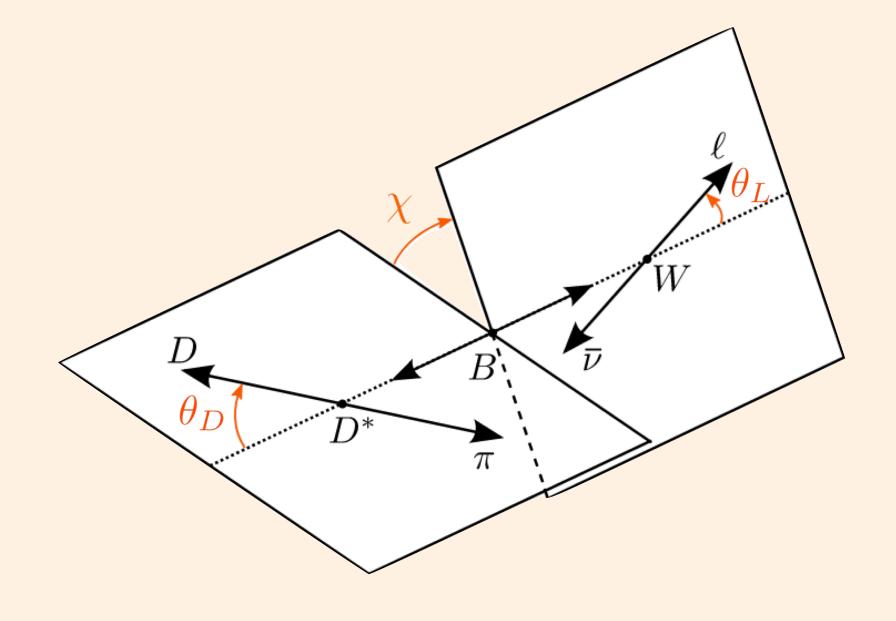




 3.8σ tension between measurements and theory predictions!

Angular analyses

NP operators influence the angular distributions of the helicity angles



Angular decay rate for $B \to D^*(D^0\pi)\ell\nu$:

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_D\mathrm{d}\cos\theta_L\mathrm{d}\chi\mathrm{d}q^2} \propto \sum_X J_X(q^2) \cdot f_X(\cos\theta_D,\cos\theta_L,\chi)$$

Angular coefficients, encapsulate:

1. Hadronic interaction (Form Factors) Transferred 4momentum squared

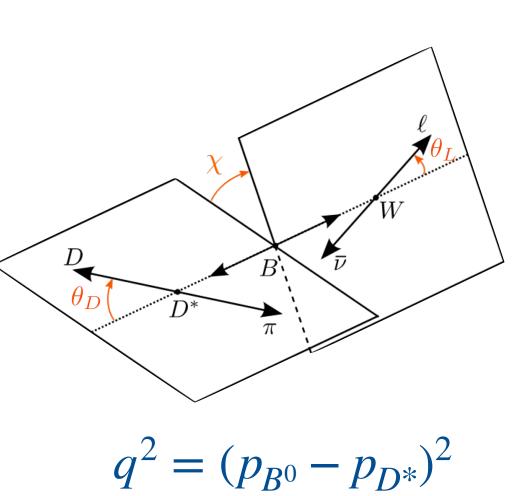
2. Wilson Coefficients (NP!)

$$q^2 = (p_{B^0} - p_{D^*})^2$$

Fixed functions of the angles

Angular decay rate for $B \to D^*(D^0\pi)\ell\nu$:

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_D\mathrm{d}\cos\theta_L\mathrm{d}\chi\mathrm{d}q^2} = \frac{2G_F^2\eta_{EW}^2|V_{cb}|^2m_B^2m_{D^*}}{2\pi^4}$$



$$\times \left(J_{1c}(q^{2}) \cos^{2}\theta_{D} + J_{1s}(q^{2}) \sin^{2}\theta_{D} \right)$$

$$+ \left[J_{2c}(q^{2}) \cos^{2}\theta_{D} + J_{2s}(q^{2}) \sin^{2}\theta_{D} \right] \cos 2\theta_{L}$$

$$+ \left[J_{6c}(q^{2}) \cos^{2}\theta_{D} + J_{6s}(q^{2}) \sin^{2}\theta_{D} \right] \cos \theta_{L}$$

$$+ \left[J_{3}(q^{2}) \cos 2\chi + J_{9}(q^{2}) \sin 2\chi \right] \sin^{2}\theta_{L} \sin^{2}\theta_{D}$$

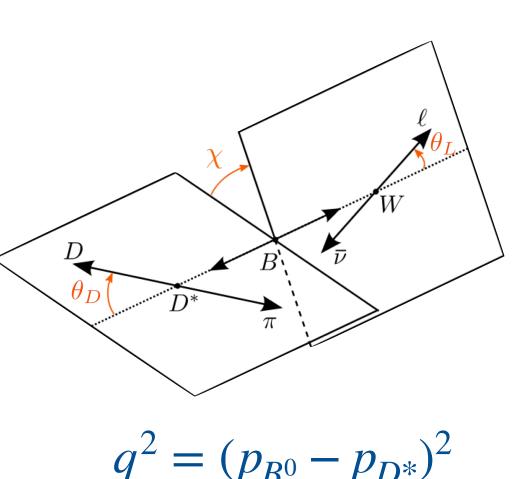
$$+ \left[J_{4}(q^{2}) \cos \chi + J_{8}(q^{2}) \sin \chi \right] \sin 2\theta_{L} \sin 2\theta_{D}$$

$$+ \left[J_{5}(q^{2}) \cos \chi + J_{7}(q^{2}) \sin \chi \right] \sin \theta_{L} \sin 2\theta_{D}$$

12 J_X coefficients

Angular decay rate for $B \to D^*(D^0\pi)\ell\nu$:

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_D\mathrm{d}\cos\theta_L\mathrm{d}\chi\mathrm{d}q^2} = \frac{2G_F^2\eta_{EW}^2|V_{cb}|^2m_B^2m_{D^*}}{2\pi^4}$$



$$\times \left(J_{1c}(q^{2}) \cos^{2}\theta_{D} + J_{1s}(q^{2}) \sin^{2}\theta_{D} \right)$$

$$+ \left[J_{2c}(q^{2}) \cos^{2}\theta_{D} + J_{2s}(q^{2}) \sin^{2}\theta_{D} \right] \cos 2\theta_{L}$$

$$+ \left[J_{6c}(q^{2}) \cos^{2}\theta_{D} + J_{6s}(q^{2}) \sin^{2}\theta_{D} \right] \cos \theta_{L}$$

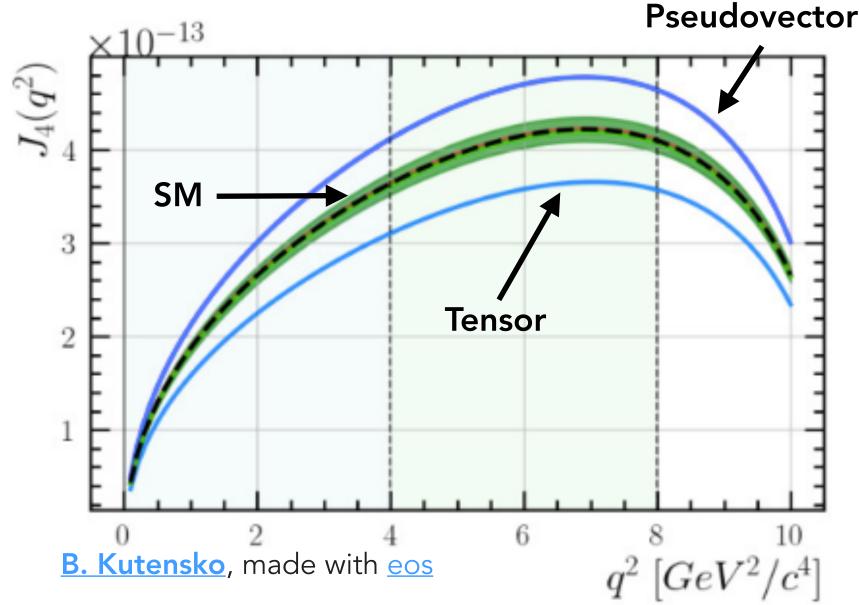
$$+ \left[J_{3}(q^{2}) \cos 2\chi + J_{9}(q^{2}) \sin 2\chi \right] \sin^{2}\theta_{L} \sin^{2}\theta_{D}$$

$$+ \left[J_{4}(q^{2}) \cos \chi + J_{8}(q^{2}) \sin \chi \right] \sin 2\theta_{L} \sin 2\theta_{D}$$

$$+ \left[J_{5}(q^{2}) \cos \chi + J_{7}(q^{2}) \sin \chi \right] \sin \theta_{L} \sin 2\theta_{D}$$

$$+ \left[J_{5}(q^{2}) \cos \chi + J_{7}(q^{2}) \sin \chi \right] \sin \theta_{L} \sin 2\theta_{D}$$

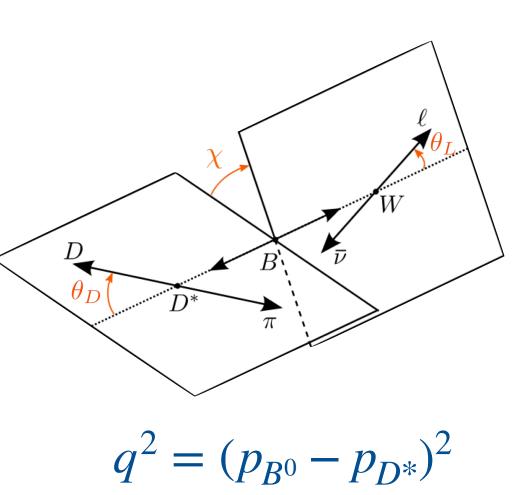
12 J_X coefficients



Studying the J_X at different q^2 values allows to identify different NP contributions!

Angular decay rate for $B \to D^*(D^0\pi)\ell\nu$:

$$\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_D\mathrm{d}\cos\theta_L\mathrm{d}\chi\mathrm{d}q^2} = \frac{2G_F^2\eta_{EW}^2|V_{cb}|^2m_B^2m_{D^*}}{2\pi^4}$$



$$\times \left(J_{1c}(q^{2}) \cos^{2}\theta_{D} + J_{1s}(q^{2}) \sin^{2}\theta_{D} \right)$$

$$+ \left[J_{2c}(q^{2}) \cos^{2}\theta_{D} + J_{2s}(q^{2}) \sin^{2}\theta_{D} \right] \cos 2\theta_{L}$$

$$+ \left[J_{6c}(q^{2}) \cos^{2}\theta_{D} + J_{6s}(q^{2}) \sin^{2}\theta_{D} \right] \cos \theta_{L}$$

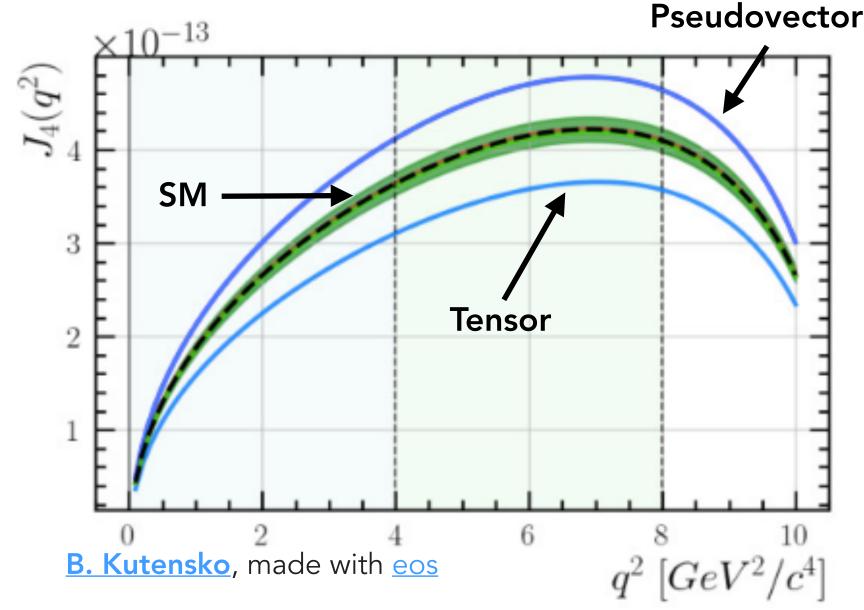
$$+ \left[J_{3}(q^{2}) \cos 2\chi + J_{9}(q^{2}) \sin 2\chi \right] \sin^{2}\theta_{L} \sin^{2}\theta_{D}$$

$$+ \left[J_{4}(q^{2}) \cos \chi + J_{8}(q^{2}) \sin \chi \right] \sin 2\theta_{L} \sin 2\theta_{D}$$

$$+ \left[J_{5}(q^{2}) \cos \chi + J_{7}(q^{2}) \sin \chi \right] \sin \theta_{L} \sin 2\theta_{D}$$

$$+ \left[J_{5}(q^{2}) \cos \chi + J_{7}(q^{2}) \sin \chi \right] \sin \theta_{L} \sin 2\theta_{D}$$

12 J_X coefficients



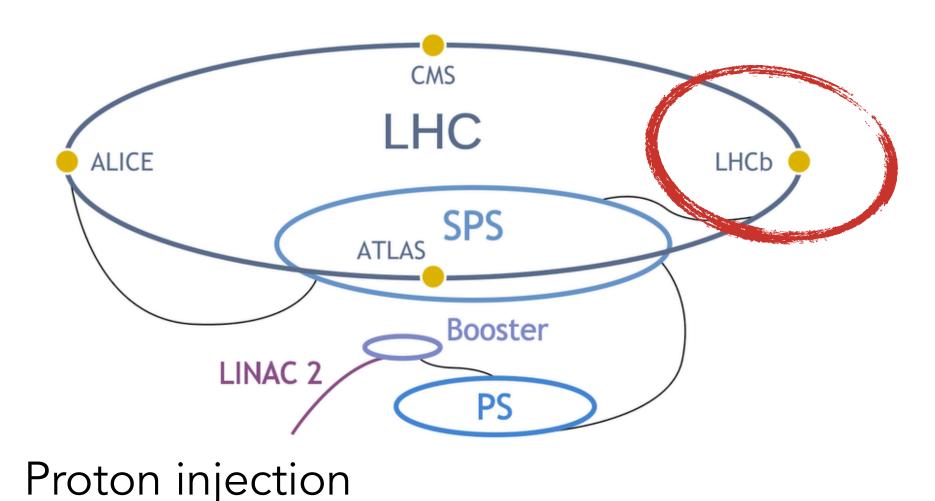
Studying the J_X at different q^2 values allows to identify different NP contributions!

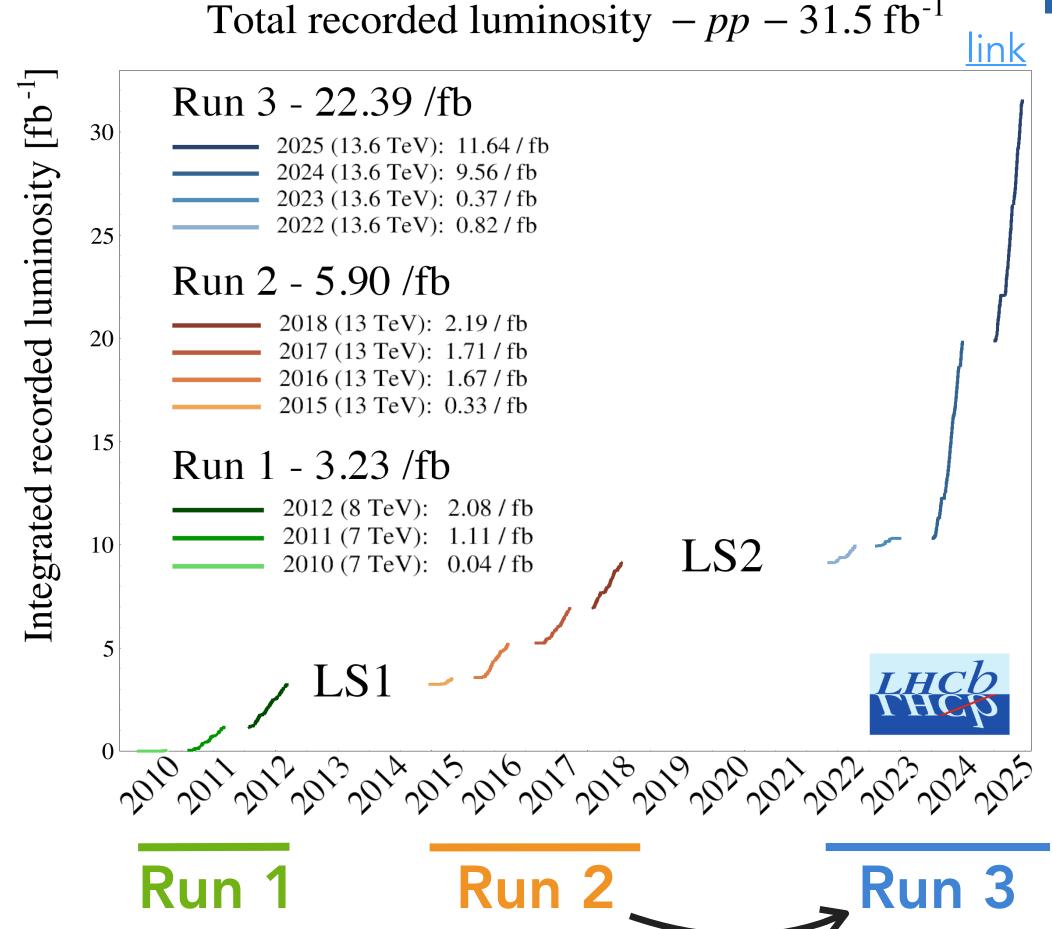
The goal of our analyses is to measure these 12 J_X coefficients in bins of q^2

Exploits **proton-proton** collisions from the Large Hadron Collider (LHC) at CERN with

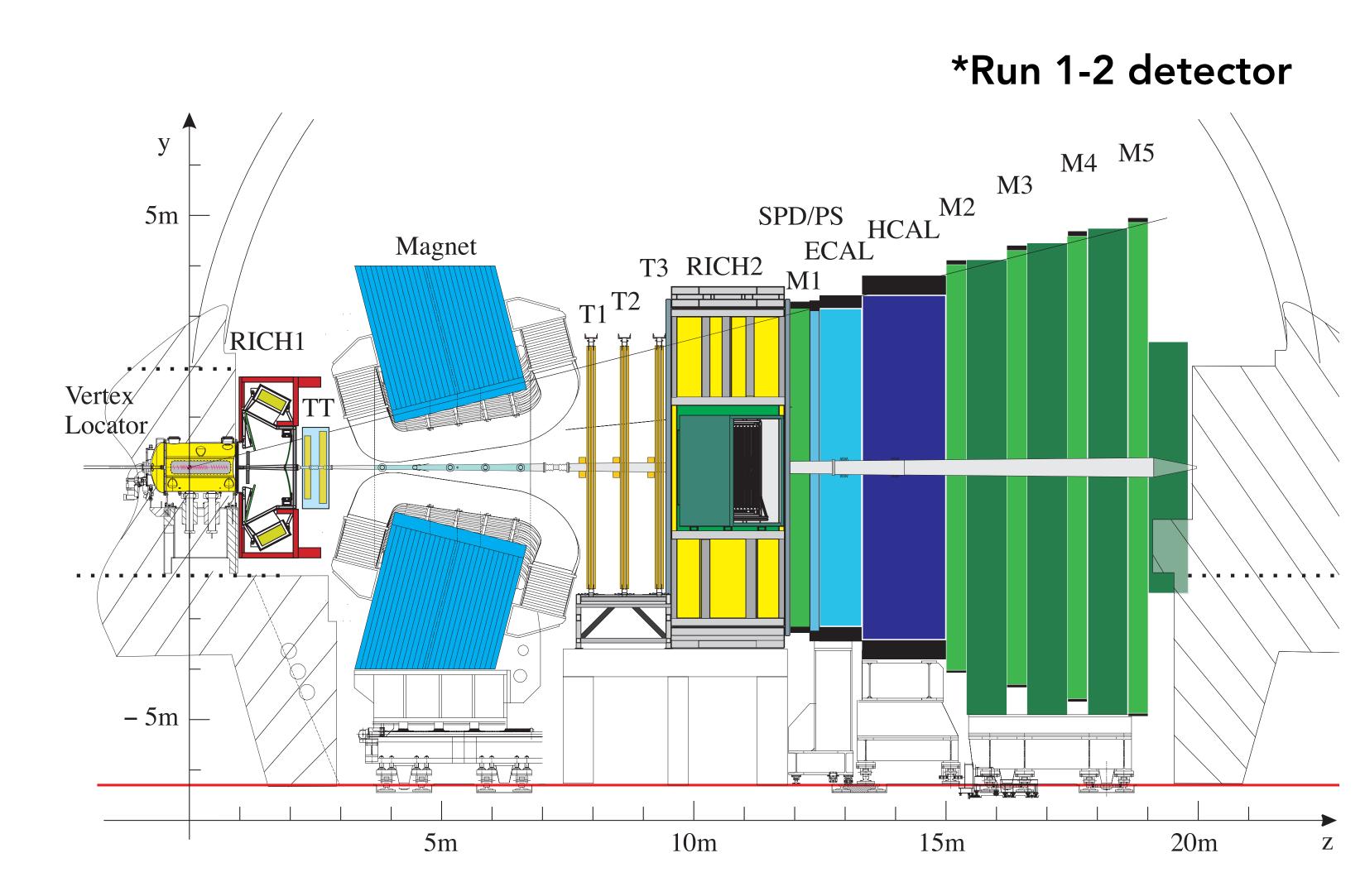
$$\sqrt{s} = 13 \text{ TeV (Run 2)},$$

$$\sqrt{s} = 13.6 \text{ TeV (Run 3)}$$





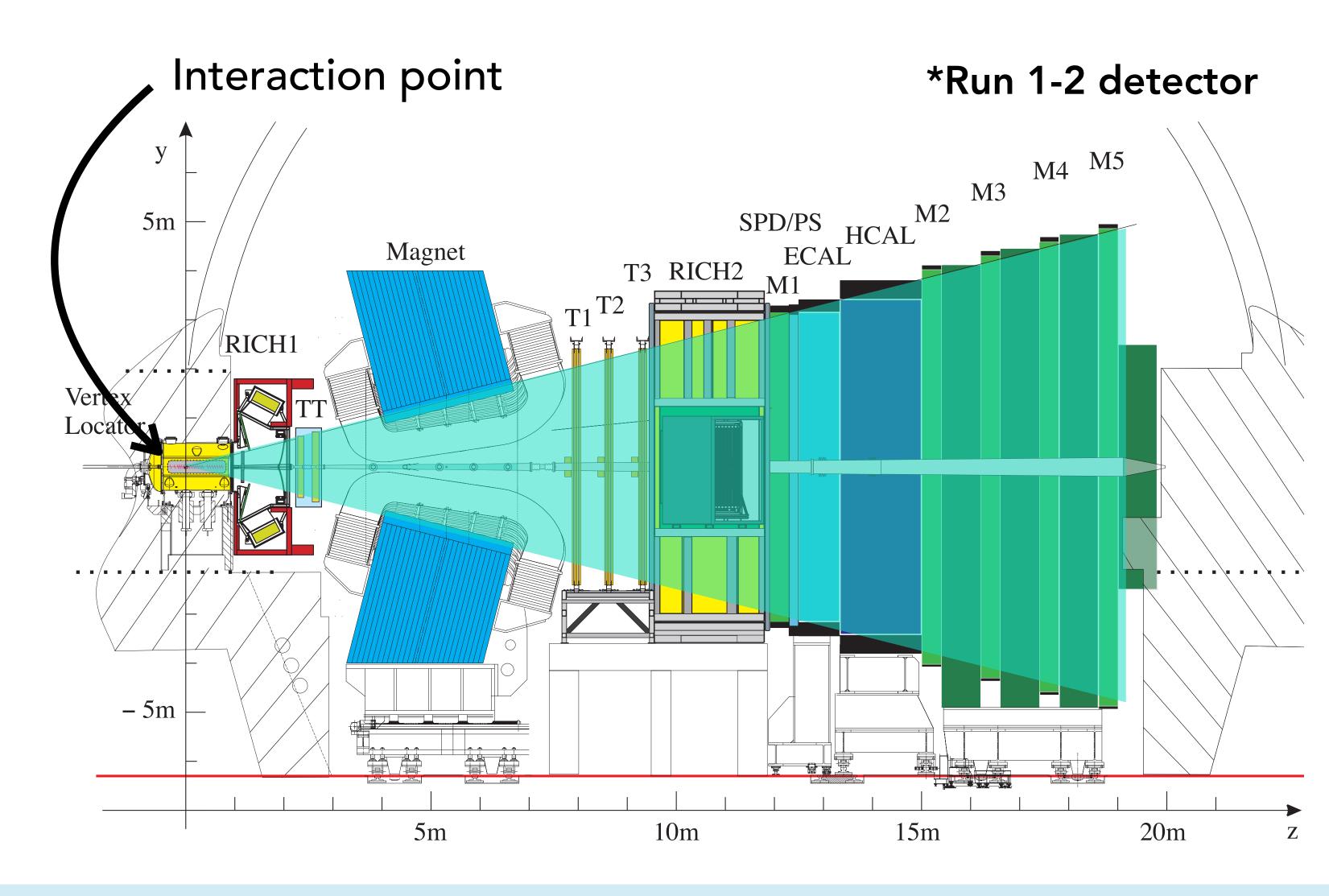
Major Detector Upgrade! × 5 instantaneous luminosity



• Forward arm spectrometer covering $2 < \eta < 5$

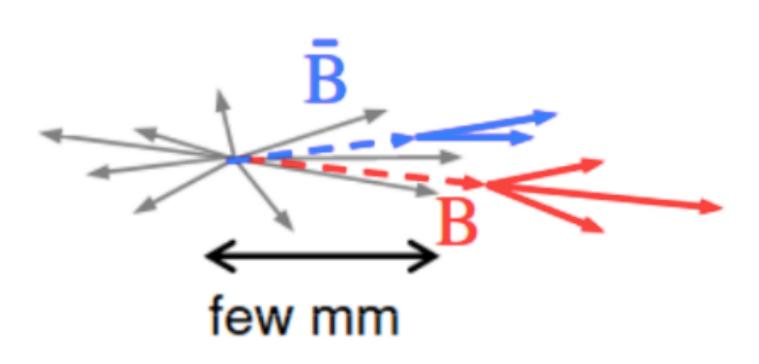
GdR Intensity Frontier

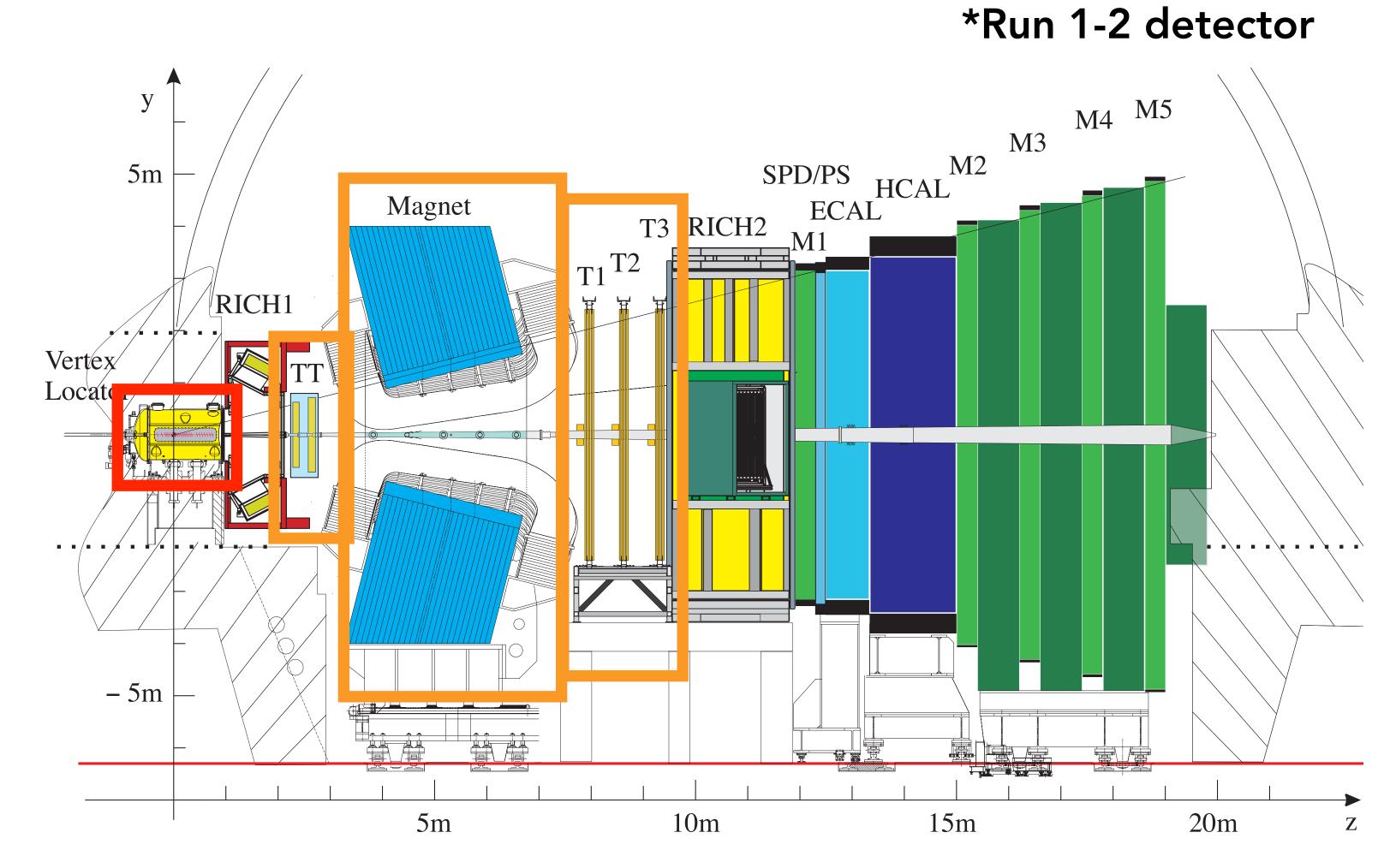
► Optimised for $pp \rightarrow b\bar{b}X$ events



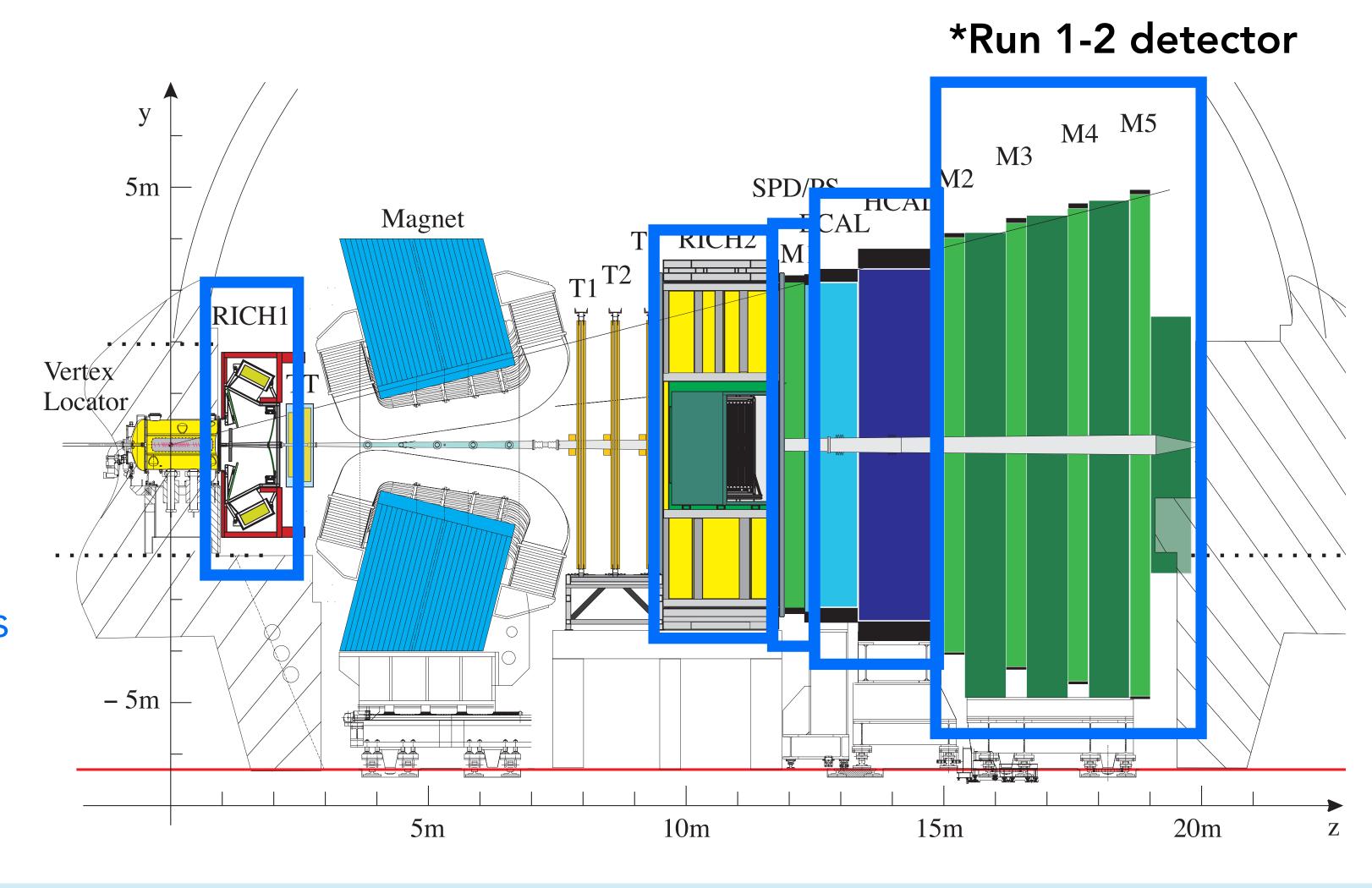
- Forward arm spectrometer covering $2 < \eta < 5$
 - ► Optimised for $pp \to b\bar{b}X$ events
- Tracking system
 - ► Excellent vertex reconstruction

GdR Intensity Frontier





- Forward arm spectrometer covering $2 < \eta < 5$
 - ► Optimised for $pp \to b\bar{b}X$ events
- Tracking system
 - Excellent vertex reconstruction
- Hadron PID with 2 RICH detectors, electron and muon
 PID with ECAL/Muon chambers



Angular analyses with $B^0 \to D^* \mathcal{E} \nu$ decays

Semileptonic challenges at LHCb (1)

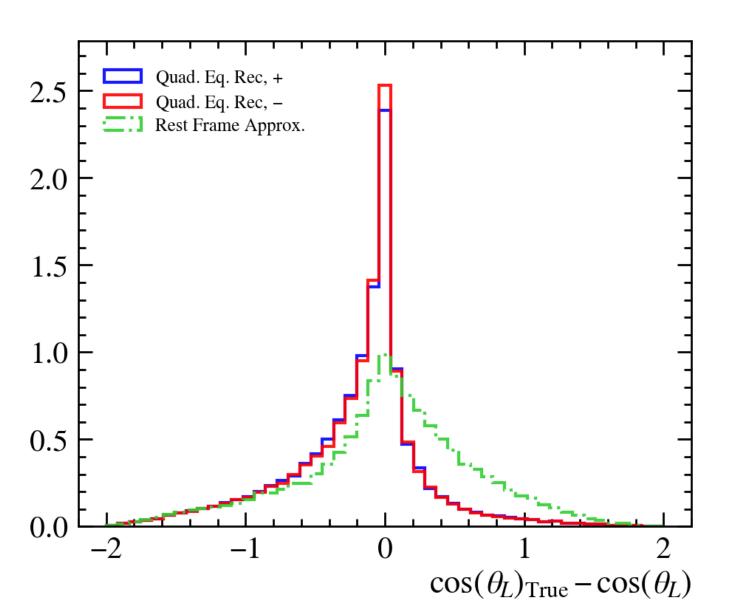
Neutrinos are not reconstructed at LHCb

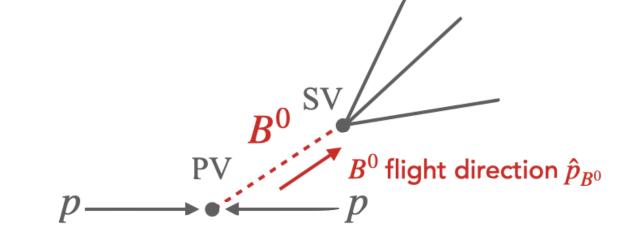
- \blacktriangleright No final state invariant mass peak to fit \rightarrow binned template fits instead of parametric fit
- Need to approximate the B^0/ν momentum:
 - 1. Rest Frame Approximation
 - 2. Solve kinematic equation
 - ▶ yields 2 solutions ± (quadratic eq.)

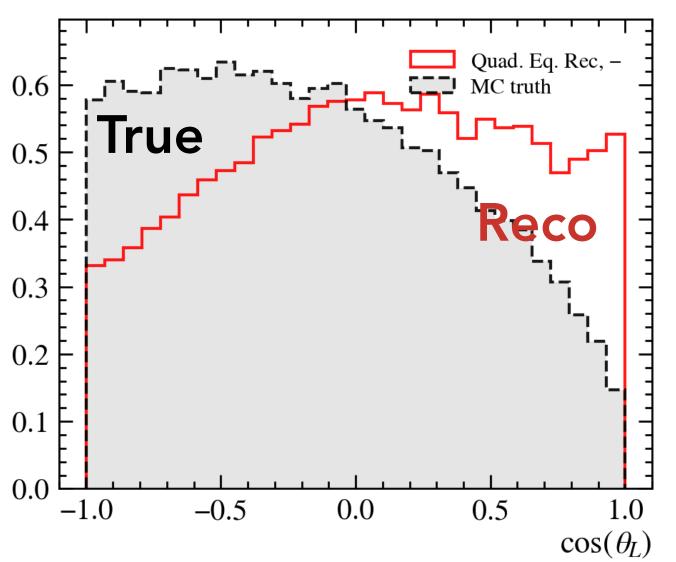
Large resolution effects!

This causes bin migration between true space and reconstructed space

Use B^0 flight direction, reconstructed thanks to the VELO







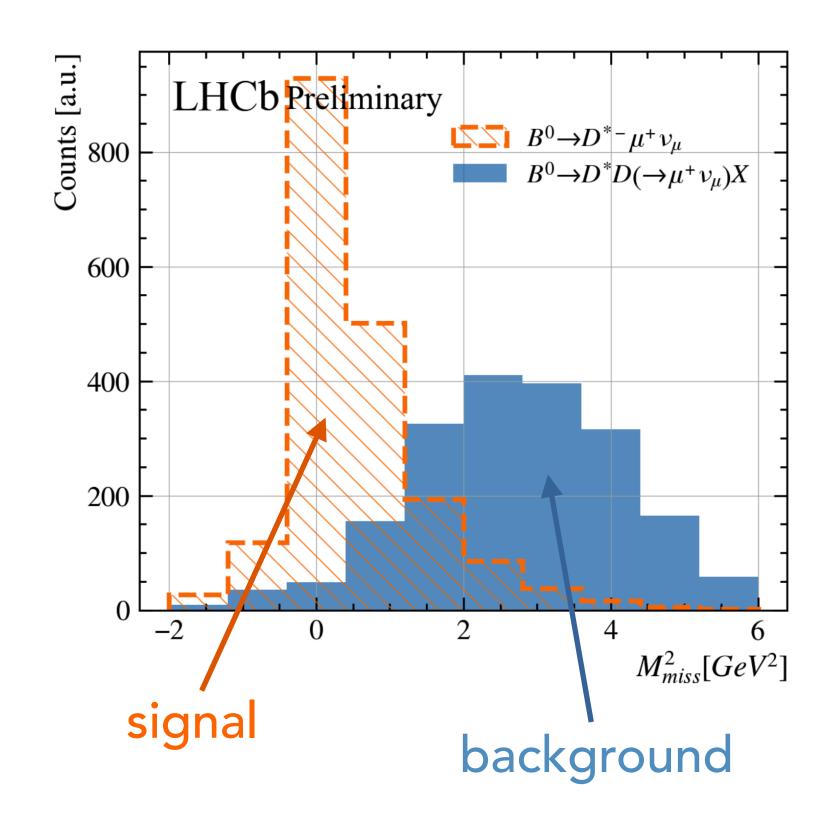
Semileptonic challenges at LHCb (2)

Lots of background sources:

- $B^0 \to D^{**}(\to D^*X)\ell\nu$: decays with a higher excited D state (admixture of $D_0^*(2300)$, $D_1(2420)$, $D_1(2430)$, etc.)
- $B^0 \to D^*D(\to \ell\nu)X$: double-charm meson decay
- ullet Mis-identified final state into ℓ
 - Use $m_{miss}^2 = (p_{B^0} p_{D^*} p_\ell)^2$ as a discriminating variable

Template-building (signal & background) needs a lot of statistics from Monte-Carlo simulation

- Large source of systematic uncertainty
- ► MC is generated with a chosen model → modeldependence



Fit methods overview

To deal with **resolution** and **kinematic-dependent detector efficiency** effects, multiple ways of fitting are developed:

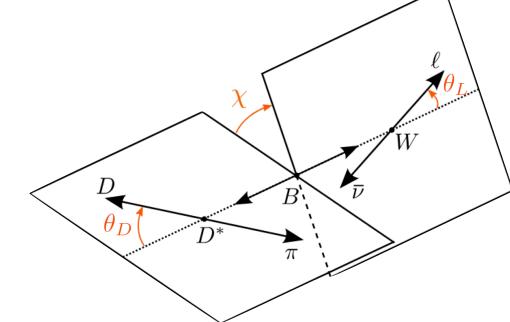
- Folding: Multiply the binned PDF by a response matrix
 - Map the PDF from true space to reconstructed space
- Unfolding: Perform the fit on unfolded data (unfold with response matrix)
 - Map the reconstructed data into true space
- Reweighting: Construct a binned PDF using weights that account for event migration in angular space
 - ► Build templates accounting for reconstruction effects

Response matrix: $R_{ij} = P(\text{reco bin } R_i | \text{true bin } T_j)$ Built with MC sample!

All 3 methods have some degree of model dependence and suffer from limited MC statistics

GdR Intensity Frontier

We have 2 angular analyses ongoing in our group:



$$m_{miss}^{2} = (p_{B^{0}} - p_{D^{*}} - p_{\ell})^{2}$$
$$q^{2} = (p_{B^{0}} - p_{D^{*}})^{2}$$

Run 2 dataset

Decay: $B^0 \to D^* \mu \nu_\mu$ and $B^0 \to D^* e \nu_e$

Goal: Measure 12 J_X coefficients in two q^2

bins, test LFU with e- μ

Method: 4D template fit (« reweighting » approach)

Run 3 dataset

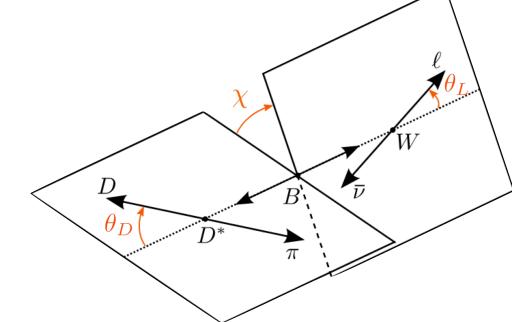
 $\text{Decay: } B^0 \to D^* e \nu_e$

Goal: Measure $12 J_X$ coefficients in several

(tbd) q^2 bins

Method: tbd

We have 2 angular analyses ongoing in our group:



$$m_{miss}^{2} = (p_{B^{0}} - p_{D^{*}} - p_{\ell})^{2}$$
$$q^{2} = (p_{B^{0}} - p_{D^{*}})^{2}$$

Run 2 dataset

Decay: $B^0 \to D^* \mu \nu_\mu$ and $B^0 \to D^* e \nu_e$

Goal: Measure 12 J_X coefficients in two q^2

bins, test LFU with e- μ

Method: 4D template fit (« reweighting » approach)

Run 3 dataset

 $\text{Decay: } B^0 \to D^* e \nu_e$

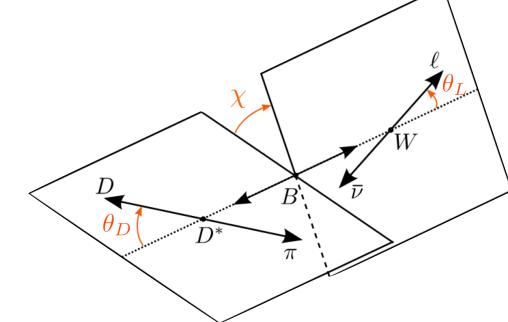
Goal: Measure $12 J_X$ coefficients in several

(tbd) q^2 bins

Method: tbd

 \rightarrow also measuring $R(D^*)_{\tau/e}$ with same dataset (and $\tau \to e \nu_e \nu_\tau$)

We have 2 angular analyses ongoing in our group:



$$m_{miss}^{2} = (p_{B^{0}} - p_{D^{*}} - p_{\ell})^{2}$$
$$q^{2} = (p_{B^{0}} - p_{D^{*}})^{2}$$

Run 2 dataset

Decay: $B^0 \to D^* \mu \nu_\mu$ and $B^0 \to D^* e \nu_e$

Goal: Measure 12 J_X coefficients in two q^2

bins, test LFU with e- μ

Method: 4D template fit (« reweighting » approach)

Run 3 dataset

Decay: $B^0 \to D^* e \nu_e$

Goal: Measure $12 J_X$ coefficients in several (tbd) q^2 bins

Method: tbd

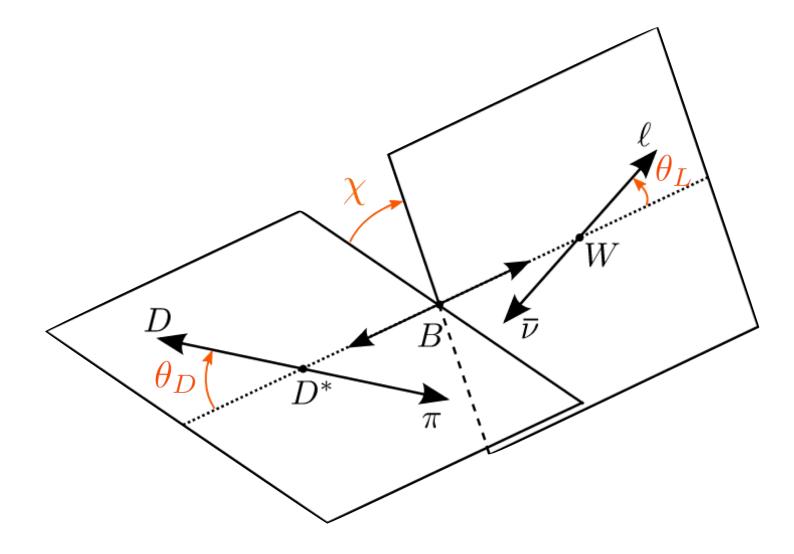
 \rightarrow also measuring $R(D^*)_{\tau/e}$ with same dataset (and $\tau \to e \nu_e \nu_\tau$)

Run 2 strategy

Goal: extract the 12 J_X coefficients for $\ell=e,\mu$ in 2 q^2 bins with Run 2 data

Method: 4D template fit in the 3 helicity angles $\cos(\theta_D)$, $\cos(\theta_L)$, χ and the reconstructed « missing mass squared » m_{miss}^2

- $\blacktriangleright m_{miss}^2$ used to disentangle signal and background
- ► Templates built mostly from **Monte Carlo simulation**, some data-driven (*eg* mis-identified leptonic final state)



$$q^2 = (p_{B^0} - p_{D^*})^2$$

$$m_{miss}^2 = (p_{B^0} - p_{D^*} - p_{\ell})^2$$

Template fit - Run 2

Strategy: Include all detector efficiencies and resolution effects directly in the signal templates

Pros:

- + Model-independent*
- + No need to unfold the results to apply the detector effects

Cons:

- The q^2 resolution still needs to be corrected through the response matrix $R_{ii} \rightarrow$ model dependence

Integrate the decay rate over a q^2 range, define $I_X = \int J_X(q^2)dq^2$:

$$rac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos heta_D\mathrm{d}\cos heta_L\mathrm{d}\chi} \propto \sum_X I_X \cdot f_X(\cos heta_D,\cos heta_L,\chi)$$
 Unbinned angular function $o \sum_X I_X \cdot h_X(\cos heta_D,\cos heta_L,\chi)$ Binned angular template

Template fit - Run 2

Normalisation of I_{1c}

Signal templates

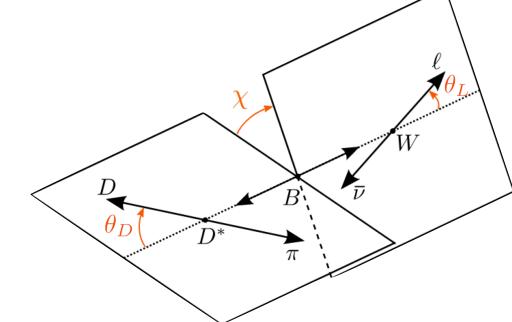
$$\begin{split} \text{PDF}(\theta_D, \theta_L, \chi) &= \left[\frac{1}{3}(4 - 6I_{1s} + I_{2c} + 2I_{2s})h_{1_c} + \sum_X I_X h_X\right] \times f_{\text{sig}} \\ &+ \sum_{\text{backgrounds}} f_{\text{bkg}} \times h_{\text{bkg}} \end{split}$$
 Fractions of dataset

Background templates

- ullet Extract 11 I_X from the fit, 1 constrained from total decay rate
- ullet I_X coefficients are blinded by a random scaling + random shift
- Templates are fixed shapes
- Fractions: 10 free parameters, 2 fixed

Template fit procedure has been validated and blinded I_X coefficients extracted Systematic uncertainties are almost done

We have 2 angular analyses ongoing in our group:



$$m_{miss}^{2} = (p_{B^{0}} - p_{D^{*}} - p_{\ell})^{2}$$
$$q^{2} = (p_{B^{0}} - p_{D^{*}})^{2}$$

Run 2 dataset

Decay: $B^0 \to D^* \mu \nu_\mu$ and $B^0 \to D^* e \nu_e$

Goal: Measure $12 J_X$ coefficients in two q^2 bins, test LFU with e- μ

Method: 4D template fit (« reweighting » approach)

Run 3 dataset

 $\text{Decay: } B^0 \to D^* e \nu_e$

Goal: Measure 12 J_X coefficients in several

(tbd) q^2 bins

Method: tbd

 \rightarrow also measuring $R(D^*)_{\tau/e}$ with same dataset (and $\tau \to e \nu_e \nu_\tau$)

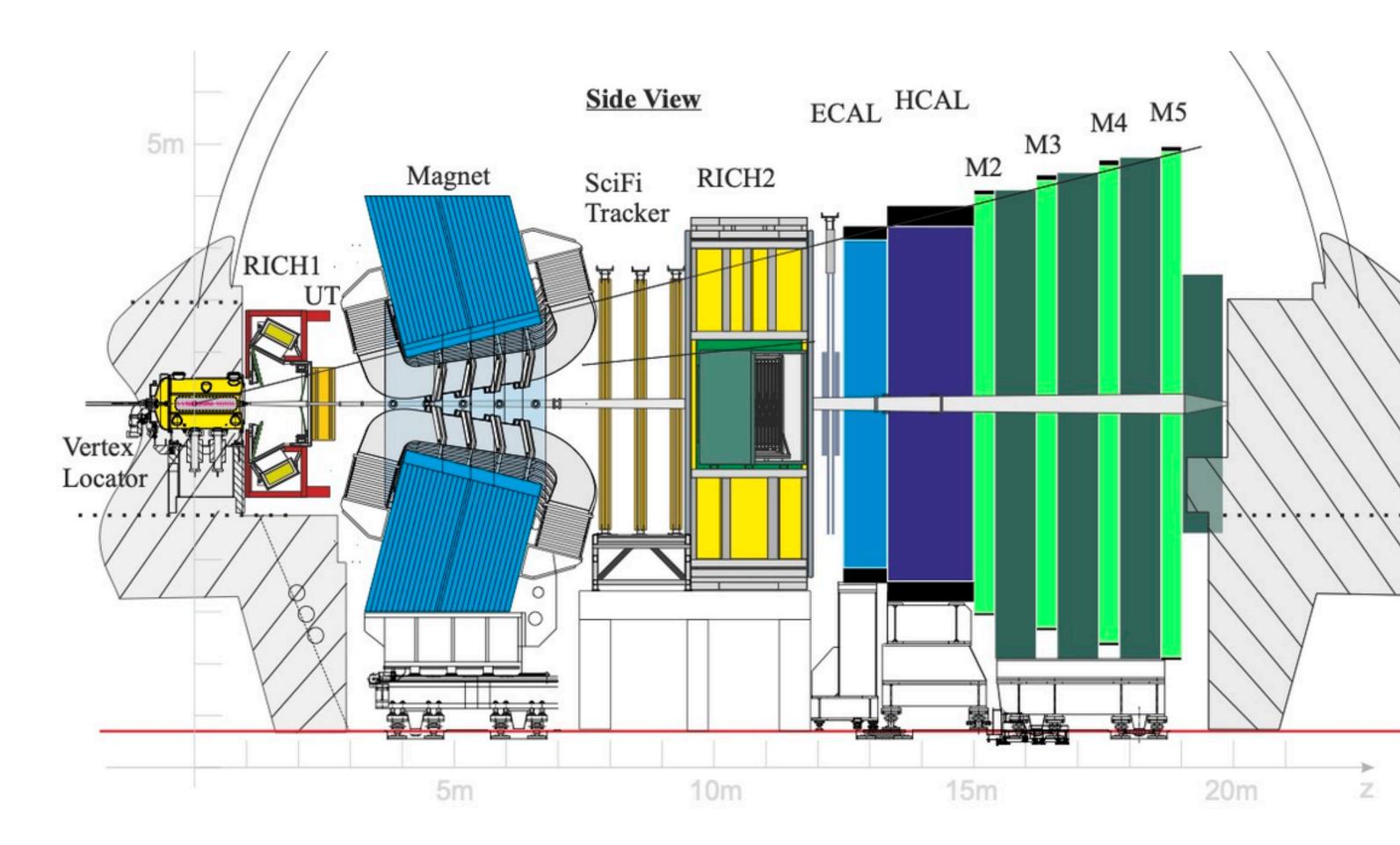
The LHCb Detector Upgrade I

Run 3 Upgrade:

- ◆ Changed all trackers,
- ◆ Replaced all readout electronics,
- ◆ Changed to fully software trigger (compared to hardware + software trigger in Run 1-2)
 - Improves greatly triggering on decays with electrons!
- ♦ Already collected ~21 fb⁻¹ pp data (~2.5× more than Run 1+2)

We expect ~7× more statistics!

*Run 3 detector



Run 3 analysis status

- We are working on **improving the template fit procedure** in order to minimise the model dependence
 - Thorough study using large MC samples generated with RapidSim
 - Aim to compare the **different fitting methods** (folding, unfolding, reweighting) with different q^2 binning
- Ongoing work with a « Fast MC » will help reduce the systematic uncertainty linked to limited MC statistics

Great improvement over Run 2 analysis is expected!

GdR Intensity Frontier

Conclusion and prospects

- Long-standing tension in R(D)-R(D*) measurements encourages searches in semileptonic $b \to c\ell\nu$ transitions
- ullet The 12 I_X angular coefficients are being measured with different leptonic final state to probe potential NP contributions:
 - Run 2 analysis being finalised,
 - Run 3 analysis ongoing with increased statistics and expecting reduced systematic uncertainties

Thank you for your attention!

Email: lea.dreyfus@cern.ch

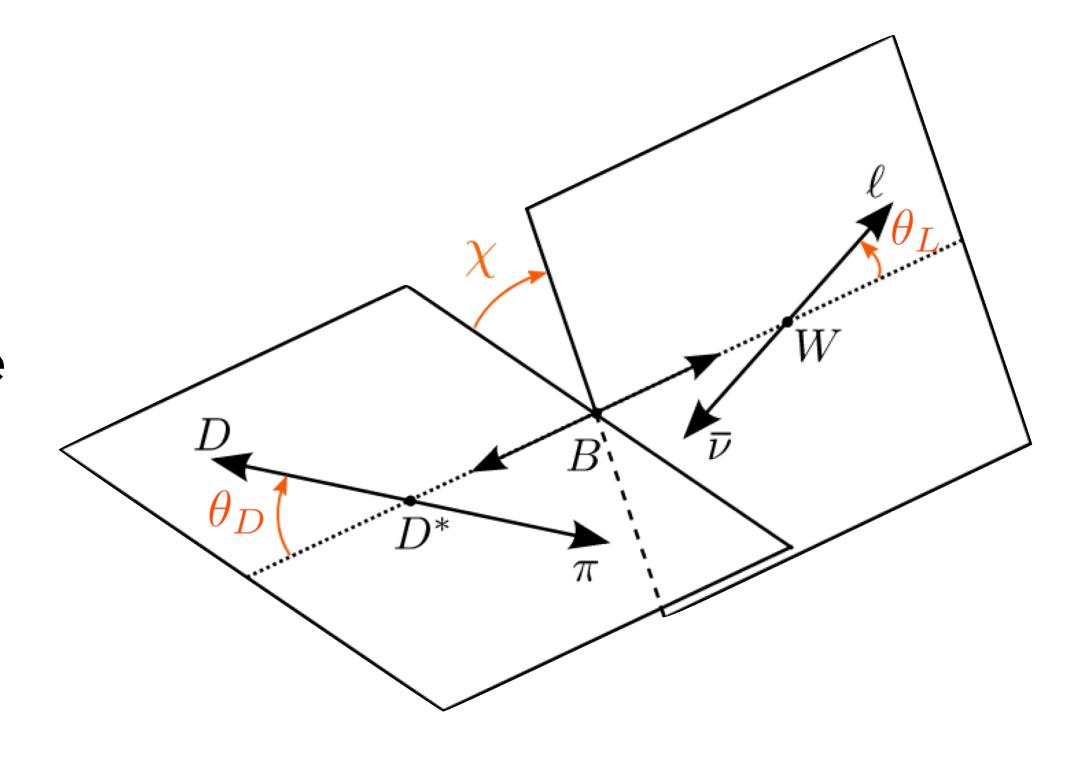
CERN Mattermost: @drlea

Backup slides

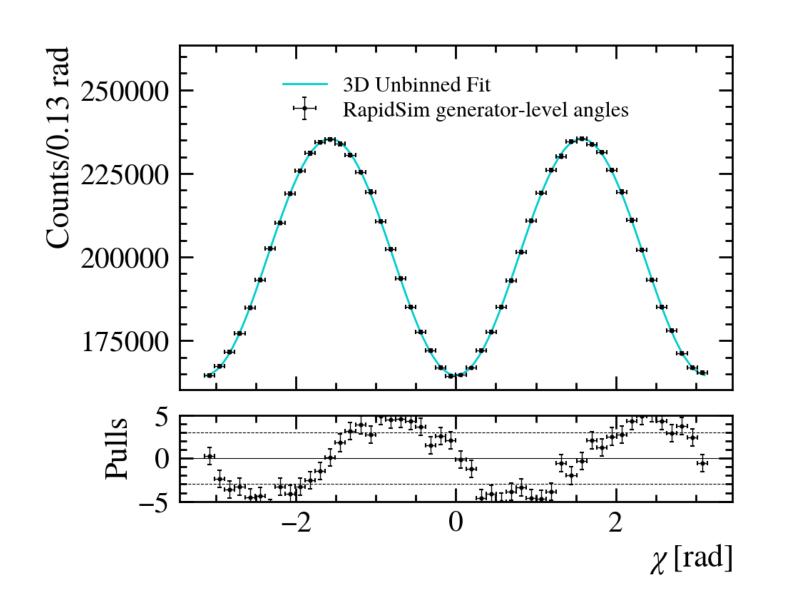
Angle definition

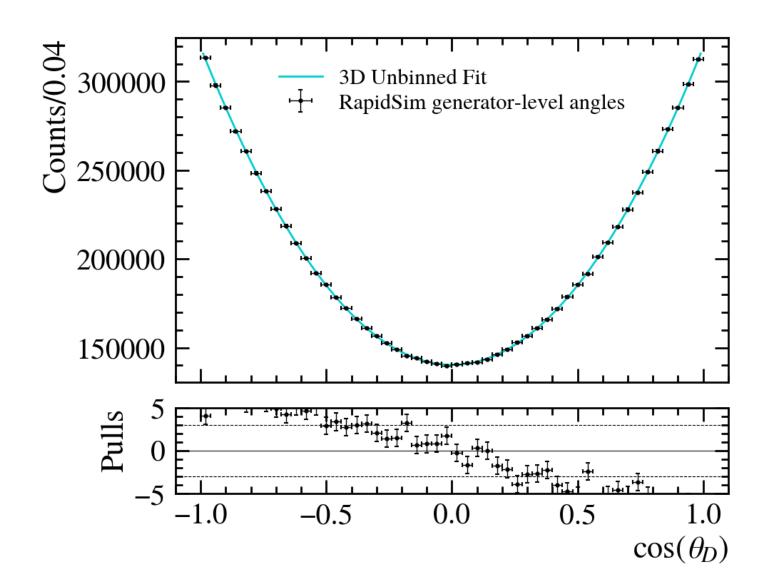
GdR Intensity Frontier

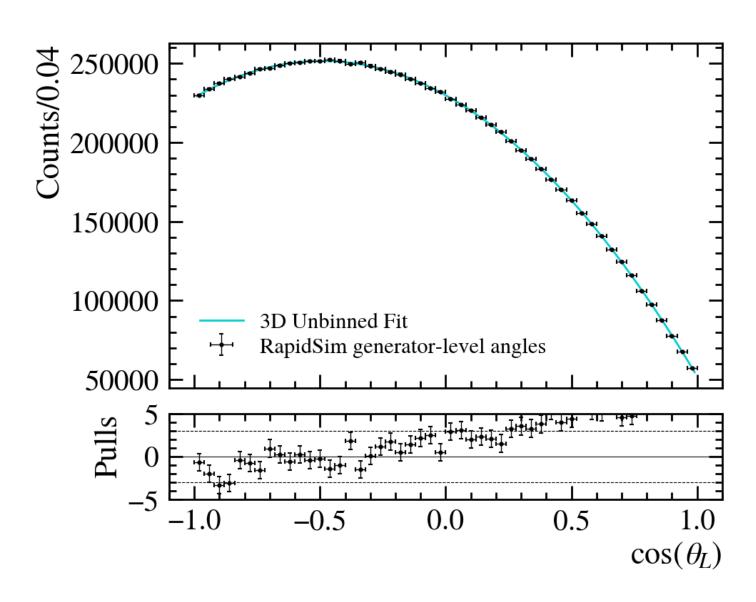
- θ_L : angle between the direction of the lepton and the direction opposite the B^0 hadron in the virtual W rest frame.
- θ_D : angle between the D^* child hadron and the direction opposite the B^0 hadron in the D^* rest frame.
- χ : the angle between the plane formed by the D^* decay and the W decay, defined in the B^0 meson rest frame



Generator-level angles and fit to decay rate







Run 2 conditions RapidSim sample $B^0 \to D^*e\nu$, 10M events, fit the 3D decay rate integrated over the whole q^2 range

Extract 11 out of the 12 coefficients, I_{1c} constrained with

$$\Gamma = \frac{1}{4}(3I_{1c} + 6I_{1s} - I_{2c} - 2I_{2s}) = 1,$$

Fit resu	ılts:		
name	value (rounded)	hesse	at limit
I1s	0.350739	+/- 0.00017	False
I2c	-0.531814	+/- 0.00037	False
I2s	0.116519	+/- 0.00026	False
I6c	-0.000309983	+/- 0.00037	False
I6s	-0.293781	+/- 0.00028	False
13	-0.176987	+/- 0.00025	False
14	-0.30759	+/- 0.00025	False
I 5	0.237602	+/- 0.00026	False
I7	2.11921e-05	+/- 0.00034	False
18	-0.000139842	+/- 0.00034	False
19	1.01578e-05	+/- 0.00027	False

This is just to give an idea of the true distributions:)

More angular observable (1)

- Integrate the decay rate on one or several angles:
- θ_{ℓ} distribution :

$$\frac{d^2\Gamma}{dq^2d\cos\theta_{\ell}} = a_{\theta_{\ell}}(q^2) + b_{\theta_{\ell}}(q^2)\cos\theta_{\ell} + c_{\theta_{\ell}}(q^2)\cos^2\theta_{\ell},$$

$$a_{\theta_{\ell}}(q^2) = \frac{3}{8}\left(I_{1c} + 2I_{1s} - I_{2c} - 2I_{2s}\right),$$

$$b_{\theta_{\ell}}(q^2) = \frac{3}{8}\left(I_{6c} + 2I_{6s}\right),$$

$$c_{\theta_{\ell}}(q^2) = \frac{3}{4}\left(I_{2c} + 2I_{2s}\right).$$

• θ_D distribution :

$$\frac{d^2\Gamma}{dq^2d\cos\theta_D} = a_{\theta_D}(q^2) + c_{\theta_D}(q^2)\cos^2\theta_D,$$

$$a_{\theta_D}(q^2) = \frac{3}{8}(3I_{1s} - I_{2s}),$$

$$c_{\theta_D}(q^2) = \frac{3}{8}(3I_{1c} - 3I_{1s} - I_{2c} + I_{2s}).$$

arXiv:1907.02257

$$\begin{split} \frac{d^4\Gamma}{dq^2d\cos\theta_Dd\cos\theta_\ell d\chi} &= \frac{9}{32\pi} \bigg\{ I_{1c}\cos^2\theta_D + I_{1s}\sin^2\theta_D \\ &\quad + \left[I_{2c}\cos^2\theta_D + I_{2s}\sin^2\theta_D \right]\cos 2\theta_\ell \\ &\quad + \left[I_{6c}\cos^2\theta_D + I_{6s}\sin^2\theta_D \right]\cos\theta_\ell \\ &\quad + \left[I_3\cos 2\chi + I_9\sin 2\chi \right]\sin^2\theta_\ell\sin^2\theta_D \\ &\quad + \left[I_4\cos\chi + I_8\sin\chi \right]\sin 2\theta_\ell\sin 2\theta_D \\ &\quad + \left[I_5\cos\chi + I_7\sin\chi \right]\sin\theta_\ell\sin 2\theta_D \bigg\} \,, \end{split}$$

• χ distribution :

$$\frac{d^2\Gamma}{dq^2d\chi} = a_{\chi}(q^2) + c_{\chi}^c(q^2)\cos 2\chi + c_{\chi}^s(q^2)\sin 2\chi,$$

$$a_{\chi}(q^2) = \frac{1}{8\pi} \left(3I_{1c} + 6I_{1s} - I_{2c} - 2I_{2s}\right)$$

$$c_{\chi}^c(q^2) = \frac{1}{2\pi}I_3,$$

$$c_{\chi}^s(q^2) = \frac{1}{2\pi}I_9.$$

More angular observable (2)

- From the previously defined terms, define:
 - Differential decay rate

$$\frac{d\Gamma}{dq^2} = \frac{1}{4} \left(3I_{1c} + 6I_{1s} - I_{2c} - 2I_{2s} \right) ,$$

arXiv:1907.02257

• Forward-backward asymmetry

$$\mathcal{A}_{\mathrm{FB}}(q^2) = rac{b_{ heta_{\ell}}(q^2)}{d\Gamma/dq^2} = rac{3}{8} rac{(I_{6c} + 2I_{6s})}{d\Gamma/dq^2} \,,$$

ullet D^* polarization fraction

$$F_L^{D^*}(q^2) = \frac{1}{2} \frac{3I_{1c} - I_{2c}}{3(I_{1c} + I_{1s}) - I_{2c} - I_{2s}}.$$

Sensitivity of observables to New Physics models

Table 1 The dependence of angular observables on combinations of Wilson coefficients. An entry of \checkmark denotes the presence of this combination. An entry of m^n denotes the presence of this term, but with kinematic lepton-mass suppression $\propto (m_\ell/\sqrt{q^2})^n$ (n=1,2). The "num(·)" indicates that only the dependence of the numerator of this observable is given. The V_i^a have been introduced in Ref. [30]

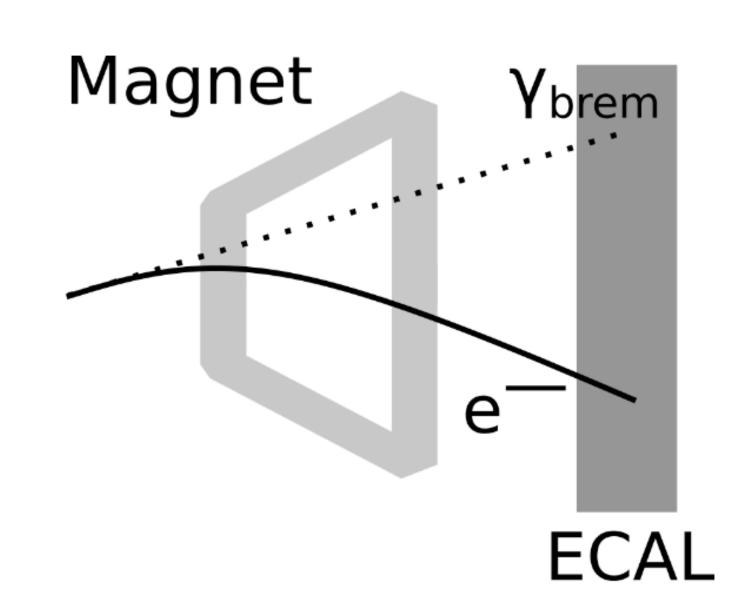
Observable	$ C_A ^2$	$ C_V ^2$	$ C_P ^2$	$ C_T ^2$	$\operatorname{Re}(C_A C_V^*)$	$\operatorname{Re}(C_A C_P^*)$	$\operatorname{Re}(C_A C_T^*)$	$\operatorname{Re}(C_V C_P^*)$	$\operatorname{Re}(C_V C_T^*)$	$\operatorname{Re}(C_P C_T^*)$
$\overline{J_{1c} = V_1^0}$	√	_	√	√	_	(m)	(m)	_	_	_
$J_{1s} = V_1^T$	\checkmark	\checkmark	_	\checkmark	_	_	(m)	_	(m)	_
$J_{2c} = V_2^0$	\checkmark	_	_	\checkmark	_	_	_	_	_	_
$J_{2s} = V_2^T$	\checkmark	\checkmark	_	\checkmark	_	_	_	_	_	_
$J_3 = V_4^T$	\checkmark	\checkmark	_	\checkmark	_	_	_	_	_	_
$J_4 = V_1^{0T}$	\checkmark	_	_	\checkmark	_	_	_	_	_	_
$J_5 = V_2^{0T}$	(m^2)	_	_	(m^2)	\checkmark	(m)	(m)	_	(m)	\checkmark
$J_{6c} = V_3^0$	(m^2)	_	_	_	_	(m)	(m)	_	_	\checkmark
$J_{6s} = V_3^T$	_	_	_	(m^2)	\checkmark	_	(m)	_	(m)	_
$d\Gamma/dq^2$	\checkmark	\checkmark	\checkmark	\checkmark	_	(m)	(m)	_	(m)	_
$\operatorname{num}(A_{\operatorname{FB}})$	(m^2)	_	_	(m^2)	\checkmark	(m)	(m)	_	(m)	\checkmark
$\operatorname{num}(F_L)$	\checkmark	_	\checkmark	\checkmark	_	(m)	(m)	_	_	_
$\text{num}(F_L\text{-}1/3)$	\checkmark	\checkmark	\checkmark	\checkmark	_	(m)	(m)	_	(m)	_
$\operatorname{num}(\widetilde{F}_L)$	\checkmark	(m^2)	\checkmark	\checkmark	_	(m)	(m)	_	(m)	_
$\operatorname{num}(\widetilde{F}_L\text{-}1/3)$	\checkmark	\checkmark	_	\checkmark	_	_	_	_	_	_
$num(S_3)$	\checkmark	\checkmark	_	\checkmark	_	_	_	_	_	_
Observable	_		_	$\operatorname{Im}(C_A \mathcal{C})$	C_V^*) Im(C_V^*)	$C_A C_P^*$) In	$m(C_A C_T^*)$	$\operatorname{Im}(C_V C_P^*)$	$\operatorname{Im}(C_V C_T^*)$	$\operatorname{Im}(C_P C_T^*)$
$J_7 = V_3^{0T}$				(m^2)	_	(1	<i>m</i>)	(m)	_	√
$J_8 = V_4^{0T}$				\checkmark	_	_		_	_	_
$J_9 = V_5^T$				✓	_	_	•	_	_	_

Eur. Phys. J. C 81, 984 (2021)

Bremsstrahlung recovery for electrons

- Bremsstrahlung (« brem ») mainly from interaction with detector material
- Energy loss $\propto E/m^2 \rightarrow$ mostly affects electrons
- If a photon is emitted **before the magnet**, the momentum measurement is **biased**
 - Recovery procedure: find the brem photon by extrapolating the track, add the energy back to electron
 - ► Photon recovery efficiency ~60% (run 2)
- Electrons are categorised into:
 - → With brem photon
 - ◆ No brem photon

Both samples require different treatment for the background suppression, MC corrections, templates, etc



Kinematic reconstruction (1)

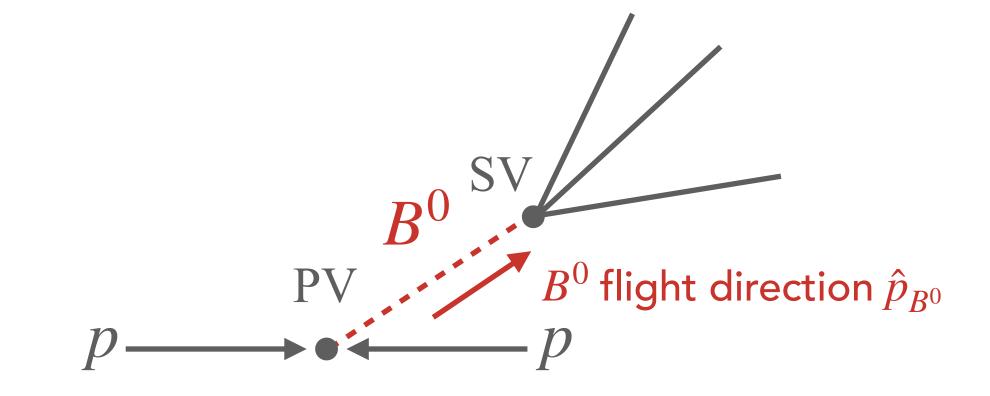
Two methods to reconstruct the missing momentum from the neutrino:

Rest Frame Approximation

Exploits high boost of the B^0 :

The longitudinal component of p_{B^0} is approximated with boost of the visible final state

$$p_{B^0}^z = rac{m_{B^0}}{m_{D^*\ell}} p_{D^*\ell}^z$$
 $|p_{B^0}| = rac{m_{B^0}}{m_{D^*\ell}} p_{D^*\ell}^z \sqrt{1 + an^2(heta)}$



Get B^0 flight direction from the excellent PV and SV reconstruction in the VELO

GdR Intensity Frontier

Kinematic reconstruction (2)

Two methods to reconstruct the missing momentum from the neutrino:

Quadratic Equation solving:

Solve the eq. of motion for p_{ν} , assume $m_{\nu}=0$

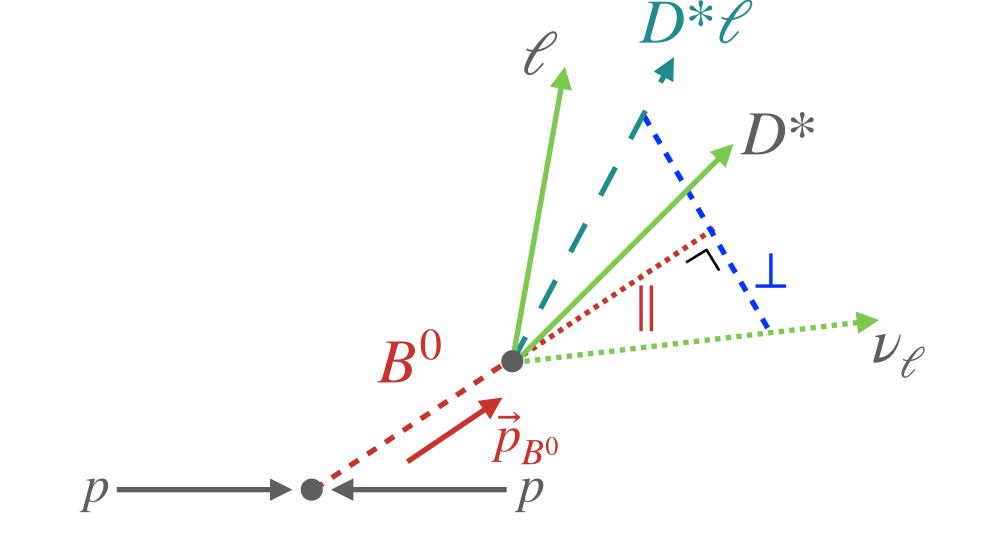
ightarrow reconstructs p_{B^0} up to a twofold ambiguity

Work in a basis \parallel and \perp to B^0 momentum

$$egin{align} m{p}_{B^0} &= (|m{p}_{B^0}|, \; 0), \ m{p}_{D^*\ell} &= (p_{D^*\ell}^\parallel, \; p_{D^*\ell}^\perp), \ m{p}_
u &= (p_
u^\parallel, \; p_
u^\perp). \ \end{pmatrix}$$

Solve, get:

$$|p_{B^0}| = p_{D^*\ell}^{\parallel} - a \pm \sqrt{r}$$

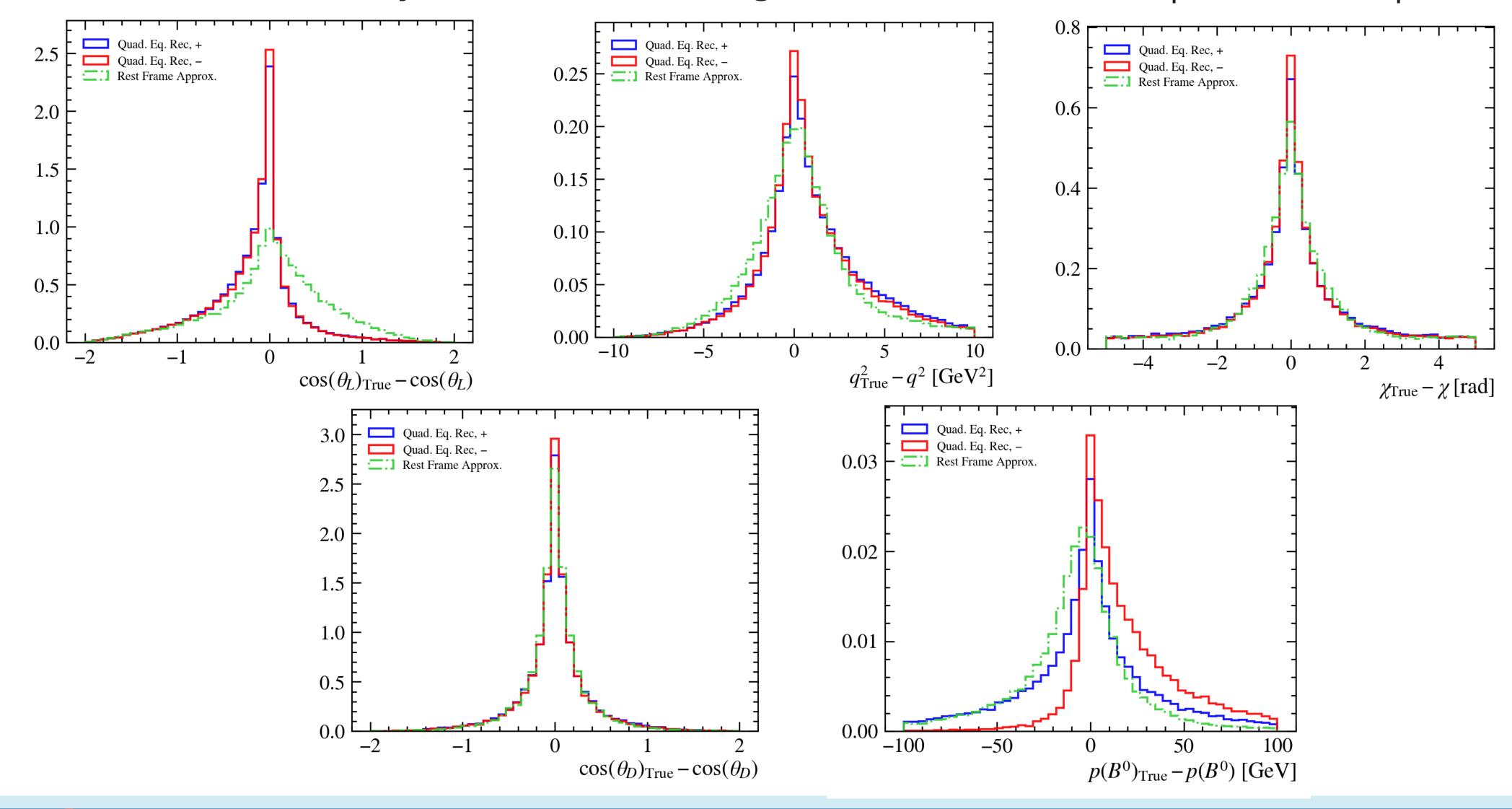


$$a = \frac{p_{D^*\ell}^{\parallel} \left(m_{B^0}^2 - m_{D^*\ell}^2 - 2(p_{D^*\ell}^{\perp})^2 \right)^2}{2 \left((p_{D^*\ell}^{\parallel})^2 - E_{D^*\ell}^2 \right)}$$

$$r = \frac{E_{D^*\ell}^2 \left[m_{B^0}^2 - m_{D^*\ell}^2 - 2(p_{D^*\ell}^{\perp})^2 \right]^2}{4 \left((p_{D^*\ell}^{\parallel})^2 - E_{D^*\ell}^2 \right)^2} + \frac{E_{D^*\ell}^2 (p_{D^*\ell}^{\perp})^2}{\left((p_{D^*\ell}^{\parallel})^2 - E_{D^*\ell}^2 \right)}$$

Kinematic reconstruction (3)

Resolutions on the analysis variables (using Run 2 conditions RapidSim sample):



GdR Intensity Frontier

Template fit Run 2 - fit validation with Bootstrapping

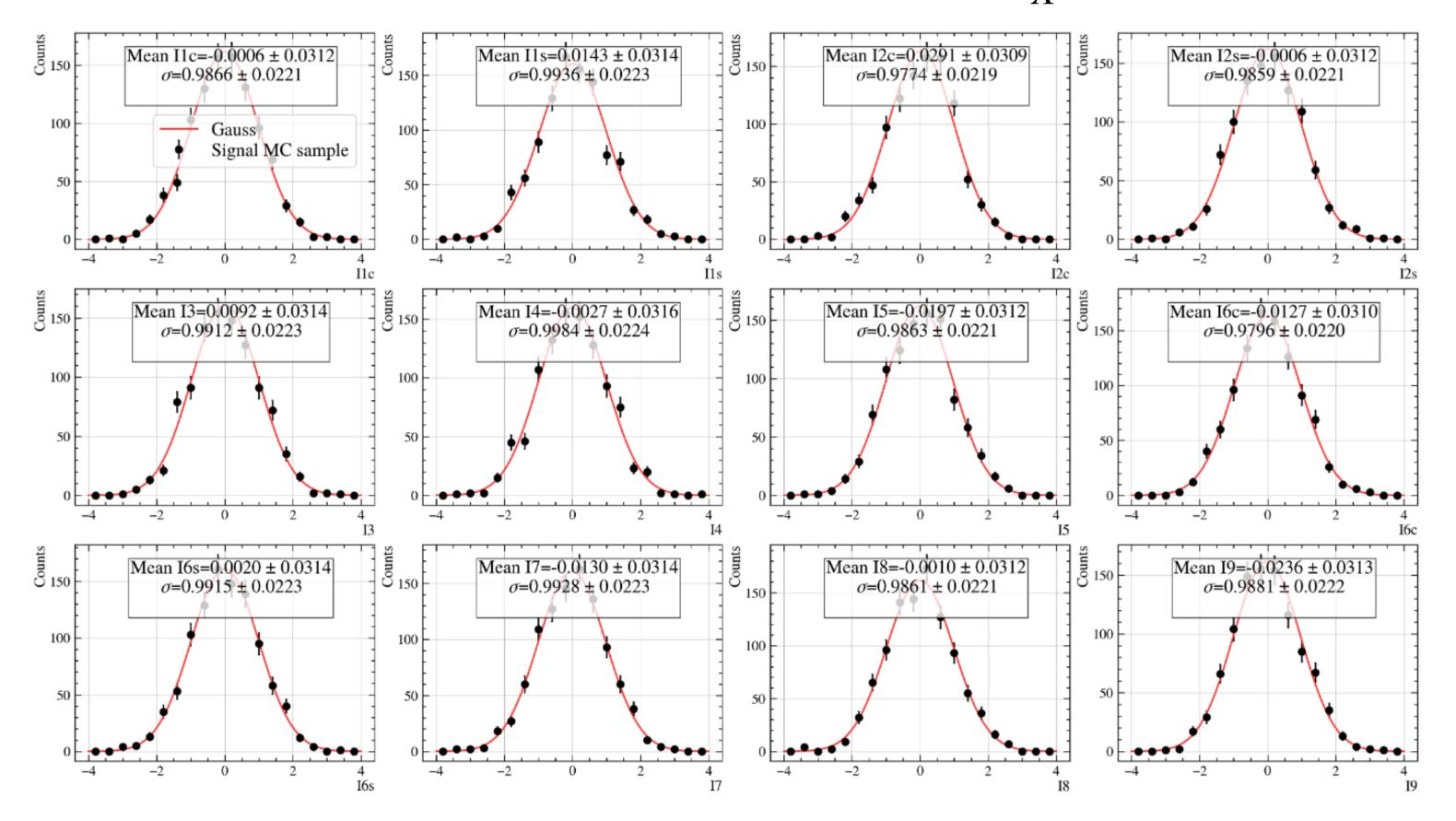
The fit is validated on bootstrapped SM signal + background sample

Template fit is iterated 1000 times

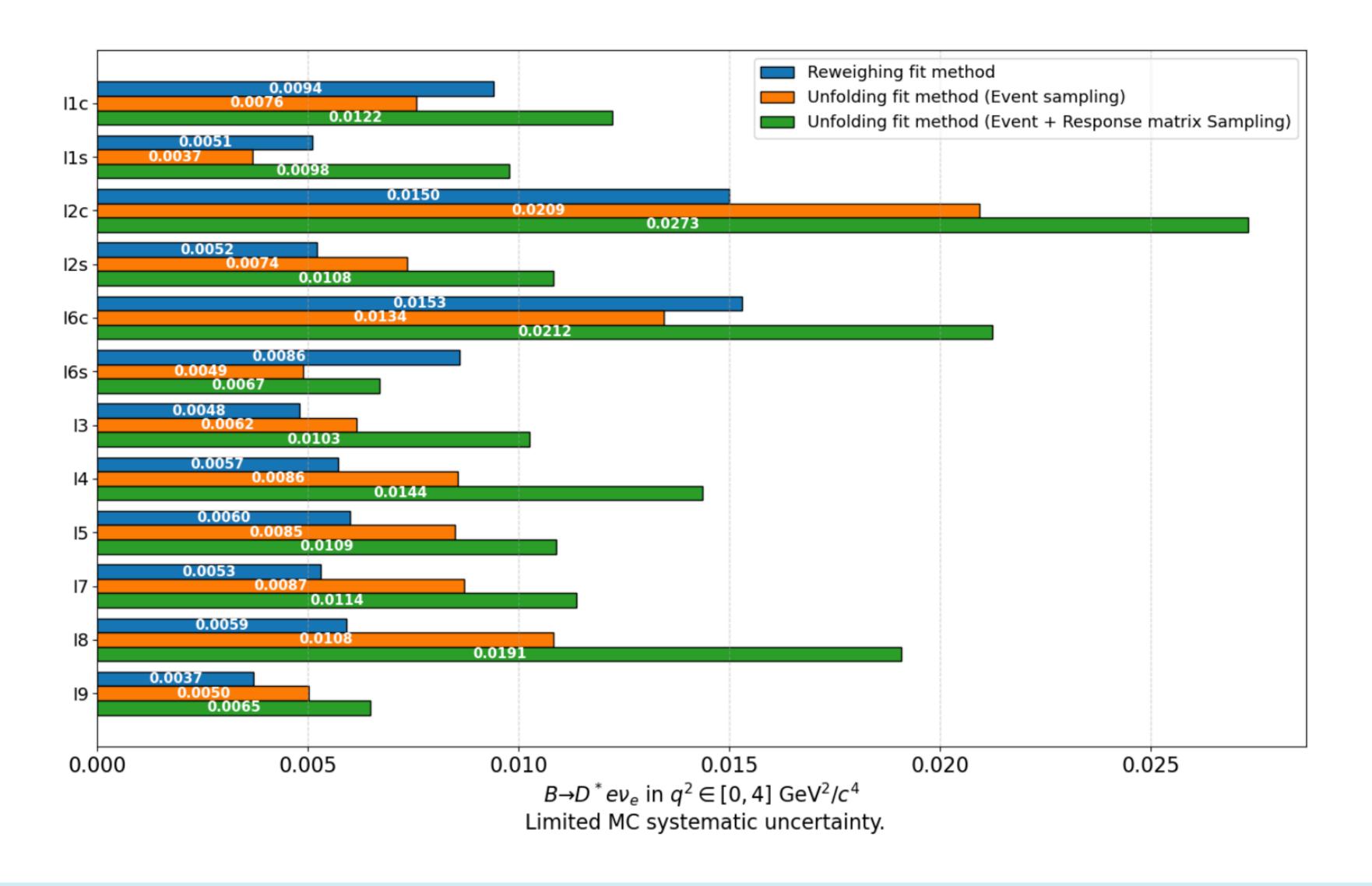
Pulls follow a gaussian distribution with $\mu=0$ and $\sigma=1$

► Fit is robust and unbiased

Pull distribution between true and fitted I_X for $B \to D^*e\nu$



Fit methods comparison - preliminary results



GdR Intensity Frontier